
Recovery Management in QuickSilver

Roger Haskin, Yoni Malachi1, Wayne Sawdon, and Gregory Chan2
IBM Almaden Research Center

San Jose, California 95120-6099

The last several years has seen the emergence of two trends in
operating system design: extensibitity: the ability to support new
functions and machine configurations without changes to the kernel,
and distribution: partitioning computation and data across multiple
computers. The QuickSilver distributed system, being developed at
the IBM Almaden Research Center, is an example of such an
extensible, distributed system. It is intended to provide a computing
environment for various people and projects in our lab, and to
serve as a vehicle for research in operating systems and distributed
processing,

One price of extensibility and distribution, as implemented in
QuickSilver, is a more complicated set of failure modes, and the
consequent necessity of dealing with them. In traditional operating
systems, services (e.g., file, display) are intrinsic pieces of the
kernel. Process state is maintained in kernel tables, and the kernel
contains explicit cleanup code (e.g., to close files, reclaim memory,
and get rid of process images after hardware or software failures).
QuickSilver, however, is structured according to the client-server
model, and as in many systems of its type, system services are
implemented by user-level processes that maintain a substantial
amount of client process state. Examples of this state are the open
files, screen windows, address space, etc., belonging to a process.
Failure resilience in such an environment requires that clients and
servers be aware of problems involving each other. Examples of
the way one would like the system to behave include having files
closed and windows removed from the screen when a client termi-
nates, and having clients see bad return codes (rather than hanging)
when a file server crashes. This motivates a number of design goals:

• Properly written programs (especially servers) should be resilient
to external process and machine failures, and should be able to
recover all resources associated with failed entities.

• Server processes should contain their own recovery code. The
kernel should not make any distinction between system service
processes and normal application processes.

• To avoid the proliferation of ad-hoc recovery mechanisms, there
should be a uniform system-wide architecture for recovery man-
agement.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery, To
copy otherwise, or to republish, requires a fee and /or specfic
permission.

© 1987 A C M 0 8 9 7 9 1 - 2 4 2 - X / 8 7 / 0 0 1 1 / 0 1 0 7 $ 1 . 5 0

107

• A client may invoke several independent servers to perform a
set of logically related activities (a unit o f work) that must execute
atomically in the presence of failures, that is, either all the related
activities should occur or none of them should. The recovery
mechanism should support this.

In QuickSilver, recovery is based on the database notion of atomic
trama~oas, which are made available as a system service to be
used by other, higher-level servers. This allows meeting all the
above design goals. Software portability is impo~ant in the
QuickSilver environment, dictating that transaction-based recovery
be accessible to conventional programming languages rather than
a special-purpose one such as Argus [Liskov84]. To accommodate
servers with diverse recovery demands, the low-level primitives of
commit coordination and log recovery are exposed directly rather
than building recovery on top of a stable-storage mechanism such
as in CPR [Attanasio87] or recoverable objects such as those in
Camelot [Speetor87] or Clouds [Allehin&IvleKendry83].

The QuickSilver recovery manager is implemented as a server pro-
cess, and contains three primary components:

• Transaction Manager- a component that manages commit coor-
dination by communicating with servers at its own node and with
transaction managers at other nodes.

• Log Manager- a component that serves as a common recovery
log both for the Transaction Manager's commit log and server's
recovery data.

• Deadlock Detector- a component that detects and resolves global
deadlocks and resolves them by aborting offending transactions.

Of these three components, the Transaction Manager and Log
Manager have been implemented and are in use. The Deadlock
Detector, based on a design described by Obermarek [Obermarck
82], has not been implemented, and is mentioned here only to
show where it fits into our architecture.

The basic idea behind recovery management in QuickSilver is as
follows: Clients and servers interact using a message-passing
interprocess communication (IPC) facility. Every IPC message
belongs to a uniquely identified transaction, and is tagged with its
transaction ID (Tid). Servers tag the state they maintain on behalf
of a transaction with its Tid. IPC keeps track of all servers receiving
messages belonging to a transaction, so the Transaction Manager
(TM) can include them in the commit protocol. TM's commit
protocol is driven by calls from the client and servers, and by

1 Author's present address is Ready Systems, Inc., Palo Alto, CA.

2 Author's present address is MIT Laboratory for Computer Science, Cambridge
IdA

http://crossmark.crossref.org/dialog/?doi=10.1145%2F37499.37512&domain=pdf&date_stamp=1987-11-01

failure notifications from the kernel. Servers use the commit pro-
tocol messages as a signalling mechanism to inform them of failures,
and as a synchronization mechanism for achieving atomicity. Re-
coverable servers call the Log Manager (LM) to store their recovery
data and to recover their state after crashes.

