THE UNIVERSITY OF MICHIGAN
COMPUTING RESEARCH LABORATORY

PARADIGMS FOR DESIGN AND
IMPLEMENTATION IN ADA"”

Vaclav Rajlich

CRL-TR-43-84

October 1984

Room 1079, East Engineering Bullding
Ann Arbor, Michigan 48109

USA

Tel: (313) 763-8000

*
Any opinions, findings, and conclusions or recommendations expressed in this publication are those of
the authors and do not necessarily reflect the views of the funding agency.

*“Adaisa registered trademark of the United States Government, Ada Joint Program Office (AJPO)

Abstract .

In the paper., three characteristic paradigms of a design and
implementation in Ada are described and compared: Bottom-up
incremental programming, top-down semiincremental programming,
and large-small traditional programming. Several examples
illustrate the selection of the correct paradigm for the given
set of circumstances.

1. Introduction.

Frogramming languages Ada [1] and others [21, [81, r1s1,
[181, represent a new generation of languages. They are a
culmination of long research in modularity, i.e. the tools and
techniques of decomposition of large software systems into
smaller pieces. They are also new and powerful software tools,

providing extensive help to both the designer and programmer who
uses them.

One of the most powerful modularity technigues 1is the
principle of information hiding as outlined by Farnas and others
[101. The principle can be briefly summarized in the following
way: We want to decompose the programs into modules (packages)
which will have simpler and more understandable interfaces than
the detailed code they are hiding inside. They will be reusable,
will localize the impact of the changes in the program, allow
cooperation of several programmers on a program, etc.

Traditionally, the process of program creation is divided
into two phases, the design and implementation, where the purpose
of design is to find the "right" packages with the properties
described above, while purpose of the implementation i1s to
actually produce the code for the packages. The programming
language Ada contains elaborate features which support the
implementation (l.e. code writing) of programs divided into
packages. In this paper, Ada will be used both as a design and
implementation language, and several paradigms will be discussed.

In Section &2, we describe separate compilation in Ada.
Section I describes a certain desirable architecture of Ada
programs. Section 4 describes paradigms and life-cycles in
general, with the emphasis on non~traditional incremental and
semi~-incremental life-cycles. In Sections 3, 6, and 7, we
describe three selected paradigms. The summary in Section 8
contains several hypothetical examples of a paradigm selection.

)}

Separate compilation in Ada.

The basic building block of Ada programs is a compilation
unity the whole program consists of one or more compilation
units [11. We shall avoid discussing the complexities of
compilation units in general, and shall concentrate on packages
instead; however the paradigms discussed in this paper can be
applied to subprograms and generics, too.

Fach package 1s associated with two compilation uwunits:
package specification and package bpdy. A package specification
is a list of all declarative items (i.e. objects, types,
subprograms, tasks, exceptions, etc.!) which are implemented in

the package and can be used by other packages of the program.
A package body contains all relevant definitions. Moreover, a
package body can contain other entities, invisible +from the
outside. Hence the package specification is a "window" of a
limited size, which allows only a limited number of the entities
of the package to be seen, hiding all the remaining ones.
Moreover it hides the implementation details of the visible
objects. This principle is called "information hiding principle”
in the literature [10], and it allows decomposition of large
systems into smaller packages, where each package and its
interconnections are simpler than the whole program. Hence a
programmer who deals with one package does not have to know the
whole program, and his task is substantially simplified.

A typical program consists of several packages. It must
contain both specification and body of each package. Fackages
can be interconnected by either with or separate clauses., which
determine both the relationships and the order of the compilation

Suppose we have two packages X and Y interconnected by the
following "with" clause:

with X3 package Y is ...,

Then the order of compilations is given by the following rules:
(1) package specifications of both X and Y must be compiled
before package bodies are compiled,
(11) specification of X must be compiled before specification
of Y is compiled.
Hence the possible orders of compilation of packages X and Y are:

specification X, body X, specification Y, body Y
specification X, specification Y, body X, body Y
specification X, specification Y, body Y, body X.

Besides the order of compilation, the '"with" clauses
determine which package can use items of which package. In the

example above, package Y is allowed to use items listed in the
specification of X.

