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CONNECTIONIST EXPERT SYSTEMS 

Connectionist networks can be used as expert system knowledge bases. 
Furthermore, such networks can be constructed from training examples by 
machine learning techniques. This gives a way to automate the generation of 
expert systems for classification problems. 

STEPHEN I. GALLANT 

Connectionist [or neural network) models are drawing 
increasing interest as useful tools for mainstream artifi- 
cial intelligence (AI) tasks. Here we give an introduc- 
tion to these models and examine expert systems that 
have connectionist networks for their knowledge bases. 
We call such systems connectionist expert systems. 

There are powerful machine learning techniques for 
generating connectionist networks from training exam- 
ples. These methods allow us to automate the construc- 
tion of network knowledge bases for certain types of 
applications, thereby reducing the effort required for 
expert system development. 

We have implemented a two-program package for 
constructing connectionist expert systems from training 
examples. The first program is a network knowledge- 
base generator that uses several connectionist learning 
techniques, and the second (MACIE) is a stand-alone 
expert-system inference engine that interprets such 
knowledge bases. The system has been tested on a large 
number of artificial problems and on several medical 
and economic problems where data were readily 
available. 

Part of the work presented here is also described in 
[lo], [ll], and [14]. 

This work is partially supported by the National Science Foundation under 
Grant IRI-6611596. 
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CONNECTIONIST MODELS 
The popularity of connectionist models in AI has taken 
wide swings, ranging from extreme enthusiasm in the 
1960s to utter anathema in the 1970s. Currently there is 
an explosion of interest in these approaches: we esti- 
mate that research in this area has increased. by two 
orders of magnitude over the last five years. 

Theoretical developments triggered these shifts in 
interest. Early success with learning by neuron-like 
models called perceptrons [XI] excited many research- 
ers. Then in 1969 Minsky and Papert [27] pointed out 
key limitations of perceptrons that led to mass aban- 
donment of this line of research. Recent advances have 
managed to sidestep or overcome many of tb.e deficien- 
cies with respect to learning, thereby bringing about 
the current flourishing of connectionist activity. Psy- 
chologists are now interested in connectionist models 
because of their structural and behavioral resemblance 
to systems of neurons [22], while AI researchers seek 
the ability to develop algorithms for machine learning, 
one of the key problems in the field of AI. 

Connectionist models can be described according to 
their network, cell, and dynamic properties as follows: 

(1) Network properties. A connectionist model con- 
sists of a network of (more or less) autonomous process- 
ing units called cells that are joined by directed arcs as 
in Figure 1. Each arc (“connection”) has a numerical 
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weight Wi,j that roughly corresponds to the influence of 
cell Uj on cell ui. Positive weights indicate reinforce- 
ment: negative weights represent inhibition. The 
weights determine the behavior of the network, playing 
somewhat the same role as a conventional program. It 
has been known for a long time that any computer 
program could be simulated by an appropriate net- 
work [23]. 

In some models a subset of cells u, , . . . , up are con- 
sidered as network inputs that are set externally and that 
do not recompute their outputs. These cells have no 
entering arcs and are represented by squares in Fig- 
ure 1. Other output cells have outputs that are taken to 
be the outputs of the network as a whole. In Figure 1, 
ull and ulz are the output cells and are pictured with 
heavier exit connections. Cells that are neither input 
cells nor output cells are called intermediate cells or 
“hidden units”. Intermediate cells are necessary for a 
network to compute difficult functions known as non- 
separable functions; more on these functions later. We 
classify networks as either feedfonvard networks if they 
do not contain directed cycles or feedback networks if 
they do contain such cycles. For example, the network 
in Figure 1 is a feedforward network. 

Lr f&l 1112 output cells 

I - us ho Intermediate cells 

/t vt A\ 
Input cells 

FIGURE 1. Connectionist Network 

(2) Cell properties. Each cell, ui, computes a single 
numerical cell output or activation. For example, the 
output of ul, is both an output of the network as a 
whole and an input for cell ulz to be used in the com- 
putation of its activation. Typically, every cell uses the 
same algorithm for computing its activation. The acti- 
vation for a cell must be computed from the activations 
of cells directly connected to it and the corresponding 
weights for these connections. Thus, in Figure 1, when 
uzl is reevaluated its activation is determined by the 
activations of u3, u8, ug, and u10 and the weights w~~,~, 
w~,,~, w,,,~, and wll,lO. We refer to the weights wi,* as 
the weights of cell ui. 

Cell inputs and activations may be discrete, taking on 
values (0, 1) or I-1, 0, 1); alternatively, they may be 
continuous, assuming values in the interval [0, l] or 

[-1, +l]. Where there is no confusion, we use Ui to 
refer to both the cell and the numerical activation of 
that cell. Every cell ui (except for input cells) computes 
its new activation ul as a function of the weighted sum 
of the inputs to cell ui from directly connected cells. 

