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MAGNUS R. HESTENES 

I have been invited to describe my experiences in the field of numerical analysis and to 

describe how these experiences influenced me in my studies of mathematics. In particular, 

I was invited to tell the story of the development of the conjugate gradient method for 

solving linear systems. I was one of the originators of this method. 

At the invitation of the Mathematical Association of America, John Todd and I have 

written a short history of the Institute for Numerical Analysis, 1947-1954, located on the 

campus of UCLA. This Institute, called INA, was a Section of the National Applied Math- 

ematical Laboratories, which formed the Applied Mathematics Division of the National 

Bureau of Standards, a part of the Department of Commerce. In this brief history we 

were concerned mainly with the mathematical aspects of this program. In particular, we 

were concerned about who participated in the project, what did they do, and what was 

their University affiliation. It is not my intention to repeat the material presented in this 

history except perhaps for some special items of interest. 

As many of you know my specialty in mathematics is Variational Theory and Optimal 

Control Theory. My experiences in these fields have greatly influenced my approach to 

problems in numerical analysis. I shall describe certain aspects of Variational Theory, 

which are not only of interest in themselves but which led to a method of attack of certain 

computational problems. 

I received my doctorate at the University of Chicago in 1932. After remaining at Chicago 

for a year! I left for Harvard as a National Research Fellow to work with Marston Morse. 

Inspired by the works of George D. Birkhoff, his mentor, Morse had become famous by 

his development of the Calculus of Variations in the large. Early in 1934, G.D. Birkhoff 

invited me to join him in writing a chapter in the Calculus of Variations,. He wished to 

develop a new approach to the Calculus of Variations in the large. His idea was simple. It 
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came from the observation that every critical point of a function 157(z) satisfied constraints 

of the form 

F”‘Qz; h) = 0, 

where h is held fast and a: was allowed to wary. Here F’(s, h) is the first variation of 

J’, the differential of I? Unfortunately, in the general case, this procedure introduced too 

many singularities to be effective.. However, it was very effective in the quadratic case. In 

quadratic case the condition F’(z, h> = 0 is a “conjugacy” condition although we did not 

use the term. As a result 1 wrote a long paper with BirkhoR on this subject developing 

these ideas for Calculus of Variations in the Small. Later, I wrote an extensive paper 

of the theory of “Quadratic Forms in Hilbert Space with Applications to the Calculus 

of Variations”. In this paper the concept of coujugacy played a dominant role, I used 

the term “$-orthogonality” instead of the term “conjugacy” in my writings. To see what 

conjugacy means in this context, may I remark that the extremals, the solutions of Euler- 

Lagrange equations are the elements that are conjugate to the elements that vanish on 

the boundary. Thus, 1 was very familiar with the concept and use of conjugacy early in 

my career. 

It is interesting to recall that, in 11936, 1 developed an algorithm for constructing a set 

of mutually conjugate directions in Euclidean Space for the purpose of studying quadric 

surfaces. I showed my results to Professor Graustein, a Geometer at Harvard University. 

His reaction was that it was too obvious to merit publication. This shows that Geometers 

were well versed in the concept of conjugacy. It suggests that perhaps hidden in the 

literature on geometry there is a method for finding the center of an ellipsoid which is 

equivalent to the metshod of conjugate gradients. 

During the latter years of World War II, H was a member of the Applied Mathemat- 

ics Group at Columbia University. Here I was concerned with the mathematical theory 

of aerial gunnery. We tested our theory with numerical computations. Hn one project, 

L.W. Cohen flew fighter planes on paper, duplicating with remarkable accuracy the results 

obt,ained by photography of actual paths of fighter planes, flying under certain gunnery 
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rules for attacking bombem. Cohen succeeded where others had failed. Be succeeded be- 

cause he wrote his algorithm in a manner so as to decrease errors which one encounters in 

computations, 

When World War II ended, I returned to the University of Chicago. Shortly thereafter 

I accepted a Professorship at UCLA. Here I was approached by E. Paxson of the RAKD 

Corporation to study the problem of steering a fighter plane so that it reached a prescribed 

position and. direction in minimum time, This was a complicated variational problem 

involving differential constraints. Such problems had various names, such as, the Problem 

of Bolza, the Problem of Lagrange, or the Problem of Mayer. B found that the classical 

formulation of these problems did not fit this time optimal problem in a natural manner. 

