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Abatract 

We show that nondegenerate Delaunay triangu- 
lations satisfy a combinatorial property called l- 
toughness. A graph with set of sites S is l-tough 
if for any set P E S, c(S - P) 5 IS], where 
c(S - P) is the number of components of the sub- 
graph induced by the complement of P and ]P] is 
the number of sites in P. We also show that, un- 
der the same conditions, the number of interior, 
components of S - P ia at most IPI - 2. These 
appear to be the first nontrivial properties of a 
purely combinatorial nature to be established for 
Delaunay triangulations. We give examples to 
show that these bounds can be attained, and we 
state and prove several corollaries. In particular, 
we show that maximal planar graphs inscribable 
in a sphere are l-tough. 

1 Introduction 

The connection between Delaunay triangulations 
and Hamiltonian graphs has been a question of 
some interest. In his thesis, M. I. Shamos posed 
a variant of the question by asking whether ev- 
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ery Delaunay triangulation contained a traveling 
salesman cycle for its sites ]Sham78]. The an- 
swer to this question was shown to be negative 
in [DillSSal. 

More recently, the question of when Delaunay 
triangulations are Hamiltonian has arisen in the 
contexts of pattern recognition and shape repre- 
sentation. Consider the problem of constructing 
a ‘reasonable” simple curve through a given pls 
mar set of points. One approach that has been 
suggested is to construct the Delaunay triangula- 
tion of the points, and then to construct a cycle 
through this triangulation either by ‘growing” 
a single triangle [ORou84] or by “sculpting” the 
convex hull [Bois84]. Clearly, these algorithms 
will be successful only if the Delaunay triangula- 
tion has a Hamiltonian cycle. 

It has been shown [Di1186b] that not all non- 
degenerate Delaunay triangulations are Hamil- 
tonian. (A degenerate example is in [Kant83]). 
However, O’Rourke and Boissonat both report 
that their algorithms appear to work in prac- 
tice. In fact, Boissonat has run a number of 
simulations with randomly generated point sets 
containing up to 2000 points, and all his exam- 
ples have yielded Hamiltonian Delaunay triangu- 
lations [Boia86]. Thus there is evidence that De- 
launay triangulations are Hamiltonian with high 
probability. 

In this paper, we establish two results that 
may partially explain this phenomenon. These 
results appear to be the first nontrivial proper- 
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ties of a purely combinatorial nature to be es- 
tablished for Delaunay triangulations. In partic- 
ular, we show that nondegenerate Delaunay tri- 
angulations enjoy a property called l-toug!mcus 
[Chva73]. A graph is l-tough if, for any k, ra 
moving k points splits the graph into at most k 
components. It is easy to show that any Hamilt+ 
nian graph is l-tough, although the converse is 
not true. The connection between Hamiltonic- 
ity and toughness is discussed in [Chva73] and 
[Berm78]. 

An interesting consequence of the l-toughness 
of Delaunay triangulation is the following fact. 
Suppose, in a distributed computing system, 
each node is connected to its Voronoi’ neighbors. 
Then if k of the nodes fail at once, there are at 
most k groups of remaining nodes that are com- 
pletely isolated from one another. It is not hard 
to show that, for a general (i.e., non-Delaunay) 
triangulation, there can be as many ss 2k - 2 
such groups. 

Belated to the l-toughness result is another 
theorem, also proved in Section 3, which says 
that removing k sites can split a nondegenerate 
Delaunay triangulation into at most k-2 compo- 
nents that do not contain a point of the bound- 
ary of the triangulation. In Section 4, we show, 
using the the transformations of [Brow791 and 
[EdSe85], that maximal planar graphs inscrib- 
able in a sphere or in the paraboloid z = z2 + y2 
are l-tough. These results are relevant to a prob- 
lem that is currently open, namely determining 
whether all graphs so inscribable are Hamilb 
nian. We also show that the two theorems proved 
in Section 3 cannot be improved. 

2 Mathematical preliminaries 

Except as noted, we use the same terminology as 
in [Hara69]. We use the notation IS] to indicate 
the cardinality of a set 5’. If S and P are sets, 
S - P indicates the set of elements of S that 
are not in P. If G is a graph, S its set of sites, 
and P C S, we denote by P’ the subgraph of G 
induced by P; this subgraph consists of P and 

all edges of G that join two points of P. By a 
component of P, we mean a component of P’. 

