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The last several years has seen the emergence of two trends in 
operating system design: extensibitity: the ability to support new 
functions and machine configurations without changes to the kernel, 
and distribution: partitioning computation and data across multiple 
computers. The QuickSilver distributed system, being developed at 
the IBM Almaden Research Center, is an example of such an 
extensible, distributed system. It is intended to provide a computing 
environment for various people and projects in our lab, and to 
serve as a vehicle for research in operating systems and distributed 
processing, 

One price of extensibility and distribution, as implemented in 
QuickSilver, is a more complicated set of failure modes, and the 
consequent necessity of dealing with them. In traditional operating 
systems, services (e.g., file, display) are intrinsic pieces of the 
kernel. Process state is maintained in kernel tables, and the kernel 
contains explicit cleanup code (e.g., to close files, reclaim memory, 
and get rid of process images after hardware or software failures). 
QuickSilver, however, is structured according to the client-server 
model, and as in many systems of its type, system services are 
implemented by user-level processes that maintain a substantial 
amount of client process state. Examples of this state are the open 
files, screen windows, address space, etc., belonging to a process. 
Failure resilience in such an environment requires that clients and 
servers be aware of problems involving each other. Examples of 
the way one would like the system to behave include having files 
closed and windows removed from the screen when a client termi- 
nates, and having clients see bad return codes (rather than hanging) 
when a file server crashes. This motivates a number of design goals: 

• Properly written programs (especially servers) should be resilient 
to external process and machine failures, and should be able to 
recover all resources associated with failed entities. 

• Server processes should contain their own recovery code. The 
kernel should not make any distinction between system service 
processes and normal application processes. 

• To avoid the proliferation of ad-hoc recovery mechanisms, there 
should be a uniform system-wide architecture for recovery man- 
agement. 
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• A client may invoke several independent servers to perform a 
set of logically related activities (a unit o f  work) that must execute 
atomically in the presence of failures, that is, either all the related 
activities should occur or none of them should. The recovery 
mechanism should support this. 

In QuickSilver, recovery is based on the database notion of atomic 
trama~oas, which are made available as a system service to be 
used by other, higher-level servers. This allows meeting all the 
above design goals. Software portability is impo~ant in the 
QuickSilver environment, dictating that transaction-based recovery 
be  accessible to conventional programming languages rather than 
a special-purpose one such as Argus [Liskov84]. To accommodate 
servers with diverse recovery demands, the low-level primitives of 
commit coordination and log recovery are exposed directly rather 
than building recovery on top of a stable-storage mechanism such 
as in CPR [Attanasio87] or recoverable objects such as those in 
Camelot [Speetor87] or Clouds [Allehin&IvleKendry83]. 

The QuickSilver recovery manager is implemented as a server pro- 
cess, and contains three primary components: 

• Transaction Manager- a component that manages commit coor- 
dination by communicating with servers at its own node and with 
transaction managers at other nodes. 

• Log Manager- a component that serves as a common recovery 
log both for the Transaction Manager's commit log and server's 
recovery data. 

• Deadlock Detector- a component that detects and resolves global 
deadlocks and resolves them by aborting offending transactions. 

Of these three components, the Transaction Manager and Log 
Manager have been implemented and are in use. The Deadlock 
Detector, based on a design described by Obermarek [Obermarck 
82], has not been implemented, and is mentioned here only to 
show where it fits into our architecture. 

The basic idea behind recovery management in QuickSilver is as 
follows: Clients and servers interact using a message-passing 
interprocess communication (IPC) facility. Every IPC message 
belongs to a uniquely identified transaction, and is tagged with its 
transaction ID (Tid). Servers tag the state they maintain on behalf 
of a transaction with its Tid. IPC keeps track of all servers receiving 
messages belonging to a transaction, so the Transaction Manager 
(TM) can include them in the commit protocol. TM's commit 
protocol is driven by calls from the client and servers, and by 
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failure notifications from the kernel. Servers use the commit pro- 
tocol messages as a signalling mechanism to inform them of failures, 
and as a synchronization mechanism for achieving atomicity. Re- 
coverable servers call the Log Manager (LM) to store their recovery 
data and to recover their state after crashes. 