Accordingly, I reformulated the variational problem so as to be more easily applicable to 

this minimum time problem, In doing so I had formulated a variational problem which 

is now known as an Optimal Control Problem. I translated the known results to fit this 

new formulation. The results were written up in 1949 as a RAND Report and were not 

published in a standard journal at that time. Later in 1965 I[ published a book entitled 

CalcuZus of Variutions and Optimal Control 7%eory, which included the theoretical basis 

for this time optimal control problem. You might be interested to know that Pontryagin 

too was invited by his government to study the problem of aerial combat. This led to 

his formulation of Optimal Control Theory and Differential Games. His first necessary 

condition for an optimal control problem is now called Pontryagin’s Alazimum Brz”nc+“ple. 

Ht is an extension of the standard conditions of Euler, Lagra.nge and Weierstrass. He 

established his results under weaker hypothesis than had been used heretofore. Thus, the 

study of the theory of aerial combat led to the development of modern theory of optimal 

control both here and in Russia. 

Return to the time optimal problem proposed by Paxson. We obtained the equa,tion 

of motion for our fighter plane and attempted to solve these equations numerically on a 

REAC. The REAC was an electrical analogue computer with about 3% accuracy. We tried 

to solve our problem as an initial value problem hoping to obtain the prescribed terminal 

conditions by a suitable choice of initial conditions. The results were disastrous. It turned 
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out that our equations were unstable in the forward direction. They were also unstable in 

the ba.ckward direction, However, by making many trials, we did obtain some notion of the 

nature of optimal paths. But this did not give us a sought after “Rule of Thumb” method 

for flying a plane in an optimal manner. Because of this experience I became convinced that 

we should look for an alternative approach to numerical solutions of variational problems 

of this type. In my considerations I restricted myself to simple variational problems. In 

particular, P chose to study the classical problem of finding surface of revolution of least 

area having prescribed circular boundary curves. The Euler equations to this problem 

normally has more than one solution satisfying prescribed boundary conditions. Only 

one of these solutions is minimizing. H tried two iterative methods, nameiy, Newton’s 

Method and an Optimal Gradient Method. Our numerical experiments with these two 

methods were highly successful. In order to preserve these computations for future use, 

I wrote a second RAND Report in 1949 describing what we did. This report. received a 

wide circulation among engineers and I received. undo credit for devising these methods. 

Incidentally, with regard to the gradient method> I had to formulate an adequate definition 

of the concept of the gradient of an integral. To do so H introduced an inner product (g! h) 

on the space of variations. The gradient of F(z) at a point 2 is a variation g such that 

for all admissible variations h, % found that the inner product usually used heretofore 

was unsatisfactory because elements of the form z + ag were not admissible elements. 

However, I[ also found that there were a large class of inner products that were suitable 

for the problem at hand, These inner products need not be fixed but could vary with 

the element z with which were concerned. One such inner product is the inner product 

F”(z; g, h) induced by the second variation of F. When this inner product is used, our 

gradient method becomes a version of Newton’s method. Thus Newton’s method can be 

viewed as a gradient method determined by a “preferred” inner product which varies at 

each step. 
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I[ also tried one other method, later called a penalty function method. ln the simple case 

in which we minimize p(x) subject to a constraint g(x) = 0 it proceeds as follows. Select 

a sequence {cn} converging to infinity. Obtain the minimizer xn of the penalty function 

F, = f + c,g2. 

Then, under favorable conditions, the sequence {x,} will converge to the minimizer x0 off 

subject to g = 0. Moreover, the sequence (2cng(xn)} converges to the Lagrange multiplier 

A. In theory, this method is exellent and can be used effectively for theoretical purposes. 

Unfortunately, when I tried to solve a simple problem numerically by this method, I found 

that it had poor convergence properties due to round off errors and so I abandoned it for 

the time being. Besides, for variational problems with differential constraints, I knew that 

I would need to consider what is now known as relaxed controls and so would lead to a 

more complicated theory than I was willing to accept at that time. Later, at about 1969, I 

was invited to give a talk on computational procedures for solving optimization problems. 