Si = i Wi,jUj 
j=O 

(1) 
Ul = f(s) 

If ui is not connected to Ui, then Wi,i = 0. By convention 
there is a cell u. whose output is always +1 that is 
connected to every other cell ui (except for input cells). 
The corresponding weights (wi.0) are called biases. The 
biases are merely a constant term added to the sum in 
eq. (1). 

(3) Dynamic properties. A connectionist model must 
specify when a cell computes a new activation value 
and when the change to that cell’s output actually 
takes place. In some models, cells are visited in a fixed 
order, each cell reevaluating and changing its activa- 
tion before the next one is visited. In other models, all 
cells compute their new activations simultaneously and 
then make changes to the cell outputs simultaneously. 
Still other models pick a cell at random, compute its 
new activation, and then change the output immedi- 
ately before any other cell computes its new activation. 

Machine learning is an additional part of many con- 
nectionist models. It deals with finding weights (and 
sometimes network topology) that will produce desired 
behavior for the model in question. Usually the learn- 
ing algorithms work from training examples of desired 
behavior to generate appropriate weights. Each training 
example consists of correct values for a set of output 
cells in the network when input cells are given certain 
settings. (See Figure 1.) 

In some paradigms (“easy learning”), the training ex- 
amples specify values for intermediate cells;! otherwise 
the learning algorithm must also find appropriate inter- 
mediate cell values for the training examples (“hard 
learning”). Algorithms for easy learning are usually 
faster than those for hard learning and are more likely 
to produce one of the optimal sets of weights. 

Machine learning is one of the most interesting and 
important research areas in the study of connectionist 
models. We will give only the briefest introduction to 
this work, focusing instead on the structure and work- 
ings of connectionist expert systems. 

Clearly, there are a great variety of possible connec- 
tionist models, but a review of the major ones would be 
beyond the scope of this article. Some of the interesting 
properties of these systems include the following: 

(1) Lenrning. There are powerful learning algo- 
rithms for determining connection weights, wi,j, from 
training examples [17, 341. 

’ For “easy learning” the intermediate cells are treated as output cells during 
training. 
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(2) Knowledge representation. Connectionist models 
facilitate robust representations for certain types of 
problems [12], particularly problems involving recogni- 
tion processes. 

(3) System integration. Networks provide uniform 
representations of inputs from diverse sources. For ex- 
ample, a cell’s input may come from p other cells con- 
cerned with vision, touch, and hearing. Connectionist 
models can automatically adjust to the cases where 
information is available from one of the 2P possible 
subsets of the inputs. This is often important for real- 
world problems. 

(4) Parallelism. Many models are well suited for 
parallel hardware implementation. We will not concern 
ourselves with hardware here since conventional com- 
puters are quite adequate for the algorithms being 
discussed.’ 

(5) Error resistance. Connectionist networks tend to 
be tolerant of errors in cell weights or activations. Net- 
work behavior gradually decays (“gracefully degrades”) 
as the number of errors increases [20]. By contrast, if a 
single bit of a standard computer program is altered, 
that program might well become totally inoperative. 

To learn more about connectionist research, readers 
should consult [13], [18], [22], [34], the January 1985 
(Vol. 9, no. 1) issue of Cognitive Science, the proceedings 
of the annual Cognitive Science Society conferences, 
and the proceedings of the International Conference on 
Neural Networks. 

EXPERT SYSTEMS 
Although there is not general agreement as to what 
defines an expert system, we will be interested in the 
following features of a program designed to solve (or 
help solve) problems in a particular narrow domain: 

(I) Inferencing. The program should be able to 
draw conclusions without seeing all possible informa- 
tion. For example, a medical system cannot require all 
potentially available tests prior to reaching a conclu- 
sion 

(2) Interactive acquisition of data. The program 
should direct the acquisition of new information in an 
efficient manner. For a medical system, this means 
seeking out highly relevant information through ques- 
tions and ignoring possible tests that would not be rele- 
vant to the case at hand. 

(3) Modular structure. An expert system usually 
contains three major parts (Figure 2): 

(a) The knowledge base is a problem-specific 
module containing information that controls 
inferencing. Traditional expert systems gen- 
erally employ if -then rules to represent 
this information, while connectionist expert 
systems use a network model for this pur- 
pose. 

(b) The inference engine is the driver program 
for the expert system. Ideally it is problem 

lConnectionist models should not be confused with the Connection Ma- 
chine’ trademark of Thinking Machines Corporation, one of several highly 
parallel hardware configurations that are suitable for connectionist models. 
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independent so that it does not vary from 
one expert system to another. 

(c) The user interface links the inference engine 
to the external environment using standard 
programming techniques. 