A painful fact is that transactions as they are normally thought of 
are a rather heavyweight mechanism. Using transactions as a single, 
system-wide recovery paradigm depends upon being able to effi- 
ciently accommodate simple servers. For example, the window 
manager, virtual terminal service, and address space manager 
(loader), have volatile internal state that does not need to survive 
system crashes. These servers only require a simple signalling 
mechanism to inform them of client termination and failures. Often, 
such servers have stringent performance demands. If telling the 
loader to clean up an address space is expensive, command scripts 
will execute slowly. The recovery manager has several important 
properties that help it address its conflicting goals of generality and 
efficiency. 

• The recovery manager concentrates recovery functions in one 
place, eliminating duplicated or ad-hoe recovery code in each 
server. 

• Recovery management primitives (commit coordination, log re- 
covery, deadioek detection) are made available directly, and serv- 
ers can use them independently according to their needs. 

• The transaction manager allows servers to select among several 
variants of the commit protocol (one-phase, two-phase). Simple 
servers can use a lightweight variant of the protocol, while re- 
coverable servers can use full two-phase commit. 

• Servers communicate with the recovery manager at their node. 
Recovery managers communicate among themselves over the 
network to perform distributed commit. This reduces the number 
of commit protocol network messages. Furthermore, the distrib- 
uted commit protocol is optimized (e.g., when all servers at a 
node are one-phase or read only) to minimize log forces and 
network messages. 

• The commit protocols support mutual dependencies among groups 
of servers involved in a transaction, and allows asynchronous 
operation of the servers. 

• The log manager maintains a common log, and records are writ- 
ten sequentially. Log I /O  is minimized, because servers can 
depend on TM's commit record to force their log records. 

• A block-level log interface is provided for servers that generate 
large amounts of log traffic, minimizing the overhead of writing 
log records. 

• Log recovery is driven by the server, not by LM. This allows 
servers to implement whatever recovery policy they want, and 
simplifies porting servers with existing log recovery techniques 
to the system. 

QuickSilver is installed and running in daily production use on 47 
IBM RT-PC's in the computer science department at IBM Almaden 
Research Center. In addition to the QuickSilver group, other re- 
search projects in several IBM labs are using QuickSilver as an 
environment to develop applications and network-based services. 

The recovery manager has been implemented and is being used as 
the recovery mechanism for all QuickSilver servers. Experience 
with the system has confirmed that recovery management overhead 
is negligible and not perceptible to users, and that the mechanism 
is efficient enough to be used for servers with very stringent 
performance demands. 

Our intent is to pursue development of the QuickSilver recovery 
manager in the following areas: 

• Deadlock Detection. As we mentioned earlier, the Deadlock 
Detection component of the Recovery Manager has not been 
implemented. We anticipate be~nning this work shortly. 

• High-Performance Servers. The "block access" log interface re- 
duces the number of calls to the log manager, but eanses sparser 
utilization of log blocks and more log block writes. Considerably 
more performance analysis is necessary to evaluate the benefit 
of block access for servers like the file system that potentially 
log large amounts of data. 

• Nested Transactions. QuickSilver presently does not include a 
nested transaction mechanism. The utility of a mechanism such 
as that proposed by Moss [Moss85] is clear, and we intend to 
investigate implementing one. 

• Recoverable Object Managers. We recognize the merit of systems 
like Camelot and Argus that make it easy to define and use 
recoverable objects. It is relatively straightforward to implement 
recoverable object managers on top of the QuickSilver recovery 
primitives. We intend to explore a language-directed facility for 
defining and using recoverable objects, perhaps in the context of 
a language like C++.  
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