The "with" clauses organize the packages of a program into
a directed acyclic graph (dag).

Another way how to organize packages is to use the
"separate" clauses. Suppose we have the following program:

package Y is ... end Y

package body Y is
package D is ... end Dj
package body D is separate;

end Y;

separate (Y);
package body D is ... end D;

There is only one order of compilation: specification Y,
body ¥ (includes specification D), body D. Visibility rules are
given by the nesting of D in Y. The ‘“separate” clauses

intgrconnect the packages into a tree-structured hierarchy.

One program can have the packages interrelated by both
"with" and "separate" hierarchies.

o Hierarchical architectur

In the literature, two orthogonal hierarchical architectures
tor computer programs were described. One deals with the
organization of programs into "layers'", where interfaces among
layers are the so-called "virtuwal machines" [31, and it will be
called the seniority hierarchy. The other hierarchy deals with
the decomposition of larger objects into smaller parts, and will
be called the parent-child hierarchy. A common misconception is
to equate these two hierarchies. We shall follow the style of
L1571 and make a distinction between the two hierarchies.

The seniority hierarchy provides an intuitive bhasis for two
important paradigms: top-down and bottom—up. This hierarchy
requires an organization of the packages into directed acyclic
graphs [121, and hence it is natural to define it by the "with"
clauses of Ada. The virtual machines are then the "cuts" of the
dag. Hence 1f we have the situation

with X; package Y is ...}

then Y will be called senior (to X), and X will be called junior
{to Yi.

It should be noted that the ‘'"separate" clauses were
suggested by some researchers to serve as a tool for the
seniority hierarchy [161, particularly in the situation when top-
down programming is used. However they are not suitable for this
purpose; they force tree structure on the system, which
constrains the architecture in a substantial way. Example in [14]
illustrates the situation where the tree structure is inadequate.
We will use "separate" clauses for a different purpose.

The parent-child hierarchy is intuitively characterized by
big packages divided into smaller ones. This hierarchy requires a
tree—~like structure. It is here where the "separate" clauses can
be utilizred. If we have a situation

separate (B); package body A is ...

then B will be called a parent (of A), and A will be called a
child (of B).

The two hierarchies are orthogonal to each other and can be
combined in one program. However in that case, a certain element

of style should be observed: The children of &a common parent
should also be ordered by the relation of seniority, even if Ada
does not reqguire such ordering. Then the children will also
create a hierarchical decomposition into layers and virtual

machines, which will make it possible to design and program them
both top-down and bottom-up.

The two hierarchies provide a natural selection of
relationships among the packages. Moreover they provide four
basic directions, in which paradigms for the design and

implementation may progress: Bottom-up, which progresses in the
direction from the junior to the senior packages, top—-down which
progresses in the exactly opposite direction, i.e. from the
senior to the junior packages, large-small paradigm which follows
the direction of the "separate" hierarchy, where parent packages
are written before the child packages, and the ‘"small-large"
paradigm, where child packages are written before the parent
packages.

It should be immediatelly noted that the asmall~large
paradigm is incompatible with both modern programming practices

and Ada. It was widely used in the past with less sophisticated
programming languages, when separate modules were written by
different programmers, and then later "integrated" into one

program. It was typical to discover substantial discrepancies and
misunderstandings among the programmers during the integration
phase, which required substantial revisions in the code. Hence
integration was the least predictable and potentially costly
phase of the software life-cycle. Because of this cost and
uncertainty, and because all other paradigms are superior to
small-large paradigm in all respects, it should no longer be
used, and is not discussed further in this paper.

4. Life-cycles.
The paradigms of the previous sectlon should be
distinguished from the orthogonal notion of software "life-

cycle'. The life-cycle is a sequence of the stages through which
a piece of software has to pass during its life. In this paper,
we shall talk about three different lifecycles: Traditional,
incremental, and semi-incremental.

The traditi

onal software life-cycle is well documented in
the literature [71, [91, [111, and consists of the following

phases:

Requirements specification, where the task is described in

language understandable to both the implementors and the users
{answering the question what 1s to be implemented) . An

&

interesting part of the requirements specification is the
veritfication of the specifications via rapid prototyping [20]1. As
interesting and important the as specifications are, we shall not
deal with them in this paper and shall rather concentrate on the
remaining portions of the life-cycle.

