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1. Introduction 

Rumour has it that the term "Numerical Analysis" was coined sometime in the late nineteen forties 

by the numerical statistician J.H. Curtiss at the National Bureau of Standards in Washington, D-C., the 

NBS being effectively the American National Physical Laboratory, the English version of which I shall men- 

tion a bit later. That sort of date makes numerical analysis a rather new subject, and in fact I lived 

through quite a lot of the early history in the UK. But in some respects the subject has a quite long 

history, and these I shall mention briefly. 

Throughout history individuals have wanted numerical solutions for simple problems like the volume 

of a rectangular solid with given sides to very complicated matters like the determination of the position 

in space at a particular time of a vehicle launched from a specified point on earth. Such individuals are 

not really numerical analysts, and I think of them as engineers or scientists. But then there are others, 

perhaps of a more mathematical bent, who decide that they can help the scientists in general rather than 

in particularly numerical contexts. These are the people I do think of as numerical analysts, and indeed 

in the early days, before numerical analysis became a topic in a mathematics degree, at least in the U.K. 

assistance to the scientists was a very important motivation for their work. One of the earliest such opera- 

tions, which continued for many years, was the construction and publication of mathematical tables. 

2. Table making 

When all arithmetic was done by pencil and paper, multiplic'ation and division, at least, were tedious 

and time-consuming operations. To ease this some early mathematical tables were produced which gave the 

results of multiplying any number say up to four figures by any other such number. Allied tables of recipro- 

cals helped with a corresponding division operation to a certain level of accuracy which self-respecting 

tables would discuss in a suitable introduction. The 

invention of logarithms more or less eliminated the 
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Other functions of integers were found to be useful, and one of the very first books of such tables 

was first published in 1814 by Barlow, and recast in two more modern editions in 1930 and 1941 by the 

famous English table-maker L.J. Comrie. The last edition gave n2, n , nf, 3 (lOn)+, n5 and n -' for 

n = 1(1)12500, with extra attention for reasonably small n for n4, n: and n--, : integer powers up to n 10 

for n = l(l)100 and up to n 20 for n = l(l)lO, binomial coefficients for n = 1(1)12, and a list of useful 

constants. The non-exact numbers have 7,8 or 9 significant figures, with some facilities for interpolation 

and a relevant description thereof in the introduction. 

Barlow's 1814 preface makes interesting reading, the following being part of it, with address The 

Royal Military Academy, Woolwich (July 1, 1814). 

"In presenting the following Mathematical Tables to the attention of the public, the far greater part 

of which are the result of laborious calculation, little need be said to prove that I have not had in view 

the accomplishment of any pecuniary object, as the time employed in the computation, the expense of publi- 

cation, and the limited number of purchases which from the nature of the subject is to be apprehended, 

preclude any idea of adequate remuneration. And as little is to be expected of mathematical reputation, 

nothing more being requisite for the execution of such an undertaking than a moderate skill in computation 

and a persevering industry and attention; which are not precisely the qualifications a mathematician is 

most anxious to be thought to possess. 

"In fact the only motive which prompted me to engage in this unprofitable task was the utility I 

conceived might result from my labour; and if I have succeeded in facilitating any of the more abstruse 

arithmetical calculations, and thereby rendered mathematical investigations more pleasant and easy, I have 

obtained the principle object I had in view." 

As applied mathematicians developed their skills their computational problems became increasingly 

complex, and more advanced mathematical tables were needed and indeed produced. The first group included 

the trigonometric functions and their inverses, the corresponding treatment of hyperbolic functions, to- 

gether with the increasing and decreasing exponentials and the logarithmic functions. Common logarithms 

of these elementary functions were also frequently tabulated for obvious purposes. 

The next group included the so-called higher functions of mathematical physics, commonly occurring 

for example in certain methods of solving partial differential equations. For this and other purposes they 

included the functions of Bessel, Legendre, etc, gamma and allied functions, Weber parabolic cylinder func- 

tions, exponential and logarithmic integrals, elliptic functions, elliptic integrals and many others. 

More and more numerical analysis was now needed because the calculation of relevant tabular values 

was no longer trivial. Morever, close preliminary attention was needed to the question of what auxiliary 

function or functions should be tabulated, particularly for the simplification of interpolation in diffi- 

cult regions. As a simple example consider the tabulation of the exponential integral 

-Ei(-x) = ,T t-'ePtdt. (2.1) 

For small x we have the series expansion 
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-Ei(-x) = - y -Rnx + C~(-l)n-l(xn/n.n!), (2.2) 

but the singularity at x=0 makes it desirable to tabulate the function -Ei(-x) + Rnx, which is not singular 

and interpolates nicely. For large x there is the asymptotic expansion 

-Ei(-x) 2, c x-x ( 1 - 9 + 5 -..'I = ex s(x), 
(2.3) 

-1 Here S can be tabulated nicely and conveniently with argument z=x , and the required quantity is easily 

recovered. 