It occurred to me at that time that a result in the folklore of Variational Theory could be 

used for this purpose. This result states that if x0 minimizes f(x) subject to g(x) = 0, 

then normally there is a multiplier A and a constant c such that x0 minimizes the function 

F(x) = f(x) + h(x) + cdx)’ 

for all x near x0 even when the constraint g(x) = 0 is not satisfied. Usually a relative small 

value of c is effective. Having chosen c, a suitable value of the multiplier X can be found 

by an iterative procedure. The iteration that we shall use is obtained by observing that 

the gradient of F is given by the formula 

F’(s) = f’(z) + [A + 2cg(z)]g’(x). 

This formula suggests the following iteration 
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Select an initial point z p, an initial multiplier X lt and a suitable constant c. 

Having obtained z1 and )\I find a minimizer xi+1 of the function 

Then set 

x if1 = Ai + Qg(zi+l) (say (Y = 2c) 

and repeat. 

To obtain an initial estimate for ~1 and c, one can begin with the penalty function method. 

I called this method “a method of multipliers”. This algorithm with some modifications 

proved to be an effective method for solving constrained minimum problems. An equivalent 

algorithm was also suggested by M.J.D. Powell at about the same time. 

Return to the Summer of 1949. At that time I was invited to join the Institute for 

Numerical Analysis (INA) on a part time basis. In accepting this invitation I expected to 

pursue my studies of numerical methods in variational theory. However, I was diverted by 

Barkley Rosser who was the new director of INA. Rosser initiated a program of studying 

methods for solving linear equations and for finding eigenvalues and eigenvectors of matri- 

ces. He organized a seminar on this subject. The principal participants of this seminar were 

Barkley Rosser, George Forsythe, Cornelius Lanczos, Gertrude Blanch, Magnus Hestenes, 

William Karush, and Marvin Stein. Rosser and Forsythe specialized on finding solutions of 

linear equations. Forsythe, in particular, proceeded to classify known methods for such so- 

lutions. Hestenes, Karush, and Stein were chiefly responsible for the study of methods for 

finding eigenvalues and eigenvectors of matrices. Lanczos continued to refine his methods 

for solving eigenvalue problems. Blanch, who was in charge of numerical computations, 

acted as an advisor on numerical procedures. Of course, we did not limit ourselves to our 

specialties and participated actively on all the topics taken up in the seminar. 

With regard to the study on solving linear equations, we specialized on iterative methods 

for solving linear equations. We did so in part because it appeared that they required less 
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high speed storage than other methods. Besides we found them to be interesting. We 

surveyed the known methods both from a theoretical point of view and from a numerical 

point of view. In preparing the short history of INA, which I wrote with Sohn Todd, I 

found a manuscript written by Rosser and myself developing a unified theory for a large 

class of methods. I had forgotten that we had written this article. A summary of the 

contents of this article is given in the history of INA which Todd and I wrote. In this 

paper we discussed various algorithms for solving a linear equation 

Ax = h 

where A is a nonsingular n x n-matrix and h was a prescribed n-dimensional vector. We 

used the size of the residual 

r = h - Ax = A(xo - x9 

as a measure of the closeness of x to the solution x0 of our equation. To measure the 

size of r, we sometimes used the largest component of T-. At other times, with * denoting 

transpose, we used a function of the form, 

f(x) = gr*Kr = ix*Bx - k*x + C, 

where K is a positive de&rite symmetric matrix and 

B = A*KA, h = A*Kh, c = ;h*Kh. 

The solution x0 of Ax = h minimizes 4 and solves the equation 8x = k, When A is a 

positive definite symmetric matrix we can choose K = A-l. Then Ip = A? k = h, and 

f(x) = $x*Ax - h*x + c 

where c is an unknown constant which plays no role in our considerations. It should be 

noted that the minimizer x0 of f(x) is the center of the ellipsoid, f(z) = constant. Thus, 
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the problem of solving Ax = /Z is equivalent to that. of finding the center of an ellipsoid. 