A plane graph is a graph that is embedded in 
the plane. Such a graph divides the plane into 
regions, called faces. Exactly one of these faces 
is unbounded; it is called the eztcriot face, while 
the remaining faces are called interior fucee. The 
set of sites and edges incident with the exterior 
face ia called the boundary of the graph. An edge 
of a plane graph is called an interior edge if it is 
incident on both sides to interior faces, a bound- 
ary edge if it is incident to an interior face and 
the exterior face, and an exterior edge if it is in- 
cident on both sides to the exterior edge. If G is 
a plane graph with S the set of sites, and P C S, 
a component of S - P is an interior component if 
it contains no point of S that is on the boundary 
ofG. 

A triangulation is a plane graph in which ev- 
ery edge is a line segment, every interior face is 
bounded by a triangle, and the boundary of the 
graph is a convex polygon. An elcmentory trian- 
gle is a triangle that bounds an interior face. 

The Delaunay triangulation is a structure that 
is well known to computational geometers; see 
[PrSh85] for the relevant definitions. A Delaunay 
triangulation is nondegenerate if it is impossible 
to find four or more generating sites that lie on a 
common circle that contains no additional gen- 
erating sites in its interior, and if no three con- 
secutive points on its convex hull are collinear. 
It follows from the Ugeneral lemma” in (Dela34] 
and some elementary geometry that a triangula- 
tion is a nondegenerate Delaunay triangulation 
if and only if, for each pair of elementary trian- 
gles ABC and ABD that share a common edge 
AB, ABC+ ABD < 180. (Note that here, and 
throughout this paper, we use the notation ABC 
to represent either a triangle or the measure of 
an angle in degrees; since it is always clear from 
the context which we mean, this notational over- 
loading should not cause confusion.) 



3 Toughness conditione for Delaunay tri- 
angulations 

Two important combinatorial properties of De- 
launay triangulations are captured in the follow- 
ing theorems. 

Theorem 3-l. Let 2’ be a nondegenerate De- 
launay triangulation of a set of sites S, and let 
PC S. ThenS- P has at most IPI - 2 in- 
terior components (where an interior component 
of S - P is a component that does not contain a 
point on the convex hull of S). 

Theorem 3-2. Let T be a Delaunay triangu- 
lation of a set of sites S, and let P C S. Then 
S - P has at most IPI components. In other 
words, T is l-tough. 

Due to space limitations, we prove these two 
theorems under the additional assumptions that 
P’ is connected and that P’ does not contain 
any exterior edges. Proving the theorems in full 
generality is then a simple matter. We also omit 
proofs of several lemmas. Full details appear in 
[~i1187j. 

Since P’ is a planar graph, it divides the plane 
into faces, all but one of which are interior faces. 
We partition the interior faces into two types. 
We calI faces with no points of S - P in their 
interior type 1 foccs, while faces with points of 
S - P in their interior are called type t jactu. 
Clearly, each component of S - P is contained in 
a type 2 face. The following lemma tells us that, 
in a triangulation, distinct components of S - P 
are contained in distinct faces of P’. 

Lemma 3-3. Let T be a triangulation with sites 
S, and let P be a connected subset of S. Each 
type 2 face of P’ contains exactly 1 component 
of S - P. Furthermore, any type 1 face of P’ is 
bounded by a triangle. 

In order to bound the number of type 2 faces 
of P*, we associate with each type 1 and type 2 
face of P’ certain da%nguishcd angles, defined as 
follows. For each type 1 face (which, by Lemma 
3-3, must be a triangle), we take the three in- 
ternal angles of the triangle. We call these type 

1 angles. For each type 2 face, we take all an- 
gles of the form AXB, where AB is an edge of 
the face boundary and X is the point of S - P 
inside the face such that triangle AXB is in T. 
We call these type 2 angles. The type 1 and type 
2 angles are illustrated in Figure 1. Two impor- 
tant properties of these angles are contained in 
the following lemmas. 

Lemma 3-4. Each interior edge of P’ is oppe 
site two distinguished angles, and each boundary 
edge is opposite one distinguished angle. 

