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Extended Abstract 

This paper describes a simple distributed mechan- 
ism for caching files among a networked collection of 
workstations. We have implemented it as part of Sprite, a 
new operating system being implemented at the Univer- 
sity of California at Berkeley. A preliminary version of 
Sprite is currently running on Sun-2 and Sun-3 worksta- 
tions, which have about 1-2 MIPS processing power and 
4-16 Mbytes of main memory. The system is targeted for 
workstations like these and newer models likely to 
become available in the near future; we expect the future 
machines to have at least five to ten times the processing 
power and main memory of our current machines, as well 
as small degrees of multiprocessing. We hope that Sprite 
will be suitable for networks of up to a few hundred of 
these workstations. Because of economic and environ- 
mental factors, most workstations will not have local 
disks; instead, large fast disks will be concentrated on a 
few server machines. 

In Sprite, file information is cached in the main 
memories of both servers (workstations with disks), and 
clients (workstations wishing to access files on non-local 
disks). On machines with disks, the caches reduce disk- 
related delays and contention. On clients, the caches also 
reduce the communication delays that would otherwise be 
required to fetch blocks from servers. In addition, client 
caches reduce contention for the network and for the 
server machines. Since server CPUs appear to be the 
bottleneck in several existing network file systems 
[SAT¥85, LAZO86], client caching offers the possibility 
of greater system scalability as well as increased perfor- 
mance. 

The Sprite caches are organized on a block basis 
using a fixed block size of 4 Kbytes. Cache blocks are 
addressed virtually, using a unique file identifier provided 
by the server and a block number within the file. We 
used virtual addresses instead of physical disk addresses 
so that clients could create new blocks in their caches 
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without first contacting a server to find out their physical 
locations. Virtual addressing also allows blocks in the 
cache to be located without traversing the file's disk map. 

Dirty blocks are written back to the server or disk 
using a delayed-write policy similar to the one used in 
Unix: every 30 seconds, all dirty blocks that haven't been 
modified in the last 30 seconds are written back. This 
policy was chosen over write-through and write-back- 
on-close because it avoids delays when writing and clos- 
ing files and permits modest reductions in disk/server 
traffic. Although it does not have the high reliability of 
write-through, it limits the amount of file data that can be 
lost in a crash. 

There are two unusual aspects to the Sprite caching 
mechanism. The first is that Sprite guarantees worksta- 
tions a consistent view of the data in the file system, even 
when multiple workstations access the same file simul- 
taneously and the file is cached in several places at once. 
To simplify the implementation of cache consistency, we 
considered two separate cases. The first case is sequential 
write-sharing, where one workstation modifies a file and 
another workstation reads it later, but the file is never 
open on both workstations at the same time. We expect 
this form of write-sharing to be the most common one. 
The second case is concurrent write-sharing, where one 
workstation modifies a file while it is open on another 
workstation. Our solution to this situation is more expen- 
sive, but we do not expect it to occur very often. 

Sprite uses the file servers as centralized control 
points for cache consistency. Each server guarantees 
cache consistency for all the files on its disks, and clients 
deal only with the server for a file: there are no direct 
client-client interactions. The Sprite algorithm depends 
on the fact that the server is notified whenever one of its 
files is opened or closed, so it can detect when concurrent 
write-sharing is about to occur. 

Sprite handles sequential write-sharing using ver- 
sion numbers. When a client opens a file, the server 
returns the current version number for the file, which the 
client compares to the version number associated with its 
cached blocks for the file. If they are different, the file 
must have been modified recently on some other worksta- 
tion, so the client discards all of the cached blocks for the 
file and reloads its cache from the server when the blocks 
are needed. The delayed-write policy used by Sprite 
means that the server doesn't always have the current data 
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for a file (the last writer need not have flushed dirty 
blocks back to the server when it closed the file). Servers 
handle this situation by keeping track of the last writer for 
each file; when a client other than the last writer opens the 
file, the server forces the last writer to write all its dirty 
blocks back to the server's cache. This guarantees that 
the server has up-to-date information for a file whenever a 
client needs it. 

For concurrent write-sharing, where the file is open 
on two or more workstations and at least one of them is 
writing the file, Sprite disables client caching for that file. 
When the server receives an open request that will result 
in concurrent write-sharing, it flushes dirty blocks back 
from the current writer (if any), and notifies all of the 
clients with the file open that they should not cache the 
file anymore. Cache disabling is done on a file-by-file 
basis, and only when concurrent write-sharing occurs. A 
file may be cached simultaneously by several active 
readers. 

The second unusual feature of the Sprite caches is 
that they vary in size dynamically. This was a conse- 
quence of our desire to provide very large client caches, 
perhaps occupying most of the clients' memories. Unfor- 
tunately, large caches may occasionally conflict with the 
needs of the virtual memory system, which would like to 
use as much memory as possible to run user processes. In 
order to get the best overall performance, Sprite allows 
each file cache to grow and shrink dynamically in 
response to changing demands on the machine's virtual 
memory system and file system. This is accomplished by 
having the two modules negotiate over physical memory 
usage. 

The file system module and the virtual memory 
module each manage a separate pool of physical memory 
pages. Virtual memory keeps its pages in approximate 
LRU order through a version of the clock algorithm 
[NELS86]. The file system keeps its cache blocks in per- 
fect LRU order since all block accesses are through the 
"read"  and "wri te"  system calls. Each system keeps a 
time-of-last-access for each page or block. Whenever 
either module needs additional memory (because of a 
page fault or a miss in the file cache), it compares the age 
of its oldest page with the age of the oldest page from the 
other module. If the other module has the oldest page, 
then it is forced to give up that page; otherwise the 
module recycles its own oldest page. 

We used a collection of benchmark programs to 
measure the performance of the Sprite file system. On 
average, client caching resulted in a speedup of about 
10-40% for programs running on diskless workstations, 
relative to diskless workstations without client caches. 
With client caching enabled, diskless workstations com- 
pleted the benchmarks only 0-12% more slowly than 
workstations with disks. Client caches reduced the server 
utilization from about 5-18% per active client to only 
about 1-9% per active client. Since normal users are 
rarely active, our measurements suggest that a single 
server should be able to support at least 50 clients. 

We also compared the performance of Sprite to 
both the Andrew file system [SATY85] and Sun's Net- 
work File System (NFS) [SAND85]. We did this by exe- 
cuting the Andrew file system benchmark [HOWA87] 
concurrently on multiple Sprite clients and comparing our 
results to those presented in [I-IOWA87] for NFS and 
Andrew. For a single client, Sprite is about 30% faster 
than NFS and about 35% faster than Andrew. As the 
number of concurrent clients increased, the NFS server 
quickly saturated. The Andrew system showed the 
greatest scalability: each client accounted for only about 
2.4% server CPU utilization, vs. 5.4% in Sprite and over 
20% in NFS. 
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