A painful fact is that transactions as they are normally thought of
are a rather heavyweight mechanism. Using transactions as a single,
system-wide recovery paradigm depends upon being able to effi-
ciently accommodate simple servers. For example, the window
manager, virtual terminal service, and address space manager
(loader), have volatile internal state that does not need to survive
system crashes. These servers only require a simple signalling
mechanism to inform them of client termination and failures. Often,
such servers have stringent performance demands. If telling the
loader to clean up an address space is expensive, command scripts
will execute slowly. The recovery manager has several important
properties that help it address its conflicting goals of generality and
efficiency.

• The recovery manager concentrates recovery functions in one
place, eliminating duplicated or ad-hoe recovery code in each
server.

• Recovery management primitives (commit coordination, log re-
covery, deadioek detection) are made available directly, and serv-
ers can use them independently according to their needs.

• The transaction manager allows servers to select among several
variants of the commit protocol (one-phase, two-phase). Simple
servers can use a lightweight variant of the protocol, while re-
coverable servers can use full two-phase commit.

• Servers communicate with the recovery manager at their node.
Recovery managers communicate among themselves over the
network to perform distributed commit. This reduces the number
of commit protocol network messages. Furthermore, the distrib-
uted commit protocol is optimized (e.g., when all servers at a
node are one-phase or read only) to minimize log forces and
network messages.

• The commit protocols support mutual dependencies among groups
of servers involved in a transaction, and allows asynchronous
operation of the servers.

• The log manager maintains a common log, and records are writ-
ten sequentially. Log I /O is minimized, because servers can
depend on TM's commit record to force their log records.

• A block-level log interface is provided for servers that generate
large amounts of log traffic, minimizing the overhead of writing
log records.

• Log recovery is driven by the server, not by LM. This allows
servers to implement whatever recovery policy they want, and
simplifies porting servers with existing log recovery techniques
to the system.

QuickSilver is installed and running in daily production use on 47
IBM RT-PC's in the computer science department at IBM Almaden
Research Center. In addition to the QuickSilver group, other re-
search projects in several IBM labs are using QuickSilver as an
environment to develop applications and network-based services.

The recovery manager has been implemented and is being used as
the recovery mechanism for all QuickSilver servers. Experience
with the system has confirmed that recovery management overhead
is negligible and not perceptible to users, and that the mechanism
is efficient enough to be used for servers with very stringent
performance demands.

Our intent is to pursue development of the QuickSilver recovery
manager in the following areas:

• Deadlock Detection. As we mentioned earlier, the Deadlock
Detection component of the Recovery Manager has not been
implemented. We anticipate be~nning this work shortly.

• High-Performance Servers. The "block access" log interface re-
duces the number of calls to the log manager, but eanses sparser
utilization of log blocks and more log block writes. Considerably
more performance analysis is necessary to evaluate the benefit
of block access for servers like the file system that potentially
log large amounts of data.

• Nested Transactions. QuickSilver presently does not include a
nested transaction mechanism. The utility of a mechanism such
as that proposed by Moss [Moss85] is clear, and we intend to
investigate implementing one.

• Recoverable Object Managers. We recognize the merit of systems
like Camelot and Argus that make it easy to define and use
recoverable objects. It is relatively straightforward to implement
recoverable object managers on top of the QuickSilver recovery
primitives. We intend to explore a language-directed facility for
defining and using recoverable objects, perhaps in the context of
a language like C++.

Bibliography
[Allchin & McKendry 83] Allchin, J. E., McKendry, M. S., Syn-

chronization and recovery of actions, Proceedings of
the Second A CM Symposium on Principles of Distributed
Computing (August 1983) pp. 31-44.

[Attanasio 87] Attanasio, C . R . , CPR supervisor support for
relational database facility, IBM Technical Report RC
12416 (January 1987).

[Liskov 84] Liskov, B., Overview of the Argus language and sys-
tem, MIT Laboratory for Computer Science (February
1984).

[Spector 87] Spector, A., et. al., Camelot: A distributed transaction
facility for Mach and the internet- An Interim Report,
CMU Technical Report CMU-CS-87-129 (June,
1987).

[Moss 85] Moss E. B., Nested Transactions: an Approach to Reliable
Distributed Computing, MIT Press (1985).

[Obermarck 82] Obermarck R., Distributed deadioek detection al-
gorithm, A CM Transactions on Database Systems Volume
7, Number 2 (June 1982) pp. 187-208.

108

