
Caching in the Sprite Network File System

Michael N. Nelson Brent B. Welch John K. Ousterhout

Computer Science Division
Department of Electrical Engineering and Computer Sciences

University of California
Berkeley, California 94720

Extended Abstract

This paper describes a simple distributed mechan-
ism for caching files among a networked collection of
workstations. We have implemented it as part of Sprite, a
new operating system being implemented at the Univer-
sity of California at Berkeley. A preliminary version of
Sprite is currently running on Sun-2 and Sun-3 worksta-
tions, which have about 1-2 MIPS processing power and
4-16 Mbytes of main memory. The system is targeted for
workstations like these and newer models likely to
become available in the near future; we expect the future
machines to have at least five to ten times the processing
power and main memory of our current machines, as well
as small degrees of multiprocessing. We hope that Sprite
will be suitable for networks of up to a few hundred of
these workstations. Because of economic and environ-
mental factors, most workstations will not have local
disks; instead, large fast disks will be concentrated on a
few server machines.

In Sprite, file information is cached in the main
memories of both servers (workstations with disks), and
clients (workstations wishing to access files on non-local
disks). On machines with disks, the caches reduce disk-
related delays and contention. On clients, the caches also
reduce the communication delays that would otherwise be
required to fetch blocks from servers. In addition, client
caches reduce contention for the network and for the
server machines. Since server CPUs appear to be the
bottleneck in several existing network file systems
[SAT¥85, LAZO86], client caching offers the possibility
of greater system scalability as well as increased perfor-
mance.

The Sprite caches are organized on a block basis
using a fixed block size of 4 Kbytes. Cache blocks are
addressed virtually, using a unique file identifier provided
by the server and a block number within the file. We
used virtual addresses instead of physical disk addresses
so that clients could create new blocks in their caches

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

©1987 ACM089791-242-X/87/0011/0003 $1.50

without first contacting a server to find out their physical
locations. Virtual addressing also allows blocks in the
cache to be located without traversing the file's disk map.

Dirty blocks are written back to the server or disk
using a delayed-write policy similar to the one used in
Unix: every 30 seconds, all dirty blocks that haven't been
modified in the last 30 seconds are written back. This
policy was chosen over write-through and write-back-
on-close because it avoids delays when writing and clos-
ing files and permits modest reductions in disk/server
traffic. Although it does not have the high reliability of
write-through, it limits the amount of file data that can be
lost in a crash.

There are two unusual aspects to the Sprite caching
mechanism. The first is that Sprite guarantees worksta-
tions a consistent view of the data in the file system, even
when multiple workstations access the same file simul-
taneously and the file is cached in several places at once.
To simplify the implementation of cache consistency, we
considered two separate cases. The first case is sequential
write-sharing, where one workstation modifies a file and
another workstation reads it later, but the file is never
open on both workstations at the same time. We expect
this form of write-sharing to be the most common one.
The second case is concurrent write-sharing, where one
workstation modifies a file while it is open on another
workstation. Our solution to this situation is more expen-
sive, but we do not expect it to occur very often.

Sprite uses the file servers as centralized control
points for cache consistency. Each server guarantees
cache consistency for all the files on its disks, and clients
deal only with the server for a file: there are no direct
client-client interactions. The Sprite algorithm depends
on the fact that the server is notified whenever one of its
files is opened or closed, so it can detect when concurrent
write-sharing is about to occur.

Sprite handles sequential write-sharing using ver-
sion numbers. When a client opens a file, the server
returns the current version number for the file, which the
client compares to the version number associated with its
cached blocks for the file. If they are different, the file
must have been modified recently on some other worksta-
tion, so the client discards all of the cached blocks for the
file and reloads its cache from the server when the blocks
are needed. The delayed-write policy used by Sprite
means that the server doesn't always have the current data

http://crossmark.crossref.org/dialog/?doi=10.1145%2F37499.37501&domain=pdf&date_stamp=1987-11-01

for a file (the last writer need not have flushed dirty
blocks back to the server when it closed the file). Servers
handle this situation by keeping track of the last writer for
each file; when a client other than the last writer opens the
file, the server forces the last writer to write all its dirty
blocks back to the server's cache. This guarantees that
the server has up-to-date information for a file whenever a
client needs it.