Lemma 3-5. The sum of the type 2 angles 
associated with a given type 2 face of P’ is at 
least 380. 

Proof of Theorem 3-l. Let T be a Delaunay 
triangulation of a set of sites S. In accordance 
with remarks made earlier in this section, assume 
that P is a connected subset of S with IPI = k 
and that P has no exterior edges. By Lemma 
3-3, it is sufficient to show that P’ can have at 
most k - 2 type 2 faces. 

The proof is based on a counting argument. 
We establish minimum values for the total mes- 
sure of the distinguished angles, based on the 
number of type 2 faces of P’. We then elimi- 
nate pairs of angles that are opposite a common 
edge, using the Delaunay condition that such 
pairs must sum to less than 180 degrees. Since 
the remaining angles are internal irngles of trian- 
gles, they must all be less than 180 degrees. This 
permits us to derive a bound on the number of 
type 2 faces we had to begin with. 

Let t be the number of type 1 faces, and let 
ai be the number of type 2 faces bounded by j 
edges. Note that each type 1 face contributes 3 
angles of total measure 180, and each type 2 face 
bounded by j edges contributes j angles of total 
measure at least 360, by Lemma 3-5. Thus if we 
let d,, denote the total number of distinguished 
angles and d, denote the sum of their measures, 
we have 

& =3t+Cjcri, and (1) 
i 

4 2 180(t ;2C*j). (2) 
i 
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Let f be the number of interior faces of P’, and 
observe that f = t + Cj oj. Let e be the number 
of edges of P’, let 6 be the number of interior 
edges of P’, and recall that k is the number of 
points in P. By Lemma 3-4, each interior edge 
of P’ is opposite two distinguished angles and 
that each boundary edge of P* is opposite one 
distinguished angle. Since there are no exterior 
edges,e+q =d,,. By Euler’s formula, 

e = k+ (t+Faj) - 1. 

Combining these last two equations with (l), we 
have 

ei = 3t+Cj*j -{k+(t+Caj)-1) 

= *t+&j-l)aj 

i 

-k+l. (3) 
i 

Let r,, be the number of distinguished angles 
remaining after we reduce the total number of 
distinguished angles by removing all pairs that 
are opposite a common internal edge, and let rU 
be the total measure of this reduced collection. 
Then since each internal edge is opposite two dia-’ 
tinguished angles, we have, by (1) and (3), 

rn = (3t + C jUj> 

i 

-2{Zt + C(i - l)oj - k + 1) 
i 

= 2k - 2 - t +x(2 -j)aj. (4 
i 

Since T is a Delaunay triangulation, the sum of 
the two distinguished angles opposite each inter- 
nal edge is less than 180. Thus, by (2) and (3), 

r” 2 180(t+ 2Coj) 
i 

-180{2t + C(J’ - l)oj - k + 1) 

= 18O(k-l-t+i(3-j)aj). (5) 
; , 

Since each interior angle in a triangulation must 
be less than 180, we must have ru < 18Or,,. So 
by (4) and (S), we have 

k-l-t+x(3-j)aj < 2k-‘f!-t+C(2-$ai* 

i i 

Simplifying this inequality yields Cj oj < k - 1. 
Since Cj oj is the number of type 2 faces, this 
proves Theorem 3-l. 4 

In order to prove Theorem 3-2, we introduce 
a new type of distinguished angle, to supplement 
the type 1 and type 2 angles defined in the proof 
of Theorem 3-l. We define a type 3 angle to 
be an angle of the form pr qpr , where p1 and pz 
are points of P and q is a point of an exterior 
component of S-P (See Figure 2). The following 
lemma is somewhat analogous to Lemma 3-5. 

Lemma 3-6. Let T be a triangulation, S the 
set of sites, and P C S. Let cc be the number of 
exterior components of S - P. Then the sum of 
the measures of all type 3 angles of S - P is at 
least 18O(c, - 2). 

Proof. For each exterior component Q of S - 
P, define the p-boundary of Q to be the path 
through P such that each edge of the path is 
the base of a triangle whose apex is in Q and 
is to the left of the edge. Define the q-boundary 
of Q to be the path from the first point of the 
pboundary to the last point of the p-boundary 
such that every point (except the first and last 
points) is in Q and such that each edge of the 
path is the base of a triangle whose apex is in P 
and is to the right of the edge. The p-boundary 
and q-boundary are illustrated in Figure 1. 