Design, where the algorithms are defined and the system is
decomposed into packages (answering the question how is the
system going to be implemented).

Implementation, where the actual code is written,

integrated, and tested.

Evolutio
according t
discovered.

Nn. where the system is being operated and modified
o changing environment or whenever errors are

In the traditional life-cycle, the complete design ot the
program or the system must be finished, before the implementation
starts. Typically, the design language will be completely
different from the implementation language. The methods covering
the traditional paradigm are well known [111. In correspondence
to [211, the result of the design phase will be called a
wor kproduct.

However Ada allows a departure from this sequence, because
it can be used both as a design and implementation language. The
departures we will tallk about here will be called incremental and
semizincremental life-cycles.

A characteristic feature of the incremental life-cycle is
that it uses one language for both design and implementation, and
hence 1t merges the steps of design and implementation inteo one
{(for simplicity, we shall use word "implementation" to denote
this merged step). During the implementation, the program
typically is incomplete, i.e. it consists of two parts: the
existing part, which is the actual program so far stored in the
computer, and the intended part, which is everything not vet
written. At the beginning, the existing part is empty and the
whole program is intended. At the end, the intended part is empty
and the whole program is existing. The program implementation is
a sequence of incremental steps, each adding something to the
existing part and deleting something from the intended part.

An advantage of the incremental life-cycle 18 the
possibility of verification of incomplete designs. Lack of this
possibility is one of the major problems with the traditional
life-cycle. Another advantage 1is the saving in the volume of
documentation the designers/programmers must produce. A careful
scrutiny of most design documents reveal that with the
traditional paradigm, the design and implementation overlap to a
substantial degree.

The incremental life-cycle requires support by software
tools. The programming language must contain constructs which

will allow the incremental steps, where the code written for one
step will remain valid for all the remaining steps (unless the

programmer changes his mind). It also requires a verification
method for incomplete programs.

The gsemi-incremental life-cycle is half-way between
incremental and traditional life-cycles. It requires separate
phases ot design and implementation, but these phases can be
substantially overlapped. This means that the design language
can be easily translated into the programming language, and hence
the design at any stage can be easily converted into code and
tested. This code may require some modifications when additional
steps of design are added, but the modifications are minor and
mechanical. Also the semi-~incremental life-cycle may require a
special work-product, which is a document prepared +for the
purpose of the design only, not a part of the code. Also there
must be methods of verification of incomplete designs translated
into code.

Ada is a software tool which supports several combinations
of paradigms and life-cycles. In the following sections, we shall
explore three most characteristic combinations: bottom-up and
incremental, top-down and semi-incremental, and large-small and
traditional. There are other possibilities like traditional life-
cycle with top-down design and bottom-up implementation; brief
comment related to these possibilities is in Section 8.

Ui

Bottom-up incremental programming.

The bottom—up paradigm is based on the intuitive idea of
"language extentions", and it is a well~known paradigm. The basic
idea is described in the following way: Suppose we want to solve
a problem, which can be easily solved using a certain set of
operations, objects, types, etc. These entities however are not
available in Ada. Then we shall define a package which will
provide them, and use this package as the first step towards the
solution of the problem. Intuitively, we see the packages as
steps in the extension of Ada, which provide increasingly complex
entities needed for the solution. This process of extention may
require several steps, where we extend Ada with entities of one
package, and then use these entities in definition of another
package which has even better entities, etc., until the problem
is solved,

In the Appendix, there is an example of a solution to the
eight queens problem. In the bottom-up approach, package COLUMN
is defined Ffirst. The package provides type COLUMN and all
necessary procedures which deal with it. Then the package BOARD

is defined, and finally the problem is solved by definition of
MAIN.

The programming language Ada provides all necessary

constructs and the order of compilation to support the
incremental life-cycle in combination with the bottom—up
paradigm. There 1s no need to change the previowsly defined
packages when a new package is added.

The advantages of this programming combination are the
fallowing:

-~ There is no extra design document necessary, hence no extra
cost associated with it. In fact, the design is done
simultaneously with the implementation, directly in Ada.