Of course 

asymptotic ser 

in which other 

f(x 1 = m(u+x)-1e-u2du 
i! (2.4) 

the ascending series may not be economic for goad accuracy for medium-sized x, and the 

es may not give the required accuracy for too small an x, and there may be a middle range 

methods are desirable if not completely necessary. For example, for the function 

there are two series corresponding respectively to (2.2) and (2.3), but in a middle range of x it is more 

convenient to integrate by numerical methods the ordinary differential equation 

f'+2xf= V+-x-? (2.5) 

Other frequent computations involved recurrence relations. For example the Bessel function J,(X), 

for fixed argument x and variable order r, satisfies the recurrence relation 

J r+l(x) = $J,W - Jr+), (2.6) 

and to all intents and purposes this can be used to compute successive Jr(x) for integer r, starting say 

with known values of Jo(x) and J,(x). The other obvious task was the direct evaluation of definite 

integrals, and all these various operations had to be performed on desk calculating machines, sometimes 

with very high accuracy and always as economically as possible. 

The final important topic in table-making was the systematic use of finite-difference formulae for 

checking computed values by inspecting differences, for sub-tabulating them as mechanically as possible 

to obtain other tabular values very easily, and then for providing accurate and reasonably economic methods 

for interpolation in the published tables. The sub-tabulation, which is systematic interpolation at a con- 

stant fraction of the original interval, usually one-fifth or one-tenth thereof, was performed quite mecha- 

nically by machines like the Hollerith punched card machine or the National Accounting Machine. 

The interpolation by the user was based on finite-difference formulae typified by the Everett formula 

fp = (l-p)fo + pfl + E26*fo + F26'fl + E464fo + F/f1 + . . . . (2.7) 

where the 6'and 6' are central-difference symbols and the E and F functions are simple polynomials in 

p, the fraction of the (constant) distance between tabular points. Comrie found that the fourth difference 

could be "thrown back" into the second difference, with the explicit part of (2.7) replaced by 

fp = (l-p)fo t pfl + E26*,fo t F26*,fl, 6',f = 6'f - 0.184 6"f, (2.8) 



and that (2.8) is only very slightly less accurate than (2.7) and clearly much more convenient. 

The construction of the more advanced mathematical tables and relevant publishing continued until 

the nineteen sixties. The main table-making activities were organised by the British Association Mathematics 

Tables Committee, starting about 1930, and then from 1948 onwards by the Royal Society. 

Other early publications included work by Sheppard (1906) on the accuracy of finite-difference interpo- 

lation, Bickley (1939, 1941) on formulae for numerical integration and differentiation, Comrie (1931) on 

"throwback interpolation" and (1936) on mechanical operations with the National Accounting Machine, and 

Bickley and Miller (1936) and Airey (1937) on the summation of slowly-convergent series. Fletcher, Miller 

and Rosenhead (1946) published the comprehensive Index of Mathematical Tables. Miller (1949) wrote about 

table-making in general and on his solution of ordinary differential equations in particular. This he per- 

formed with the Taylor-series method, not too difficult when, as often occurred, the relevant differential 

equations were linear, but Miller thought nothing of using up to twelfth derivatives with a large interval 

of tabulation. 

Miller was probably the dominant member of the relevant British Association and Royal Society com- 

mittees, and much of his work appeared for the first time in the introductions to the various tables which 

were written singly or jointly by members of the committees and included quite important numerical analysis. 

Prominent in this respect is the introduction to B.A. Vol. 10 (1952), which includes the famous Miller 

algorithm in connexion with the recurrence relation (2.6). Miller quickly realised that the forward recur- 

rence produced increasing inaccuracy as r increased beyond x. He solved this problem by backward recurrence 

with a replacement of (2.6) given by 

s;+4 = $Qx, - j;++4, 3&x)=0, ju,-,(x)=1, 

and then by scaling the computed Tr(x) to give for example 

J,(x) = kj$4, k = J,(x>/~~(x). 

(2.9) 

(2.10) 

For sufficiently large N this gives very good results, accuracy increasing as r decreases. 

Perhaps the final useful publication was the booklet "Interpolation and Allied Tables", developed 

at H.M. Nautical Almanac Office. It first appeared in 1936 when Comrie was Superintendent. It was reissued 

at frequent intervals and with amendments and additions until the last appearance in 1956, when D.H. Sadler 

was superintendent. The original booklet contains finite-difference formulae of all kinds, and the 1942 

edition also gave a method for solving ordinary differential equations which actually used central dif- 

ferences with estimation and subsequent correction, in the spirit of more modern predictor-corrector met- 

hods. A companion booklet "Subtabulation", published in 1958, gives a comprehensive version of the relevant 

methods developed over many years in H.M. Nautical Almanac Office. 