We observed further that the minimum point x2 of f(z) on a line 

was the midpoint of the chord in which this line intersected the ellipsoid J(z) = f(xl). 

Although it was not immediately obvious, we found that the algorithms that we studied 

were equivalent to one of the following type 

where ri is the residual 

rj = h - Axi. 

From this fact we concluded that, if 

/.J = limsup IOr- HiAll < 1, 
i--+00 

then the sequence (xi) converges linearly to the solution x0 at the rate p. In many cases 

the matrix Hi need not be constructed explicitly by the algorithm. For example, we can 

obtain xi+1 from xi by a subroutine of the following type 

Choose m vectors ~1, ~2,. . 1 , urn which span our space and selected vectors 

Vl, v2, ’ * * , V, such that dj = v;Auj is not zero for j = I, . . . , m. Select y1 = xi. 

Then, for j = 1,. . , , m, set 

Yj+ 1 z ?.Jj + O!jUj, aj = vz (Ic - AYi)Idj. 

Finally set xi+1 = ~~~1. 

It can be shown that when xi+1 is obtained from xi in this manner, then there is a matrix 

Hi such that equation (1) holds. In view of this result the Gauss Seidel method and a 
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large number of other standard methods can. be studied simultaneously by con.sidering an 

algorithm of the form (1). A discussion of our considerations of this nature can be found in 

the History of INA which Todd and I wrote. We omit these considerations here. However, 

I would like to remark that in most of the numerical cases we considered convergence was 

very slow. We were therefore on the lookout for more rapidly convergent algorithms. We 

also considered the introduction of a relaxation constant p in our algorithm but did not 

develop an adequate theory for this case. 

One of the algorithms that we tried was a gradient method for minimizing the error 

function 

f(x) = $x”Ax - hex 

for the case when A is positive definite. The negative gradient of j is the residual r - 

h - Ax. Accordingly, the gradient algorithm is of the form 

where ri = h- Axi and t = LEE is chosen to as to minimize f(sa+eri). We called this method, 

the optimal gradient method. Forsythe constructed a positive definite 6 x 6-matrix in a 

random fashion and proceeded to test the optimal gradient method numerically. He found 

that the method “bogged down” and that the solution could not be obtained using a 

reasonable number of steps. Accordingly he tried two different acceleration techniques. 

The first one used the relaxed equation 

Xj+j; = Xi + ,DU;rj, 

where 0 is some number between 0 and 2. Values of 8, such as 7, 8! and 1.2, were effective. 

Even /3 = 0.2 was better than /3 - 1. He also tried the following acceleration scheme 

suggested by Motzkin. When the algorithm bogged down he added an additional step 

of minimizing d along the line t.hrough xi-2 and zd to obtain a new estimate ri+l. This 

method was equally effective but somewhat more complicated to use. We discovered that 
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Aitken had used the second scheme earlier. Incidentally, this acceleration scheme yields 

one step of the conjugate gradient method described below. 

Rosser returned to Cornell in the fall of 195@ and returned to INA for summer 1951 to 

pursue his studies of solutions of linear equations and to attend a Conference on “Solutions 

of Linear Equations and the Determination of Eigenvalues” to be held at INA in August 

1951. In June or July 1951, after almost two years of studying algorithms for solving 

systems of linear equations, we finally “hit” upon a conjugate gradient method. I had 

the privilege of first formulating this new method. Rowever, it was an outgrowth of 

.my discussions with my colleagues at INA. In particular, my conversations with George 

Forsythe had a great influence on me. During the month of July 1951, I wrote an INA 

Report on this new development. When E. Stiefel arrived at INA in August to attend the 

conference on Solutions of Linear Equations, he was given a copy of my paper. Shortly 

thereafter he came to my office and said about the paper “this is my talk”. It occurred 

that he too had invented the Conjugate Gradient Algorithm and had carried out successful 

experiments using this algorithm. Accordingly, I invited Stiefel to remain at UCLA and 