- The paradigm is very forgiving. I+ a wrong decision is made at
any turn, it does not invalidate the design. It may mean that
the the design will be less optimal, containing more code than

necessary, but it usually does not mean that we have to redo the
whole design from scratch.

However the programming combination also has disadvantages:

- A well-known disadvantage of the bottom-up approaches is that
there is no guarantee that the final product will satisty the
specifications, or that it will be well balanced. Some authors
considered this disadvantage to be so severe that they ruled out
the bottom-up paradigm as generally unsuitable [171].

- The paradigm allows only a limited number of people to work on
a project.

- The paradigm is rather difficult. It is a highly creative act
to discover items (i.e. objects, tvpes, etc.) which will be
useful for the solution of a particular problem.

b Top-down semi-incremental programming.

The particular methodology on which the top-down paradigm is
demonstrated 1s the refinement methodology (RM) of [131 and
[1431. Other top-down methodoleogies can be found in [417, [&6T,
171, 191, 211, etc., but nrnone of them leads to a semi-
incremental lite-cycle.

The top-down paradigm starts with specifications, which
describe the problem to be solved, and serve as a departure point
for the design. An important workproduct of RM is the so-called
backlog interface. It consists of the objects which have already

been used in the existing part, but which were not defined. These
objects will be called unfinished objects. Typically, they are:

(1) Frocedures/functions which have been called but whose
bodies have not been defined
(i1} Types which already have been used but have not been
detined

(ii1i) Variables whose names have been introduced but their

types have not been declared.

The unfinished objects are interconnected into data-flow
graphs by the following relations:

(1) Relations "read", ‘"write", and ‘'"readwrite" between
variables and procedures/functions
(ii1) Relations "in", 'out", and "in out" between unfinished

types and procedures/fuctions. This relation describes the mode
and tvpe of formal parameters of procedures/functions.

As in [141, we shall represent backlog interfaces by graphs,
where the procedures/functions are denoted by rectangles, the
variables are denoted by ovals, and the types are denoted by
diamonds. Relations are denoted by arrows pointing in the
direction of the information flow. Frocedures, functions, and
types also contain the names of all packages in which they are
used. An example of backlog interface is in Fig. 1.

The scope of variable or type V is the set of all
procedures/functions related to V. The scope of a procedure F is
the procedure itself.

The RM methodology is based on the following steps:

(1) definition

(ii) decomposition and completion

(1ii) abstraction.

Each of these steps removes certain objects from the backlog
interface and may add new ones to it. Each of them also adds one
tentative package to the existing part of the program. The steps
are described in the following way:

(i) Definition.

Definition is a step in which we define one or several
unfinished objects in terms of the primitives of the programming
language. If the object is a procedure, we will define its body.
If it is a variable, we will give its type. If it is a type, we
will define its representation. These objects are then removed
from the backlog interface.

An important property of definition is that the smallest
unit of definition is a scope. Every definition step means that
cone or several scopes are defined at once.

A procedure can be fully defined only if all related objects
(variables, types) are defined in the same step. If procedure F
is related to variables V1, V2, cews YN, and to types T1, T2,
TZ.ues Tm and all these variables and types were defined in the
same step, then procedure F can be fully defined. If one or more
variables and/or types remain undefined, then procedure F can be
detined only partially. It"s body will have to contain calls of
new unfinished procedures F1, F2, ..., Fk which will be related
to the variables/types which remained undetfined. In this
situation, the so-called first reason for parameters has to be
applied. It is explained in the following way: Let F be a
procedure which 1s related to variables Vi, VI, cans VN where

variables V1, V2, ..., Vm were defined, variables V(m+1), ..., V¥n
were left undefined (m<n). Then F will be partialy defined with
new unfinished procedure Fl1 being called in its body. The
procedure F1 will have actual parameters V1, V2, ..., Vm, i.e.
the body of F will be
procedure F is
begin

F1(Vl, V2, .u., Vm)g

end Fj;

This rule can be justified by the following reasoning: Each
detfinition step produces a package. For reasons of style, we
allow the communication between packages through procedure
parameters only, disallowing direct accessibility of data.
Frocedure F1 may inherit all relationships of the original
procedure F, 1i.e. it may be related to all variables Vi, V2,
VigwewaVn. However the definitions of these variables will be
spread over at least two packages: The current package where Vi1,
vz, sy VM are defined, and some future packages where both Fi
and some of the variables Vim+l), ..., Vn will be defined. Then
there is the need for the parameters F1(V1, V2, ...,.Vm).