3. Other early numerical analysis 

Apart from table making and the much earlier contributions by Gauss, Newton, Runge and Kutta and 

Bashforth and Adams, a few other workers, particularly astronomers and theoretical scientists, suggested 
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numerical methods for both ordinary and partial differential equations and a few other topics. But by 1939, 

the start of the second world war, there was little in the way of numerical literature and numerical ana- 

lysis was hardly a mathematical topic. Published in the UK, there were only a few books with a numerical 

content, such as Brunt (The combination of observations, 1923), Whittaker and Robinson (The calculus of 

observations, 1924), Steffenson (Interpolation, 1927), Scarborough (Numerical mathematical analysis, 1930), 

Milne-Thomson (The calculus of finite differences, 1933) and Levy and Baggott (Numerical studies in dif- 

ferential equations, 1934). 

Scattered in the journal literature of this period were papers for example by Aitken (1926,1937) on 

Bernoulli's method for solving algebraic equations and his own 6' method for accelerating the convergence 

of such iterations, Hartree and Womersley (1937) on mathematical and mechanical (differential analyser) 

methods for the solution of parabolic partial differential equations, and Richardson and Gaunt (1926) on 

"the deferred approach to the limit" for accelerating the convergence of finer-net approximations to the 

numerical solution of ordinary differential equations. 

The last mentioned method is still in common use, and Richardson, a major figure in this field, also 

wrote important papers on the solution of partial differential equations. Perhaps the most famous of these 

is Richardson (1910), and Richardson (1925) gives a short summary of this and other work. The 1910 paper 

discussed finite-difference methods for what he called "jury" problems given by 

v2@ = 0, (0' + k2)a = 0, v4@ = 0, (V' - k')0 = 0 (3.1) 

with suitable boundary conditions. He postulated a "deferred approach to the limit" ru le when central dif- 

ferences are used, not only for the function in all cases but also for the eigenvalues . He solved the 

finite-difference equations by direct methods if their number was small enough, and otherwise he used an 

iterative method, now known as Richardson's method. 

The following example appears in the 1925 paper. The equations 

Ax = b, A= (3.2) 

obviously relate to a particular member of the first of (3.1), with boundary values on a unit square and 

with interval h=S in both directions. He uses the iteration 

x(r+l) = x(r) + a -1 (Ax(r) 
r - b), (3.3) 

showing in this example that if x ('I = (1,2,0*3,0*2)T, then with aL=4, a2=2, a3=6, the computed x (4) is 

the exact solution of (3.2). This, of course, follows from the fact that the eigenvalues of A are -4, 

-4, -2.and -6, but Richardson was aware that the eigenvalues are not usually available. He observed that 

the largest and smallest can be obtained with rough accuracy, that a single ar > 31X maxl in (3.3) will 

produce ultimate convergence, but that "it saves time to spread out the values of the ar over the range 
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covered by the eigenvalues." 

This was a remarkable piece of work, on which Golub and Varga and others did more research in the 

nineteen-fifties with the name "semi-iterative method". The paper has many other interesting sections which 

suggest other things about finite differences, what to do for example near boundaries which are not 

rectangular, and the importance of a non-dimensional treatment of the problem prior to computation. He 

also considered the parabolic problem 

with appropriate boundary conditions, but his suggested 

0 0 
r,s+l = , r s-l + 2(E)'(Qr+1,s - 2'r,s + Or-1,s 1 

(3.4) 

(3.5) 

is now known to be unstable. 

In passing it is interesting to note that it was this pre-war numerical analysis which was mainly 

examined in postgraduate courses in the subject, courses which did not start seriously until the early 

nineteen-fifties. They were usually organised by the Computing Laboratory rather than by the Mathematics 

Department, and one of the very first was the Cambridge Diploma in Numerical Analysis and Automatic Com- 

puting. At the start this had one theoretical paper and one practical paper on numerical analysis and one 

paper on the hardware and software of the new stored-program computers. The two numerical papers of the 

first examination in 1954 reveal that the material so far discussed is very well represented. This is 

perhaps not surprising since Miller was the dominant force in this part of the Diploma, but later diplomas 

had very little more variety. Even by 1959 the theoretical paper at Cambridge had three questions on inter- 

polation, two on quadrature, one on the Taylor-series method for a particular (non-linear) ordinary dif- 

ferential equation, one on Richardson's method for elliptic equations, one on Aitken and other iteration 

topics, and one on three methods for the eigenvalues of symmetric matrices of small and large order with 

comparison of desk machines and automatic computation. 