For concurrent write-sharing, where the file is open
on two or more workstations and at least one of them is
writing the file, Sprite disables client caching for that file.
When the server receives an open request that will result
in concurrent write-sharing, it flushes dirty blocks back
from the current writer (if any), and notifies all of the
clients with the file open that they should not cache the
file anymore. Cache disabling is done on a file-by-file
basis, and only when concurrent write-sharing occurs. A
file may be cached simultaneously by several active
readers.

The second unusual feature of the Sprite caches is
that they vary in size dynamically. This was a conse-
quence of our desire to provide very large client caches,
perhaps occupying most of the clients' memories. Unfor-
tunately, large caches may occasionally conflict with the
needs of the virtual memory system, which would like to
use as much memory as possible to run user processes. In
order to get the best overall performance, Sprite allows
each file cache to grow and shrink dynamically in
response to changing demands on the machine's virtual
memory system and file system. This is accomplished by
having the two modules negotiate over physical memory
usage.

The file system module and the virtual memory
module each manage a separate pool of physical memory
pages. Virtual memory keeps its pages in approximate
LRU order through a version of the clock algorithm
[NELS86]. The file system keeps its cache blocks in per-
fect LRU order since all block accesses are through the
"read" and "wri te" system calls. Each system keeps a
time-of-last-access for each page or block. Whenever
either module needs additional memory (because of a
page fault or a miss in the file cache), it compares the age
of its oldest page with the age of the oldest page from the
other module. If the other module has the oldest page,
then it is forced to give up that page; otherwise the
module recycles its own oldest page.

We used a collection of benchmark programs to
measure the performance of the Sprite file system. On
average, client caching resulted in a speedup of about
10-40% for programs running on diskless workstations,
relative to diskless workstations without client caches.
With client caching enabled, diskless workstations com-
pleted the benchmarks only 0-12% more slowly than
workstations with disks. Client caches reduced the server
utilization from about 5-18% per active client to only
about 1-9% per active client. Since normal users are
rarely active, our measurements suggest that a single
server should be able to support at least 50 clients.

We also compared the performance of Sprite to
both the Andrew file system [SATY85] and Sun's Net-
work File System (NFS) [SAND85]. We did this by exe-
cuting the Andrew file system benchmark [HOWA87]
concurrently on multiple Sprite clients and comparing our
results to those presented in [I-IOWA87] for NFS and
Andrew. For a single client, Sprite is about 30% faster
than NFS and about 35% faster than Andrew. As the
number of concurrent clients increased, the NFS server
quickly saturated. The Andrew system showed the
greatest scalability: each client accounted for only about
2.4% server CPU utilization, vs. 5.4% in Sprite and over
20% in NFS.

References

[HOWA87]
Howard, J.H., et al. "Scale and Performance in a
Distributed File System." ACM Transactions on
Computer Systems, to appear.

[LAZO86]
Lazowska, E.D., Zahorjan, J., Cheriton, D., and
Zwaenepoel, W. "File Access Performance of
Diskless Workstations." ACM Transactions on
Computer Systems, Vol. 4, No. 3, August 1986, pp.
238-268.

[NELS86]
Nelson, M. "Virtual Memory for the Sprite
Operating System." Technical Report UCB/CSD
86/301, Computer Science Division (EECS),
University of California, Berkeley, 1986.

[SAND85]
Sandberg, R. et al. "Design and Implementation of
the Sun Network Filesystem." Proceedings of the
USENIX 1985 Summer Conference, June 1985, pp.
119-130.

[SATY85]
Satyanarayanan, M. et al. "The ITC Distributed
File System: Principles and Design." Proceedings
of the lOth Symposium on Operating Systems Prin-
ciples, December 1985, pp. 35-50.