(ii) Decomposition and completion.

Decomposition and completion is another step of the
methodology. In 1t, we decompose an unfinished object A into
several smaller untinished objects Al, AZ, sean ANn. If object A
is a variable, type, and procedure, then objects Al, A2, AN
will also be variables, types, and procedures, respectively.
Moreover if A was related to B, then a nonempty subset of Al, A2,
AZyuweyw AN wWill be related to B by the same kind of relations.

In the substep of completion, we inspect all new unfinished
objects and try to determine whether they can function correctly
or whether they need to be related to some additional objects.
There are two situations which require introduction of new
objects: First, two procedures may need to communicate with each
other, and hence there is a need for a new variable which will
tacilitate this communication. Second, variables may need
initializing procedures which will set the initial values. None
of these new objects were introduced by decomposition, hence we
must have the special substep of completion. An existing part of
the program is complete when no new objects can be introduced by
the process of completion, i.e. all communications among
procedures have been served by appropriate variables, and all
variables have been properly initialized.

The step of decomposition and completion again produces a
package.

(1ii) Abstraction.

Abstraction is a special case of definition in which a
variable V is declared to be of type T, where T is an unfinished
type. As in every definition, the whole scope of variable V has
to be defined. If V is read by proceduwe F, then the body of F

will call a new unfinished procedure F1(Viin T). This action is

The purpose of an abstraction step is to replace similar
unfinished variables by one type, and similar untinished
procedures by a single more abstract procedure. The reason 1is
economic: the backlog interface will be simplified, because
several variables and procedures will be replaced by a smaller
number of newly introduced types and procedures, respectively.
Again, the abstraction step produces a package.

The packages produced by the steps of RM can be directly
written in Ada, except for one thing: The "with" clauses cannot
be utilired, because it is unclear at the time of introduction,
in which package the individual items of the backlog interface
will be located. Hence we use the "used in" clauses, which
specify where the items are used instead. The "used in" clauses
are the only difference between the actual Ada code and the
design. For more details on RM, see [141.

To convert designs into code, note that the "used in"
relationship is an inverse relationship to the combination of
the "with" and "use" clause of ADA. Hence if we have two packages
F and R which are related in the design in the following way:

package F is ... end Pj

used in Fj
package R is ... end Rj;

then replacing "used in" by a combination of "with" and Muse"
will give us

with Ri; use R;
package P is ... end F;

package R is ... end Rj

Let us illustrate the programming on the example in the
Appendilx. In that example, the first compilation unit to be
implemented is procedure MAIN. The procedure calls several
procedures, which in turn communicate with each other through a
data structure BOARD. Hence after the first step, the backlog
interface is defined by the graph of Fig. 1.

[TRY_FIRST used in MAIN

[NOT FINISHED returns BOOLEAN used in MAIN

[SUCCESFULL returns BOOLEAN used in MAIN
[ADVANCE used in MAIN »)
| REGRESS used in MAIN
PRINT_RESULTS used in MAIN

Fig. 1

In the next step, we shall deal with the scope of the object
BOARD, and define package BOARD. The object BOARD will become a
local object of the package, defined as an array(l..8) of COLUMN,
where COLUMN is an unknown type. Both package specification and
body will be defined simultaneocusly:

used in MAIN;
package BOARD is ... end BOARD.

The backlog interface appears in Fig. 2.

&FIRBT(out X: COLUMN) used in BOARD

SAFE{A,B: in COLUMN; C,D: in INTEGER)
return BOOLEAN used in BOARD

LAST (A: in COLUMN) return EOOLEAN - m
used in BOARD

[PRINTWRDW(A: in COLUMN) used in BOARD

Fig. 2.