4. War-time groups 

(i) Relaxation at Oxford 

In 1939 I had just started my D.Phi.1 research at Oxford with R.V. Southwell, who had told my tutor 

that he needed a mathematician to work on extensions of his "relaxation method". In the early thirties 

he had invented what was originally called the method of "systematic relaxation of constraints" for solving 

problems of loaded frameworks, and in the decade 1932 - 42 he had a regular group of research students 

at Oxford working on these problems and somewhat similar problems in the finite-difference solution of 

elliptic partial differential equations. From 1939 onwards arrangements in the second world war caused 

applied and even pure mathematicians to work on military problems with whatever techniques they had avail- 

able, but the Oxford group was one of the first of these and, in particular, the name "relaxation", if 

not the original method, has carried over to quite modern techniques for relevant problems. 

Two papers by Southwell in 1935 described the method for frameworks. Basically this used iteration 
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to solve the linear equations 

Ax = b, (4.1) 

x being the vector of displacements and b of the forces at the joints of the framework. The matrix A was 

sparse and generally diagonally dominant. Southwell considered in an engineering sense not only the problem 

but also its method of solution. He postulated a system of "constraints" at the joints which could bear 

the forces without allowing any displacements. Then, usually selecting the joint with the currently largest 

force, he permitted a displacement at this point by "reLaxinS the constraint", wholly or partially at this 

stage so that at this joint the framework was now bearing all or at least some of its force. This also 

changed the forces at other joints, in an easily calculable manner, and by systematically "relaxing the 

constraints" (the word "systematically" originally meaning "in descending order of magnitude of forces 

still borne by the constraints") he expected on engineering principles that the process would converge. 

In other words the residual forces still borne by the constraints, components of the residual vector 

r(n) = Ax(") - b (4.2) 

at stage n of the iteration, would systematically be reduced to zero or to very small quantities as n 

increases. In fact Southwell contemplated the acceptance of any solution for which the residual forces 

were less than some "engineering fraction" of the original forces, since the latter are quite unlikely 

to be known very accurately. 

Now if at joint s the residual force r s is reduced temporarily to zero by a change in the displacement 

x s at that joint, then this is one step of Gauss-Seidel iteration, and indeed for some problems this method 

had already been used by other workers. But Southwell concentrated on the residuals, which were actually 

recorded at every joint, and he and his research students used a variety of methods to reduce them sensibly 

to zero. The following simple examples illustrate some of these methods, 

First we solve a one-dimensional problem with equations 

f r+l - 2fr + fr 1 = br, f0=100, f5=-1000, bl=20, b2=80, b3=-40, b4=600, (4.3) 

the selected values of br and f. and fS being effectively arbitrary numbers. Suppose that we start with 

the guess f 1 = f2 = f3 = f4 = 0, so that the first relevant picture is that of Figure 1, in which the 

current f values are to the left and the current residuals to the right of the "nodal lines". The first 

residuals are just the -b r at r=2 and 3, and -bl and -b 
4 plus the respective contributions from the speci- 

fied boundary values at the two nodes next to the boundaries. 

100 0 80 0 -80 0 40 0 -1600 -1000 

Figure 1 

In the relaxation process we use the same diagram throughout, recording additions to the displacements 
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on the left of the nodal lines and the current residual on the right. In the first step we "liquidate" 

the residual of largest magnitude, but the form of the equations (4.3) shows that a group displacement 

of a multiple -320 of displacements 1, 2, 3 and 4 at the successive nodal points will eliminate the -1600 

residual without altering any others. The current state is then shown in Figure 2. 

-320 -640 -960 I -1280 0 
100 ( 0 80 0 -80 0 /40 0 -1600 -1000 I 

Figure 2 

Next we eliminate the -80 residual with a single joint relaxation, a displacement of -40 at that joint 

changing the residual by 80 at that joint and -40 at the adjacent joints on each side, leaving a residual 

of 40 at the first joint and zero at all other joints. Finally, the multiple 8 of the group displacement 

4, 3, 2, 1, the reverse of the first group displacement, produces zero residuals everywhere, the picture 

of Figure 3, and values of -288, -656, -944 and -1272 at the successive points. A check calculation of 

the residuals from (4.2) confirms that all the residuals have zero values. 

32 0 24 
-320 40 -40 0 16 0 8 0 

100 0 80 -640 -80 -960'40 -1280 -1600 -1000 I 
(-288) (-656) (-944) (-1272) 

Figure 3 

In a group displacement several constraints are relaxed simultaneously, and when the displacement 

changes are the same at the relevant set of joints it is called a block displacement. This, as well as 

the joint displacement, is very useful in the treatment of differential equations by finite-difference 

methods. Equation (4.3) might approximate to the solution of a simple ordinary differential problem like 

$5 = g(x), f(xo) = CY , f(x,) = a , 

with g(x) and c( and @ specified and the chosen interval taken to be h=i(xn - x0). 