INA for one semester so that we could write an extensive paper on this subject. In the 

meantime C. Lanczos observed that the Conjugate Gradient Method could be derived 

from his algorithm for finding eigenvalues of matrices. In view of these remarks we see 

that there are three persons who are credited for inventing the Conjugate Gradient Method, 

namely, Stiefel, Mestenes, and Lanczos. IIowever, as remarked above, this algorithm was 

an outgrowth of the program at INA on Solutions of Linear Equations originated by J.B. 

Rosser and participated upon by various members of INA, such as, G. Forsythe, W. Karush, 

T. Motzkin, L. Paige and M. Stein. Of these researchers, Forsythe was the most active 

in supplying numerical experiments for the algorithms discussed by the group. It was my 

privilege to invent the name ‘(Conjugate Gradient Routine” for the new algorithm we had 

constructed. 

The Conjugate Gradient Algorithm is based on the following property of ellipsoids: 
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The midpoints of parallel chords od an (n - I)-dimensional ellipsoid En-l lies on a 

(n - l)-plane 7r ,+I passing through the center x0 of E,-, . The (n - I)-plane x,+-l and the 

vector3 in 7rr,-1 are said to be conjugate to these chords. 

Analytically, an ellipsoid J!?,-~ is the set of points x satisfying an equation of the form 

f(x) = $x* Ax - h* x = constant (A* = A > 0). 

The minimizer x0 of f is the center of E,-l and solves the equation 

Ax=h. 

Parallel chords of En-l have a common direction vector p. A midpoint x of one of these 

chords minimizes J along this chord. It follows that the negative gradient 

r = h - Ax = A(xo - x) 

at such a midpoint x is orthogonal to p. That is, 

p*r = p*(h - Ax) = p*A(xo - x) = 0 

or, equivalently, 

p*Ax = p*h. 

This equation represents an (n - I)-plane ~~-1 through the center x0 of E,-1. Its normal 

is the vector Ap. Every vector q in x,.+~ is orthogonal to Ap and is conjugate to p. The 

relation 

p*Aq = 0 

therefore expresses the conjugacy of two vectors p and q. 

Let us apply this result to the Z-dimensional case. We seek to find the center of an 
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ellipse. Referring to Figure I let x be a point on an ellipse E. Let p be a vector tangent 

Figure 1 

to E at x and let T be an inner normal of E at x. Through the tip y of T, draw a chord uv 

perpendicular to 7-. Let z = y + bp = $(u + V) be the midpoint of this chord. Denote the 

vector joining x to z by p,. Then pc = z - x = r+ bp. The vector p, is conjugate to p. The 

midpoint x, of the chord emanating from x in the direction p, is the center of the ellipse 

E. The point x, also minimizes the function 

f(x) = $x*Ax - h*x (A* = A > 0) 

on this 2-dimensional space, where f(x) = constant is an analytical representation of E. 

The geometric construction of the minimizer x, of f can be carried out analytically as 

follows: 

Choose a point x and compute r = h - Ax. Let p be a vector orthogonal to T. Compute 

(24 

cw 

PC = r + bp, b = -p* AT/~* Ap 

2, = x+ap,, a = pz Arip: Ap,. 

The point xc minimizes f(x) on our 2-plane. 
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This result leads us to the conjugate gradient routine. We shaXI give several versions of 

the conjugate gradient algorithm leg-algorithm) for solving the equation 

Ax= h, 

where A is a positive definite symmetric matrix. The first of these is the formulation given 

independently by Stiefel and by IIestenes. It proceeds as follows. 

Cg-,algori t hm I 

Initial step. Select a point z1 and compute 

(34 Pl = rl = h - d4xa 

w Cl = P;Q, 4 = P;&L, a~ = CI/& 

(34 52 =x1 +alPl, r2 = h- Ax2 =rl --alApI. 