In the last step, we shall define the scope of the type
COLUMN. This 1is done in package COLUMN of the Appendix. The
package (both the specification and the body) will have the form:

used in BOARD;
package COLUMN is ... end COLUMN;

After this step, the backlog interface is empty, and
hence we are finished with the design. In order to convert the
design into code, we have to convert the "used in" clauses into a
combination of "with" and "use" clauses. The resulting program
appears in the Appendix. The conversion is straighforward and
mechanical, and can be done after each package is added. Hence it

passes ouw criteria for the semi-incremental life-cycle.

The advantages of the top-down semi-incremental programming
combination are:

- Since the specifications are the departure point for the
paradigm, there 1is a good probability that the specifications
goal will be actually accomplished.

- The volume of the necessary documentation is small compared to
the traditional paradigm.

- The paradigm offers a rather detailed guidance to the designer.

When the paradigm is mastered, it becomes very natural and easy
to use.

However the programming combination also has disadvantages:

= There 1is a very small possibility of parallel efforts on the
project.

~ The paradigm is less forgiving than the bottom—-up paradigm.
Wrong decisions, like wrong decomposition of an item, may make
the design unacceptable or competely invalid. The only solution
then is to retrace the wrong decision and all consequent
decisions, which may be a time-consuming task.

As remarked earlier, Ada allows the large-—small paradigm,
where the specifications of the modules are defined first, and
then the bodies are defined later. If it turns out that a body of
a package is too big, it may be divided into smaller packages by
"separate" clauses, and hence this paradigm naturally utilizes
the "separate" hierarchy.

In the example in the Appendix, the paradigm requires the
specitfication of the three packages first. Then the bodies can be
written in an arbitrary order, or by several programmers in
parallel. The compiler will check whether the packages use the
items of the other packages correctly, which substantially
improves the problems of the integration of the modules into the
program. A methodology supporting this paradigm appers in [3].

The problem of this paradigm is its unforgiving nature.
Whenever an error in the specification of the packages is made,
it tends to affect many additional packages, and a ripple effect
propagates through the system. Hence the implementation reqguires
a very careful and detailed design, and the design must be
completed before the implementation can start.

Another problem is the high volume of documentation, because

the design 1s a completely separate document than the code. Also
hecauwse of the unforgiving nature of the paradigm, it is a
difficult paradigm.

The advantage is the high parallelism of the implementation
eftfort, where once the design has been completed, many
programmers Can work on the program in parallel, each
implementing a different package.

8. Summary.

In the paper we dealt with the most characteristic
combinations of paradigms and life-cycles only. However other
combinations are possible: For example, a program can be designed
top-down and then implemented bottom—-up, or it can be divided
into several large packages first (by large-small paradigm) and
the packages can be implemented with subpackages by bottom-up
paradigm, etc. Each of the combinations displays a different
combination of attributes. Hence a manager of a project should
carefully evaluate the circumstances of the project, and
carefully select the appropriate combination.

As an illustration, let us consider several examples of
program implementation:

- AN esploratory program is to be implemented by an
individual researcher. Because of the exploratory nature of the
D ogram, no requirements specifications exist. Hence the

appropriate combination is the incremental bottom—up combination,
which offers the highest level of forgiveness (and hence it a
wrong decision is made, 1t can be easily corrected), and lowest
volume of necessary documentation. The disadvantages of the
combination are well compensated for: there is one researcher and
hence no need for parallel effort, and the high caliber of the
researcher compensates for the higher difficulty of the paradigm.

- AN existing program is to be rewitten in Ada by a team of
the programmers. The appropriate combination for this situation
is the large-small +traditional combination. The combination
allows several programmers to proceed with implementation in
parallel. All disadvantages are reduced by the fact that the
old program already exists and is available to the programmers.
This is particularly true about the lack of forgiveness, and the
high wvolume of necessary documentation; the experience and the
design from the old program can be reused.

—- Another program of a well-known application area is to be
produced by a small team of programmers. The appropriate
combination for this situation is the top-down semi-incremental
paradigm. The combination offers the best certainty of compliance
with the specifications. The impact of the less forgiving nature
of the combination is reduced by the fact that the application
area 15 well-known to the programmers. The impact of the low

level of parallelism is reduced by the fact that a small team is
involved.