Similarly, for the simple elliptic partial differential equation 

a2f a2f 
F + q-T = g(x,y), (4.5) 

with f having specified values on a closed boundary and with g(x,y) also specified for all x,y within the 

region, the equation corresponding to (4.3) is 

f 
r,stl +I r,s-I ' frtl,s + fr-l,s - 4fr,s = h'gr,s' (4.6) 

in obvious notation and with constant interval h in both directions. We present a solution of this (there 

are, of course, many other possibilities) with f=O on the boundary of a unit square, and h=0*2 and g=-2500 

so that with an initial guess of f=O everywhere the first picture corresponding to that of Figure 1 is 

given in Figure 4, with the boundary lines and all zero displacements ommitted for convenience. 
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c IlOO B 100 B /iOO c I100 

B 100 A 100 

B 100 A 100 A 100 B 100 

c 100 B 100 B 100 c 100 

Figure 4 

We now use the word "point" instead of "joint" since in Southwell's language the framework had become 

a tensioned net, and "net point" became the accepted terminology. Other useful words were "overrelax", 

deliberately to change the sign of the relevant residual(s) when adjacent points have residuals of the 

same sign and have a "wash-back" effect, and "underrelax" in regions in which the signs of residuals alter- 

nate. These words are still used in modern methods but with rather different applications. We also note 

with respect to (4.6) (and indeed also with respect to (4.3)) that the algebraic sum of residuals is un- 

changed unless a displacement is made at one or more points next to the boundary, so that residuals should 

be "sweptn from the centre of the region towards the boundaries rather than in the reverse direction. A 

useful first step is to use a complete block operation which reduces the algebraic sum of residuals vir- 

tually to zero. 

There is much symmetry in Figure 4, and indeed there are only three independent values, respectively 

at points marked A, B and C. Table 1 gives a list of operations and the resulting residuals, a displacement 

at A meaning the same displacement at all A points in Figure 4, and similarly for B and C. 

Table 1 

Operation 

(i) 

(ii) 

(iii) 

(iv) 

(VI 

Displacement changes Current residuals 

A B C A B C 

100 100 100 100 0 -100 

70 -40 70 -100 

20 0 10 -60 

-16 0 -6 4 

-3 -3 0 0 -2 

Operation (i) reduces the sum of residuals to zero , and the remaining operations would be understood 

quite easily by any competent and experienced operator. Notice that simple numbers are used throughout, 

with no useless early attempts to make any residuals exactly zero. The fact that at the end of Table 1 

there are only zero or negative residuals tells us immediately that all the values are too large, that 

of C perhaps especially. But a complete extra block of -1 would leave residuals of 0, 1 and 0 for A, B 

and C, so that every value would then be slightly too small. Table 1 gives A=167, B=117, C=84, the exact 

values being 1663, 1163, 83;. This table, of course, would nowhere be recorded, and all the operations 

would be performed on a single sheet of paper, with perhaps only one-eighth of Figure 4, by an experienced 

operator who takes the symmetries in his or her stride. Figure 5 shows all that is needed. 
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We learnt a lot about the "condition" of various problems, measured by the size of the displacements 

needed to liquidate sets of residuals. The condition of course worsens as the interval is reduced, but 

more to the point is the fact that the biharmonic equations are much more ill-conditioned than the Laplace 

equations. As the condition worsens the need for significant overrelaxation increases. A good starting 

approximation, of course, helped considerably with the convergence , and in an engineering background some 

workers could envisage pictorially and really quite accurately the nature of the correct solution. We 

simplified the use of a finer mesh, first by interpolating quite accurately or, where possible, using the 

differential equation to get a good start at the finer net points, and then by a process which now has 

the name "multi-grid". Here any oscillation in residual signs was removed by a few simple point relaxa- 

tions, and by taking averages over small relative regions of the resulting one-signed residuals these could 

effectively be transferred back to the original net, and liquidated there with easier relaxation. The 

results were then transferred back to the finer mesh, and one further interpolation and a relatively trivial 

amount of fine net relaxation produced the required results quite quickly. Unlike modern multi-grid methods 

we never used more than one coarser mesh for this purpose. 

The latter technique did not obtain written publicity, but most of the useful devices appear in the 

book by Allen (1954). This, together with Southwell's last books (1946, 1956) also give a full account 

of the problems solved by relaxation, some non-linear, some involving eigenvalues, some with boundaries 

of initially unknown position, some in three dimensions and some with parabolic and hyperbolic systems. 

The eigenvalue techniques were rather interesting. Normally a guess at the eigenfunction gave a starting 

estimate of the eigenvalue with the use of Rayleigh's principle, and some relaxation was then performed. 