Our first goal is to establish a bound for the 
total measure of the type 3 angles of Q in terms 
of the total measure of the angles along the q- 
boundary. Indeed, assume that the q-boundary 
is the path qoql . . . q8q8+l (where qo and q8+l are 
in P, and all other points are in 9). Then if a! 
is the sum of the measures of the type 3 angles 
of Q, we claim that 

8 

a 2 C Qj-lQjQj+l - 180(8 - 1) (6) 
j=l 

This follows from observing that if we start 
with the q-boundary and throw out all triangles 
that are inside the q-boundary, outside the p 
boundary, and do not contain any type 3 angles, 
we will have thrown out at most 8 - 1 triangles. 
(The eliminated triangles are shaded in Figure 
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The next step in the proof involves construct- 
ing a polygon, which we call R, obtained by 
taking the convex huIl of S (with the vertices 
enumerated in counterclockwise order) and %ut- 
ting across it” with q-boundaries. That is, if 
81, . . . ,8,, ,81 ie an enumeration of the vertices of 
the convex hulI of S, then for each pair s,, and 
sv of vertices that form the opposite ends of a q- 
boundary, replace ~?~+l . . . ,8,-l with the points 
of S - P on that q-boundary. The polygon R has 
two kinds of vertices - points of P that are on 
the convex hull of S, and points of S - P that 
lie on q-boundaries. Suppose that there are q 
points of S - P along the q-boundary of compc+ 
nent number i, and let x = xi&, q. Let /3i be 
the sum of the internal angles of R at points of 
the q-boundary of component number i, and let 
@ = xi&, /3i (i.e., p is the sum of the measures of 
all internal angles of R at points of S - P.) Since 
all vertices of R that are not points of S - P are 
convex vertices (i.e., they are less than 180), it 
follows that 

j9 > 180(2 - 2) (‘1 

Let CQ be the sum of the measures of all type 3 
angles at vertices in component number i. By 
summing both sides of (6) over all exterior com- 
ponents of S - P, we obtain 

2 ai 2 e{@i - 180(~ - 1)) = @ - 180(2 - CC). 
i=l i=l 

Hence, by (7)) we have 

2% > 180(2 - 2) - 180(2 - cc) = 18O(c, - 2), 
i=l 

which was to be proved. n 

Proof of Theorem 3-2. Let T be a Delaunay 
triangulation of a set of sites S. Let P be a 
connected subset of S with jPj = k such that P* 
has no exterior edges. We must show that S - P 
can have at most k components. 

The proof is quite similar to the proof of The- 
orem 3-l. Let uj be the number of type 2 faces 
of P’ that have j edges on the boundary, t the 

number of type 1 faces of P*, and c, the number 
of exterior components of S - P. By Lemma 3-4, 
the number of components of S - P is given by 
CC +Cj aj. 

Let d;, be the total number of distinguished 
angles (i.e., all angles of types 1, 2, and 3), and 
let d, be their total measure. Also, let z be the 
total number of edges in all p-boundaries of ex- 
terior components of S - P. Then since there are 
no exterior edges of P*, there is a l-l correspon- 
dence between edges of p-boundaries and type 3 
angles, so we have 

&=3t+CjCZj+X. 
i 

(8) 

By (2) and Lemma 3-6, 

t& 2 18O(t+2Caj+c,-2). (9) 
j 

Let e, be the number of edges that separate two 
distinguished angles from one another. There are 
two types of such edges - those that separate 
type 1 and/or type 2 angles from one another, 
and those that separate type 3 edges from type 
1 or type 2 edges. Since P’ has no exterior edges, 
there are z edges of the second type, so it follows 
from (3) that 

e, = 2t + C(j - l)oj - k + 1 + 2. (10) 
i 

As in the proof of Theorem 3-1, we reduce the 
supply of distinguished angles by removing pairs 
of angles that are opposite a common edge. If 
we let r, be the number of angles in this reduced 
set and let r, be their total measure, then (8), 
(9), and (10) imply 

r, = 2k - 2 - t + x(2 - j)aj - Z, (11) 
i 

and 

r, 2 180{k-t+~(3-j)aj+c,-3-~}. (12) 
i 

Arguing as in the proof of Theorem 3-1, (11) and 
(12) imply 

k --t +x(3 - j)aj + C, - 3 - x 
i 

< 2k - 2 - t +x(2 - j)aj - X, 
i 
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which simplifies to 

c aj+C, <k+l. 
j 

satisfies the conclusion of Theorem 3-l. These 
two examples, taken together, show that Theo- 
rems 3-l and 3-2 are indeed independent of one 
another. 