Heterences.

[1]1 Ada Frogramming Language, Military standard MIL-STD-1818.

(21 Archibald, J.L., Lavenworth, B.M., Fower, L.R., Abstract
Design and Frogram Translator: New Tools for Software Design, IEM
Systems J. 22, 1983, 170-187.

[Z1 Booch, 0G., Softwére Engineering with Ada, The Renjamin
Cummings Fubl. Co, Menlo Fark, CA, 1983,

[41 Crew, p.., Ward, D., Mungel, G., Analysis of a Prototype
Ada Integrated Methodology., Fro. COMFSAC 8% Conf., IEEE Computer
Soc., S598-604.,

[51 Dijkstra, E.W., The Structure of THE Multiprogramming
System, Communications of ACM 11, 1968, Z341-346.

[61 Jackson, M., System Development, Frentice-Hall, Englewood
Cliffs, NJ., 1983.

7] Kerola, F., Freeman, F., A Comparison of Lifecycle Models,
Froc. 5Sth Intern. Conf. on Software Eng.., IEEE/ACM, March 1981,
Q099

[81 Lauwer, H.T., BSatterthwaite, E.H., The Impact of Mesa on
System Design, Froc. 4th. International Conference on Software
Engineering, IEEE Catalog No. 79CH1479-3C, 1979, 174-182.

(2?1 Lehman, M.M., Programs, Life-Cycles, and Laws of Frogram
Evolution, IEEE Spectrum, Sept. 1980.

L101 FParnas, D.L., Designing Software for Ease of Extension and
Contraction, IEEE Trans. on Software Engineering, March 1979,
128-137.

{111 Pressman, R.S., Software Engineering: A FPractitioner’s
Approach, McGraw-Hill, New York, 1983.

[121 Rajlich, VY., Problems of Module Interconnection Language, in
Hibbard, F.G6., Schuman, 8.A., Constructing Guality Software,
North-Holland 1978, 147-152.

[121 Rajlich, V., Stepwise Refinement Revisited, to be published,
The Journal of Systems and Computers, 1984.

et

141 Rajlich, V., A Faradigm for Top-Down Design with Fackages,
Res. Rep. CLR-TR-Z1-8%, Nov. 1987, Computing Research Lab., 1079
Fast Engineering, Ann Arbor, MI 48109,

151 Rajlich, V.o SNAF - A Language and Environment for
Frogramming—-in~-the-l.arge, to be published in Froc. IEEE Workshop
on Languages for Automation, 1984.

L1611 Wichman, EB.A., TIs Ada Too Big? A Designer Answers the
Critics, Communications of ACM, Feb. 1984, 98-103.

{171 Wirth, N., Frogram Development by Stepwise Refinement,
Communications of ACM, April 1971, 221-227.

£181 Wirth., N., Modula-Z, Res. Rep. 26, ETH, Institut fur
Imformatik, Zurich, March 1982.

121 Youwrdon, E., Constantine, L.L.., Structured Design, Frentice-
Hall, Englewood Cliffs, NJ., 1979.

[203 Zelkowitz, M., Brandstad, M., Froc. ACM SIGSOFT Rapid
Frototyping Symposium, Columbia, MD, April 1981.

(211 Wasserman, A.I., Freeman, F., Forcella, M., Characteristics
of Software Development Methodologies, in Olle, T.W., Sol, H.G.,
Tully, C.J.., ed., Information Systems Design Methodologies: A
Feature Analysis, North Holland, Amsterdam, 1983, 37-62.

Appendix. Eight CGueens Problem

The following example was originally published in [171:

Given are an 8X%8 chessboard and 8 gqueens which are hostile
to each other. Find a position for each gueen (a configuration)
such that no gueen may be taken by another queen (i.e. such that
every row, column, and diagonal contains at most one gueen).

A queen placed on the board attacts the sgquares as in Fig. 3.

X <
X * ES
kd x x
X {x Ix
XXX W XX =
X|ix %
X EN x

F.. s}
ey - 3.
{

Example of a correct solution is in Fig. 4.

L

W

R

Fig. 4.