This cannot proceed too far because the equations do not have a solution at this stage, and a favourite 

trick was to try to arrange for displacements which made the residual at each point reasonably proportional 

to its displacement. The computation of a new eigenvalue estimate then gives better results and a good 

start for further operations. When this was very difficult a method called intensification was used, which 

turns out to be just the method of inverse iteration for 

(A - hI)x = 0, (4.6) 

given by 

Figure 5 
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Ax(r+l) = x(r) . (4.7) 

Occasionally the operator A - k1 might be used in (4.7), not so much to increase the rate of convergence 

as to simplify the relaxation solution of the linear equations. 

One final comment on the relaxation method is essential. The success of the method (and it was success- 

ful even with the meagre computing equipment then available), depended significantly on the ability of 

the human eye and brain very quickly to pick out the largest of a sequence of numbers or a cluster of such 

numbers, to recognise patterns of numbers and to forecast the overall effects of relaxation operations. 

In fact it was rather like a game of chess, and I return briefly to this point a little later. 

(ii) Admiralty Computing Service 

In 1943 I joined the new Admiralty Computing Service at Bath, probably the first group with the words 

"Computing Service" in its title. It was headed by D.H. Sadler, who was Comrie's successor as Superinten- 

dent of the Nautical Almanac Office, and it had as consultants Miller, Erdelyi and John Todd. Its workers 

also included E.T. Goodwin, F.W.J. Olver and H.H. Robertson, whose names are well known in the literature 

of numerical analysis. We solved a fair number of problems for the Admiralty, we learnt a lot about the 

numerical methods of Miller and Sadler, and I extended my knowledge of and capabilities with the relaxation 

method. Some problems were written up as reports for "Department of Scientific Research and Experiment 

- Admiralty Computing Service", mainly in 1945, and listed in the references are two of the problems which 

have particular interest for me. 

The first is the evaluation of the two-variable function 

f(x,y) = brn e -k(Jo(kx)cosh(ky) -1) cosech(k)dk (4.8) 

at the points x = O(O*l)S*O, y = O(O.1)l.O. Th‘ is is how the problem was presented, but we discovered that 

f(x,y) satisfies the elliptic equation 

(4.9) 

and that boundary values can be calculated with some interesting numerical analysis giving quite rapid 

techniques. I then solved the problem by relaxation methods, and the first point of interest is that this 

is the first publication of my use of the "difference correction" for correcting a first approximate solu- 

tion on the same finite-difference mesh. (The year in which these computations were performed was either 

1943 or 1944). The second interesting point is that in this very early problem (4.9) was known originally, 

but a mathematician deduced (4.8) quite cleverly but without knowing that a direct treatment of (4.9) is 

here computationally preferable. Just how much early mathematics is valuable in numerical work has always 

been a matter of some speculation and dispute! 

The other interesting problem was the solution by Goodwin and myself of a Volterra integral equation 

of the first kind, with a mixture of Laplace transforms, Taylor's series, and direct numerical solution 

of a corresponding second-order equation in which the trapezoidal rule had attached to it several correc- 
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ting expressions from Gregory's quadrature formula. Here Sadler was a source of great strength, with a 

wealth of finite-difference knowledge of the kind contained in 'Interpolation and Allied Tables'. He pub- 

lished very little himself, but he was always able and willing (if not determined) to make suggestions 

about methods which were almost always exceedingly useful, and he had a genius for spotting errors in our 

computation. He insisted that all this should be done on good paper, in ink, and he delighted to peer 

frequently over our shoulders and triumphantly note an error before we had wasted too much sequential time 

5. Mathematics Division, National Physical Laboratory 

The Admiralty Computing Service was quite successful, and its success was one of the main reasons 

for the setting up in 1945 of the Mathematics Division, a new division of the National Physical Laboratory. 

Goodwin, Fox, Olver and Robertson went in 1945 from Bath to the NPL at Teddington, J.H. Wilkinson joined 

in the following year, and roughly at that time we also recruited Clenshaw and Gill and Hayes and a number 

of others with perhaps less well-known names. The famous Turing came to contemplate building his version 

of the new idea of stored-program computers, and we had quite a number of junior workers on desk machines 

and punched-card machines. We also acquired from Germany a large differential analyser. Our duties were 

to help other divisions of NPL with their 'mathematical and computational' problems, to do the same for 

other stations of the current version of the Department of Scientific and Industrial Research, and indeed 

for many other government or government-type laboratories, and above all to engage in research in the 

theory and practice of numerical computation. 

About this time there were other small groups in other government and government-type laboratories, 

and at several universities, particularly Cambridge and Manchester, who were also working on computer con- 

struction and use. Comrie had formed the London Scientific Computing Service, which Miller joined, but 

as far as the mathematics of numerical analysis was concerned the NPL group was by far the largest and 

the most experienced. There is no doubt that what you would call the more modern numerical analysis in 

the UK started with this group which, indeed, was dominant in our numerical work for at least 30 years. 