Itemtive steps. Having obtained pi-l, c&-l, zi, ri compute 

Pi = rj + bi-ppi-l with b;+ = p;D,Ari/di-r 

@i 
* = pi ri, di = p;Api, ai = ci/di 

Xi+1 = xi f ujpj, ri+l = h - Axi+ = ri - aiApi. 

Terminate when T,+~ = 0. Then x0 = T,+~ solves Ax = h. 

In this algorithm the lengbh of the vector pi is not important. CVe can therefore, if we 

wish, introduce a scale factor pi for pi. When this is done our formulas for these vectors 

take the form 
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The scaling 01 = 1, Oi+l = (I+ bi)- 1 is pa~4iculasly useful because then P;+~ = h -- AY~+~ 

at a point y+l on the line segment joining x; to zi+r. Alternatively, we can use generalized 

gradients in which we have the formulas 

where H is a positive definite symmetric matrix. When these equa.tions are used we call 

our algorithm a generalized cg-algorithm. A discussion of these and other variants of the 

cg-algorithm can be found in my book on Conjugafe Direction Methods in Optimization. 

Return to the cg-algorithm (3a)-(3f). Ob serve that equations (3d)-(3f) can be obtained 

from equations (Za) and (2~) by setting x = xi, r = ri = h - Ax;, p = pi-l! p, = p;, and 

x, = z~+I+ It follows that the point ~i+~ minimizes ,f(x) on the 2-plane 

This 2-plane is also determined by the points zd-1, xi7 and yi+l = Xi + Ti, The point zi+l 

therefore minimizes f(x) on this ‘L-plane and is the center of the ellipse in which this 2- 

plane cuts the ellipsoid f(z) = f(zi). Stiefel considered the direction pi to be a relaxation 

of the direction ri. 

In view of this result we have the following akernative description of Cg-algorithm I. 

Cg-algori t hm II 

Initial’ step. Choose x1 and compute ~1 = h - Axl. Then find the minimizer x2 of f(z) 

on the line through x1 and ~2 = x1 + rl . 

Iterative steps. For i = 2,3,. I . , compute ri = h - Azi and find the minimum point xi+1 

of p(x) on the 2-plane through the points pi-1, xi, and y+.r - xi + ri. The point Zis-1 is 

the center of the ellipse in which the 2-plane cuts the ellipsoid defined by f(x) = J(xi). 

IPerminate when r’m+P = 0. Then z,+~ solves As .= h.. 
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When this algorithm is put in analytic form we obtain the following set of equations 

with z1 as the initial point, 

The scalars ai and Pi-1 are chosen so that rj+l is orthogonal to ri and ri-1. With 21 as 

the initial point, algorithms (3a)-(3f) and (6a)-(6d) generate the same points x2,23,. . . ” 

Algorithm (6a)-(6d) can be found in the original paper by Hestenes. It is sometimes called 

GRADIENT PARTAN. 

It can be shown that the point xii-1 minimizes J(x) on the i-plane determined by the 

points ~1, ~2,. . . , xi, and yi+n = xi + ri. This i-plane can be represented parametrically 

by the equation 

It can be shown t hait, for the minimizer ~i+~, we have rl = r2 = . , + = yi.-2 = 1. It follows 

that xi+1 lies in the 2-plane 

X = xi-1 + rj-l(X; - Xi-1) i” r;ri 

and so minimizes f(z) on this a-plane. In view of this result: Cg-algorithm II is equivalent 

to the following 

Cg-algorit hm III 

Initial step. Select x1 and compute r1 = h - A2: 1. Find the minimizer 22 of f(z) on the 

line through ~1 and x1 + rl. 
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Htewtive steps. For i = 2,3, c , . ! find the minimizer zi+l of JF(z) on the i-plane deter- 

mined by the points $1, ~2,. IF f xi, Y~+I = xq b- rd, where ri = h - Axi. 

Terminate when r,+l = 0. The point zn+p. solves Ax = h. 