Since Cj oj + cc is the number of components of 
S - P, this proves Theorem 3-2. n 

4 Extensions and Remarks 

We say that a graph G is inecribable in a surface 
if it is isomorphic to the convex hull of a set of 
points on the surface. A matimal planar graph 
is a planar graph that can be embedded in the 
plane in such a way that all faces (including the 
exterior face) are bounded by triangles. 

Theorem 4-l. Any maximal planar graph in- 
scribable in the paraboloid a = z2+y2 is l-tough. 

Proof. Let S be the set of vertices of a maxi- 
mal planar graph G inscribed in this paraboloid. 
Let S’ be the set of points obtained by project- 
ing the points S vertically downward onto the 
plane. By results in [EdSe85], the edges of G are 
exactly those edges obtained by projecting edges 
of the Delaunay triangulation of S’ and the edges 
of the dual of the “farthest point” Vorondi dia- 
gram of S’ back up onto the paraboloid. It also 
follows from these results that the Delaunay tri- 
angulation of S’ is nondegenerate, since all faces 
of G (and, in particular, all those on the ‘under- 
side”) are triangles. Thus the theorem follows 
from Theorem 3-2 and the simple observation 
that a l-tough graph remains l-tough if addi- 
tional edges (but no new sites) are added. W 

The triangulation in Figure 5 shows that nei- 
ther Theorem 3-l nor Theorem 3-2 can be im- 
proved. It is easy to verify that the figure is in 
fact a Delaunay triangulation. Removing the 3 
vertices A, B, and C separates it into 3 compo- 
nents, one of which ie interior. This shows that 
the bounds on the number of components proved 
in Section 3 can be attained. 

The connection between Hamiltonicity and l- 
toughness is not fully understood. Perhaps the 
results of this paper will motivate further re- 
search in this area. Such research might lead to 
answers to several questions that are currently 
open, such as whether it is indeed true that 
“most” Delaunay triangulations are Hamiltonian 
(in a probabilistic sense) and how difficult it is 
to determine whether a given Delaunay triangu- 
lation is Hamiltonian (i.e., does there exists a 

polynomial-time algorithm?). 

The proofs of the theorems in Section 3 rely 
heavily on the condition that, in a Delaunay tri- 
angulation, opposite angles sum to less than 180 
degrees. This condition is only true for the Eu- 
clidean metric. Thus it is an interesting question 
whether the theorems hold for other metrics as 
well. 

Theorem 4-2. Any maximal planar graph in- 
scribable in a sphere is l-tough. 

Proof. Identical to Theorem 4-1, using the in- 
version transformation of [Brow79]. n 

Figure 3 shows a triangulation that fails to sat- 
isfy the conclusion of Theorem 3-1, because r+ 
moving A, B, C, and D splits it into 3 internal 
components. Since the triangulation is l-tough 
(in fact, it is Hamiltonian), this shows Theorem 
3-l is not implied by Theorem 3-2. Conversely, 
the example in Figure 4 which is not l-tough, 
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Figure 1. Type 1 and type 2 angles. The 
thick circles represent the nodes 
of P. 

Figure 2. The p-boundaries and q-boundaries for a single 
exterior component Q. (Note that only a portion of 
the triangulation is shown.) Here r = 5 and s = 6. 
The shaded triangles are the triangles that are 
eliminated in the derivation of equation (6). The 
type 3 angles are as indicated. 

193 



A C 

Figure 3. A l-tough triangulation that fails to 
satisfy the conclusion of Theorem 3-1. 

Figure 4. A triangulation that is not 
l-tough. This example shows 
that Theorem 3-l does not 
imply Theorem 3-2. 

Figure 5. A Delaunay triangulation illustrating that Theorem 3-1 and Theorem 3-2 are both 
sharp. The angle measurements are in degrees. 
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