The history of the NPL work has two parts, the smaller for a decade or so until the mid-fifties, in 

a period in which the new computer was not generally available; and the larger after the appearance of 

the lusty Pilot ACE computer in a form from which useful computations could be obtained. My history vir- 

tually ends with the first of these parts, in which much useful research was still performed. I mention 

in what follows a few of the topics and resulting publications. 

Table-making continued, and indeed NPL started its own series of mathematical tables, a project for 

which Fox (1956) wrote a lengthy Vol. 1 which extended much of the Chebyshev theory of Lanczos and Miller 

for interpolation and other relevant formulae. Work on ordinary differential equations produced papers 

by Fox (1947, 1949), Fox and Goodwin (1949), Gill (1951, in which the effect of the new computer was already 

foreshadowed), and Clenshaw and Olver (1951). Clenshaw (1954, 1955, 1957) started important work on 

Chebyshev methods for ordinary differential equations, and Olver, after a comprehensive paper on computing 

the zeros of polynomials (1952), collaborated with Clenshaw (1955) on the use of economized polynomials in 
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mathematical Lables. Fox and Goodwin (1953) continued their ACS work on integral equations with a compre- 

hensive account of finite-difference methods for both Volterra and Fredholm equations, and Goodwin and 

Staton (1948) and Goodwin (1949) added to earlier work on methods for evaluating particular integrals. 

There was some curve-fitting by Hayes and Vickers (1951), and a little linear algebra by Fox, Huskey and 

Wilkinson (1948), Goodwin (1950), Fox and Hayes (1951), Fox (1950a, 1954), but the main papers for the 

stimulation of future work in this area came from Turing (1948) and Wilkinson (1954a, b). We did little 

on partial differential equations except papers on further relaxation by Fox (1947, 1950b), including the 

difference-correction method. Some independent workers, however, contributed significantly in this field, 

including of course Crank (1956) and Crank and Nicolson (1947), which produced one of the very useful stable 

methods for parabolic equations; and Motz (1946) and Woods (1953) did useful work on singularities in ellip- 

tic problems. Singularities in some integral equations were also treated by Young (1954). 

The NPL group joined together to produce the book 'Modern Computing Methods' (1957, second edition 

1961), which includes an extensive bibliography. This was one of the first quite modern books on numerical 

analysis, somewhat more up-to-date at that time than the very readable 'Numerical Analysis' by Hartree 

(1952). My book (1957) on "The numerical solution of two-point boundary problems in ordinary differential 

equations" put into print the work started some fifteen years earlier on relaxation methods and the 

"differencf-correction" method. This, again, must be one of the earliest books on this topic. 

And that is really the end of the "Early Numerical Analysis" story. In the middle nineteen-fifties 

and onwards there was a flood of books and papers on numerical analysis of all kinds and from many places, 

largely stimulated by the development of the stored-program computer. The NPL contribution to this feast 

was supplied very largely by J.H. Wilkinson. His third relevant paper (1955) was merely the first of a 

series which for the next thirty years transformed both the theory and the practice of virtually all pro- 

blems in numerical linear algebra. 

But that is another story. I end the current story by making a few comments on the effect ofthe new 

computing machine on our earlier work. First, in 1958 at a meeting of the Royal Society Mathematical Tables 

Committee, the chairman M.V. Wilkes raised the question of its role in the new computer world. This led 

to considerable and lengthy debate, but the extent of table-making decreased quite rapidly and the com- 

mittee virtually ceased to exist around 1965. Second, the old relaxation methods were never used in the 

same spirit with the new computers. For the latter did not match the human eye and brain in picking out 

relatively quickly the largest of a sequence of numbers, or recognise useful patterns, and the new relaxa- 

tion method developed by David Young and others worked in a virtually completely systematic way. This, 

of course, led to some useful and very interesting mathematical theories, but the modern method bears only 

slight relation to the original relaxation concept. 

My "difference-correction" method for differential and integral equations of all kinds was also trea- 

ted afresh by V. Pereyra and others, and they also made some changes, though perhaps not quite so violent 

as those of the relaxation story. For example, for the two-point boundary problem 
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y" t f(x)y' t g(x)y = k(x), y(a) = a, y(b) =a, 

I replaced the differential equation by the recurrence relation 

( l-~hf,)y,-l - (2-h'g,)y, + (l++hfr)yrtl = c(Y,), y(a) = ~9 y(b) = B, 

(5.1) 