The solution to the problem is a program consisting of two
packages BOARD and COLUMM and a subprogram MAIN. Package COLUMN
deftines a type COLUMN and several procedures which deal with that

type:

package I0O_INTEGER is new INTEGER_IOD(INTEGER);

with IO0_INTEGER; use I0_INTEGER;
package COLUMN is
type COLUMN is private;
procedure FIRST (A: out COLUMN);
function SAFE(A,B: in COLUMN; C,D: in INTEGER)

return

BODLEAN;

function LAST(A: in COLUMN) return BOOLEAN;
procedure NEXT_ROW(A: in out COLUMN);
procedure FRINT_ROW(A: in COLUMN) ;

private
subtype COLUMN is INTEGER range 1..8;

end COLUMM;

package body COLUMN is
procedure FIRST (A: out COLUMN) is
begin
Az=1j;
end FIRST;
function SAFE(A,B: in COLUMMN; C,D: in INTEGER)
BOOLEAN is
begin
if A=RB or abs(A-B)=abs{(C-D) then
return TRUE;
el se
return FALSE;
end 1f;
end SAFE;
function LAST(A: in COLUMN) return BOOLEAN is
begin
it A=8 then

return

return TRUE;
else
return FALSE;
end 1+;
end LAST;
procedure NEXT ROW(A: in out COLUMN) is
hegin
Ar=A+];
end NEXT_ROW;
procedure FRINT_ROW(A: in COLUMM) is
begin
FUT (A) 3
end FRINT_ROW;
end COLUMN;

In package BOARD, data structure BOARD is defined as an
array of COLUMN, with the assumption that each column contains
one gqueen only (otherwise the gueens attack each other). Also to

place 8 queens, it is obvious that each column has to contain
exactly one queen.

with COLUMN; use COLUMN;

package BOARD is
procedure TRY_FIRST;
function NOT_FINISHED retwn BOOLEAN;
function SUCCESFULL retuwrn BOOLEAN;
procedure ADVANCE;:
procedure REGRESS:
procedure FRINT _RESULT;

end BOARD;

package body BOARD is
BOARD: array (1..8) of COLUMN;
I: INTEGER range 1..8;
procedure TRY _FIRBT is
begin
Ta=1;
FIRST(BOARD (1))
end TRY_FIRST;
function MOT_FINISHED return BOOLEAN is
Fi INTEGER range 1..8;
M: RBOOLEAN;
begin
it I48 then
return TRUE;

else
begin
Nz =FALSE;
for K in 1..7 loop

i+ SAFE (BOARD (K, BOARD (8) ,K,8) then
N:=TRUE;
end if;
end loop:
return N;

end if;
end NOT_FINISHED;
function SUCCESFULL return BOOLEAN is
i1 INTEGER range 1..8;
Nz BOOLEAN;
begin
N:=TRUE};
for K in 1..I-1 loop
it SAFE(BOARD () ,BOARD(I) K, I) then
N:=FALBE;
end 1f;
end loop;
return Nj
end SUCCESFULL;
procedure ADVANCE is
begin
Ii=I+1;
FIRST (BOARD (1))
end ADVANCE;
procedure REGRESS is
begin
while LAST(BOARD(I)) loop
I:=1-1;3
end loop;
NEXT _ROW(RBOARD(I))
end REGRESS;
procedure PRINT_RESULTS is
F: INTEGER range 1..8;
begin
for ¥ in 1..8 loop
FRINT_ROW (KD
end loop;
end FRINT_FOSITION;
end BOARD;

In this package, TRY_FIRST initializes the board to the
tirst position, placing the first gueen on the board. Boolean
function MOT_FINISHED determines whether we reached the
solution. Boolean function SUCCESFULL will determine whether it
is possible to place another queen on the board. If ves, we will
do so in procedure ADVANCE. If not, then we have to change the
current situwation, which will be done in REGRESS.

The last compilation unit is a subprogram main:

with BOARD; use BOARD;
procedure MAIN is
begin
TRY_FIRST;
while NOT_FINISHED loop
i+ SUCCESFULL then
ADVANCE ;
el se
REGRESS;
end i+;

20

end loop;:
FRINT_RESULTS;
end MAIN;

O

T

3 9015 03022 7402