The cg-algorithm can also be interpreted geometrically as described in the following 

Cg-algorithm KV 

We seek to find the center of the (n - l)-dimensional ellipsoid En-l defined by the 

equation f( 5) = f(xl). Th e om 21 is on En-r. Let Cl be a chord of En-p emanating p ’ t 

from 21 in the direction of the inner normal of E ,+I at 51. Find the midpoint $2 of Cl. The 

(n - %)-plane ?r,-l through x2 conjugate to Cl contains the center xe of E,,-1. If x2 - x0 

we are done. Otherwise rr,+-p intersects the ellipsoid f(x) = f(x2) in a (n - 2)-dimensional 

ellipsoid En--2 whose center is also 20. ,4ccordingly, we have reduced the dimension of our 

space of search by 1. We now repeat the process and select a chord Ca of En-a emanating 

from 22 in the direction of the inner norma of En-2 at x2. Find the midpoint x3 of (72” 

The (n - 2)-plane 7rrr,,2 in 76+-p conjugate to C2 contains the common center x0 of En-2 

and En-l. If x3 = x0 we are done. Otherwise, 7r,+2 intersects the ellipsoid f(x) = f(xa) 

in a (n - 3)-dimensional ellipsoid En-s whose center is also x0* Again we have reduced the 

dimension of our space of search by 1. Proceeding in this manner we finally obtain a chord 

Cm of an (n- m)-dimensional ellipsoid En-m whose midpoint is x0 thereby completing 

our search for the center of En-l. 

The following analytic version of Cg-method IV led to the name Conj’ugate gradient 

algorithm. 

Cg-algorithm V 

Starting with a point x1 find the direction pl of steepest descent of f(x) at xl. Proceed 

in the direction pl to the point 52 at which f(x) has a minimum value. Let ~~-1 be the 

(‘pz - B)-plane through 22 conjugate to pl. Find the direction p2 of steepest descent at 22 

of p(x) in ~~-1. Proceed from x2 in the direction ~2 until a point x3 is reached at which 

f(x) has a minimum. Let a,-2 be the (7~ - 2)-plane in ~~-1 conjugate to p2 (and hence 



also conjugate to pl ) I Find the direction of steepest descent p3 at 23 of f(x) in ar,-2 and 

proceed to the minimum point x4 of f(x) in this direction. Proceeding in this manner we 

finally reach the minimum point z. of f(x) in our original n-space. It is the solution of 

Az=h. 

Wecalllpl,p2,... and their multiples “conjugate gradients” of f(x). Except possibly for 

a positive scale factor, they are the vectors pl, ~2,. “. generated by Cg-algorithm I. 

There is another version of the cg-algorithm which is of interest. In this algorithm we 

alternate minimizations of the functions 

ptx) = +*a~ - h*x, g(x) = $1” = flh - Ax!‘. 

It proceeds in the manner described in the following 

Gg-algorithm VI 

Select a point 2 1. Set y1 = xp and compute pl = -f’(yl). Having obtained zi, yi, and 

Pi = -d’(~d), find the minimum point xi+p of f(z) on the line x = xi+tpi. Next determine 

the minimum point yi+l of g(x) on the line joining yi to xi+l. Compute pi+1 = -f’(yi+l). 

Terminate when z,,.,+l = yrn+l or equivalently when f’(ym+l) = 0. The point x,,.,+~ = 

yrn+l is the minimum point of f(x) and solves the equation Ax = h. 

It is also of interest to note that the conjugate gradient algorithm can be put in the form 

(1) with Hi replaced by aiHi. We then have the iteration 

Xi-t-1 = xi + aiHiri, ri = h - Axi 

where Hi is a positive definite symmetric matrix. We adjoin to this an updating procedure 

for the matrix Hi. It has the property that Hn+l = A-“. This form of the conjugate 

gradient algorithm is due to Davidon, who fashioned it so as to be applicable to nonlinear 

equations. It was modified later by Fletcher and Powell. It is now called the Davidon- 

Fletcher-Powell method or the variable metric method. There are several versions of this 

algorithm. The one that we shall present is the following 
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Cg-algorithm VII 

Let H be a positive definite matrix. Set HI = H and perform the following iteration 

with 21 as the initial point and rl = h - Azl. 