(5.2) 

where c(y,) is the difference-correction at mesh point x r which I expressed in terms of central differences, 

here involving third, fourth and higher-order differences. I proposed to solve (5.2) iteratively in the 

form 

(l-:hfr)yr-l(n+l) - (2-hzgr)y/+l) + (l++hfr)yr+l (n+l) = c(y,(")), c(y,(O)) = 0, (5.3) 

a device very similar to the modern use of "iterative refinement" for simultaneous linear algebraic equa- 

tions. I inspected the differences of y, (1) to discover what orders of differences at this interval made 

contributions to c(y,(') ) for the required accuracy, whether from this point of view the interval length 

was satisfactory and, really quite accurately, how the interval should be changed for this purpose. All 

further calculations were performed at this "satisfactory" interval, starting with a new y, (1) and con- 

tinuing with the iterative sequence. Using only the differences at every stage which were expected to 

contribute to c(yr) I performed the iteration as many times as needed to reach consistency in the computed 

results. Some external values had to be computed and even "corrected" to produce the central differences 

near boundary points. 

Pereyra, however, showed that whereas yr(I) has global error O(h'), Ye has global error O(h4> if 

C(Y,(l)l uses only third and fourth differences, and y (3) 
r has global error O(h6) if c(y, (')) is computed 

using only up to sixth differences. Normally the number of differences to be used finally would be decided 

before the computation started, and if consistency had not been reached at this stage the process would 

be repeated at a smaller interval. I am not clear what the present position is, but in the early routines 

external values were not computed and forward or backward differences were used for at least some y, in 

c(Y,). Again, this new theory is very important, but the method has undoubtedly changed, at least to some 

extent including the fact that, as with initial value problems, (5.1) is now likely to be treated as simul- 

taneous first-order equations with the trapezoidal rule. 

Finally, the new computers were so powerful that they quickly put an effective end to the use of 

analogue equipment like the differential analyser for the solution of partial differential equations, and 

other various pieces of equipment for various problems in which the data and answers were measured by 

physical quantities like length, voltage, current and so on. Another analogue device was the construction 

of alignment nomograms which up to this time had been a regular feature of problem solving of certain kinds 

and had developed quite a literature. 

The basic idea of the alignment nomogram can be demonstrated by a very simple example, the solution 

of the quadratic equation 

a2 t pa + q = 0, (5.4) 

which has three variables a, p and q. The nomogram depends on our ability to express (5.4) in the deter- 
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minsntal form 

/x1 Yl 1’ 

x2 Y2 1 = 0, 

x3 Y3 l 

(5.5) 

which represents the condition that in two dimensions the points (xl, y,), (x,, y,) and (x3, y3) are col- 

linear. For (5.4) there are various such possibilities, of which one is given by 

-l P 0 1 

0 q-l 1 , = 0. 

I 
-a -l -a-2 1 

I 

(5.6) 

The corresponding nomogram has the scale x = p -1 on y=o, y = q 
-1 on x=0, and an a-scale on the parabolic 

-1 curve x = -a , y = -a-? A line joining a "p-point" to a "q-point" intersects the "a-curve" at two, one 

or no points, these points giving the real roots of the quadratic equation. 

We constructed a fair number of nomograms in the early nineteen-fifties, one of them I discovered 

from forgotten notes relating to the equation 

& = KT$e-1a3R/V _ Ko+, (5.7) 

where we wanted R from specified A, KT, V, and Q and Ko which were given functions of a fifth parameter 

@s* With five parameters s, t, u, v, w we need to be able to produce a determinant like 

f(s,t) s(s,t) 1 

P(U,V) q(u,v) 1 = 0, 

X(s) u(s) 1 

(5.8) 

to provide an alignment nomogram. I failed to do this for (5.7), but introduced two other parameters 

(5.9') a = A3Q3K 11 L Aif( 3 = 
0 

leading to the determinants 

01 0 1 

-*+ 1 1 

0 f(l+f)-1 1 

I 0 B 

= 0, j 1 -K 

4 lI 

1 : 
0 

=o, 

I (l+lqf 0 1 

(5.10) 

and the ability to find CI and l3 from given A, KT and Bs. Equation (5.7) can then he expressed in the form 

R o-l=, 3 -1*3R/V,-1 _ 1 
, (5.11) 

with the relevant determinantal equation 
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0 B 1 =o 

-R 3 e -1.3R/V l 

(5.12) 

which permits the determination of R from given ~1, 8, and V. 

The accuracy obtainable depends upon various things including the determination of appropriate scaling 

factors for the variables, and the literature gave this some close attention. At NPL my colleague J.G.L. 

Michel was our "analogue" expert, both with the differential analyser and with nomography, and he joined 

the other authors in producing the fourth edition of a very good book on the subject by Allock et al (1950). 

Since that time I have heard no more about nomography, but of course it is quite proper that old 

methods should be reviewed, readapted and if necessary discarded when new equipment becomes available, 

and this is one of the important ways in which numerical analysis continues to make good progress in its 

initial task of helping the scientists in their work. 
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