(74 pi = Hi~i, si = Api, Ed = HiSir di = pfsi, 

(7b) 6i = qii*i, ei = 6i/di, cd = PTriy ai = ci/di 

(74 Xj+l = Xi + f&pi, rr+l = ri - aisi = h - Axi+ 

(74 H i+l = Hi - (piqf + qipt)/di + (ei + l)pipt/di* 

Terminate when r,+l = 0. Then x,+1 solves Ax = h. If m = 72, we have H,+l = A-‘. 

Under perfect computations we have the relations 

PI = HnI Pi+1 = Hri+l + bipi 

so that Algorithm (7a)-(ad) is eq uivalent to the generalized cg-algorithm and is equiva- 

lent to Algorithm (3a)-(3f) when H = I. It involves more computations than the original 

algorithm. However, it is within it a built-in correction of roundoff errors and so usually 

gives better results than the original cg-algorithm when the matrix A is ill-conditioned. 

Extensions of this algorithm have been useful in the minimization of nonquadratic func- 

tions. There are many variations of the updating formula (7d) for Hi. For example, one 

can add nonnegative multiples of the matrix 

(eiPi - qi) (QP; - qi)* 

t0 Hi+1 with altering its basic properties. 

We have given seven versions of the cg-algorithm. Additional versions can be found in 

my book on Conjugate Direction Methods in Optimization. One of the first five versions 

given above was the origina. version of cg-algorithm developed at INA. I believe that it 
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was either Cg-algorithm IV or Cg-algorithm V but I am not certain about this. It could 

have been Cg-algorithm III or II because, at that time, Forsythe and I were experimenting 

with algorithms for minimizing P(X) on i-planes for i =T: 2,3,, . . . 

In the application of the cg-algorithm, it is often desirable to precondition the matrix A 

before applying the cg-algorithm. Also the cg-algorithm is sometimes used in conjunction 

with other algorithms for solving linear equations” 

Cg-algorithm I has within it an algorithm for computing the characteristic polynomial 

of A. Qne needs only replace A by X. This algorithm is equivalent to one developed earlier 

by @. Lanczos. It follows that the algorithm of Lanczos for finding eigenvalues implicitly 

contains the cg-algorithm although none of us recognized this fact in the seminar we 

conducted. When Lanczos became aware of this feature of his algorithm, he formulated an 

alternative version of the cg-algorithm which he called a ‘“Method of Minimized Iterations”. 

The connections between his algorithm and the original cg-algorithm can be found in the 

historical account of INA which I wrote with J. Todd. 

The cg-algorithm has some useful properties. At each step the value of the error function 

f(s) is diminished. So also is the distance of our estimate xi from the solution 20” This 

latter property may fail when generalized gradients are used. If A has multiple eigenval- 

ues, the algorithm will terminate in less than n steps. It follows that if A has clustered 

eigenvalues, a good estimate of the solution is obtained early. A discussion of these and 

other properties of the cg-algorithm can be found in the original paper by StiefeI and 

Hestenes and in my book entitled Conjugate Direction Methods in Optdm&ation published 

by Springer in 1980. We also discussed the problem of finding least square solutions for 

a general equation Az = h in which A may be nonsymmetric and singular. There is a 

vast literature on cg-algorithms and Lanczos’ algorithms, References can be found in my 

book and in a recent paper by Gene Golub and Dianne &)‘Learly entitled Some History of 

the Conjglgate Gradient and Lunczos AEgorithms 1948-1976. This excellent paper has been 

submitted to the SIAM R.eview. 
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As I remarked earlier, in our seminar 1 was responsible for studies of methods for obtain- 

ing eigenvalues of a matrix A. We developed a gradient method for finding the eigenvalues 

of a symmetric matrix. Pt turned out that this method could be viewed as a generalization 

of the power method, 8% course, we studied the power method and the inverse power 

method. We also considered the Jacobi method but did not have the computing facilities 

for a serious study of this met hod numerically. In addition we considered the problem of 

finding singular values of matrices. Our studies complimented the studies of Eanczos for 

finding eigenvalues of mat rices. 
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