(4) Justification of conclusions. The expert system 
should be able to tell how a conclusion was reached. 
This provides a check on the internal logic of the sys- 
tem and might give a novice user insights into the prob- 
lem at hand. 

These four features will serve as a definit:ion of expert 
system for the purposes of this article. Readers inter- 
ested in a more thorough overview should c:onsult [7] 
or one of the many texts on the subject. 

Classification Expert Systems 
We restrict our consideration of expert systems to clas- 
sification expert systems where the outputs from the 
system can be represented by variables, each of which 
assumes one of several possible values. The simplest 
case of a classification system is where there is only 
one output variable and it assumes one of two possible 
values; in other words a Boolean dichotomy. 

t 
User * 0 interface 1 

FIGURE 2. Expert System Structure 

Limiting ourselves to classification systems is not as 
severe a restriction at it may appear at first, since many 
applications can be recast as classification p:roblems. 
For example, a particular output variable x that takes 
on continuous values in the range [0, l] (suc:h as a 
probability) could be approximated by several Boolean 
choice variables, xi, x$, x4, where each xl corresponds 
to ranges of values: 

if x > %, then xi = 1; else xi = -1; 

if x 2 Vz, then xi = 1; else x; = -1; (2) 

if x2%, then xj = 1; else x4 = -1; 

so that x = .6 would be represented by 

x; = x; = +1, XB = -1. 

Classification systems can approximate continuous out- 
put variables to arbitrary precision using this tech- 
nique. 

February 1988 Volume 31 Number 2 



Articles 

Programs for diagnosis, fault detection, and pattern 
recognition are examples of applications that can be 
represented as classification problems. Other tasks that 
are irregularly structured or procedural in nature 
would not be well suited for representation as classifi- 
cation problems, and therefore could not be handled 
conveniently by the methods presented here. An 
example of such a nonclassificatory task would be con- 
figuring computers as is done by the expert system 
Rl/XCON [24]. 

The Problem of Knowledge Base Construction 
The most difficult, time-consuming, and expensive task 
in building an expert system is constructing and debug- 
ging its knowledge base. In light of the proliferation of 
commercially available expert system environments (or 
shells), one could even argue that knowledge base con- 
struction is the only real task in building an expert 
system. 

Several approaches have been explored for easing the 
knowledge-acquisition bottleneck for expert systems. 
Davis [6] developed an interactive system to aid in ex- 
tracting knowledge from experts that does some clever 
consistency checks against the already existing knowl- 
edge base. 

Work in symbolic machine learning also bears upon 
this problem [25, 261. The former reference contains 
Quinlan’s ID3 algorithm [32], a decision-tree-based 
method that is the basis for several commercially avail- 
able packages. See [3] for a comparison of these meth- 
ods to each other and [12] and [16] for comparisons 
with the connectionist expert system approach. An- 
other approach focuses on probabilistic aspects, includ- 
ing belief networks. See [4], [5], [21], [39], and [30] for 
some of this work. 

CONNECTIONIST EXPERT SYSTEMS 
Can the learning power of connectionist models be har- 
nessed for expert system construction? Alternatively, 
can connectionist models be used for inferencing in an 
interactive fashion, and can they be made to give rea- 
sonable justifications for their conclusions? Our aim is 
to answer both questions affirmatively by showing how 
to construct such connectionist expert systems. 

We fear that our functional definition of the term 
expert system might offend those who consider the task 
of extracting rules from a human expert to be a prereq- 
uisite for a program to be called an expert system. 
These readers might prefer the term interactive classifi- 
cation system with justification capability to our use of 
expert system. Nevertheless, our goals have been to ease 
or eliminate the knowledge-acquisition bottleneck for 
expert system creation in data rich situations and to 
make a connectionist model behave as much as possi-, 
ble like an expert system. 

Early research on connectionist inferencing was done 
by James A. Anderson [19] using an autoassociative 
model, where input cells and output cells are in corre- 
spondence. The system is trained so that when one of a 
fixed set of patterns is presented to the input cells then 
that same pattern is reproduced by the output cell acti- 

vations. Now, when a partial (or perturbed) pattern is 
presented to the input cells, the system will often re- 
construct the entire pattern of the closest training ex- 
ample in the activations of its output cells. This may 
take several iterations during which the output activa- 
tions from the previous iteration are copied to the input 
cells for the next iteration. 

Anderson’s autoassociative model was not intended 
to direct the acquisition of data (backward chain), to 
provide justifications for inferences, or to determine 
when enough information was known to commit to a 
final conclusion. The question “What is the most likely 
answer?” is a separate question from “Is there sufficient 
evidence to adopt that conclusion or is more evidence 
needed?” Both tasks are important for inferencing from 
partial information. In the following sections we will 
specify a particular connectionist model for use with 
expert systems, express a medical-like problem in this 
framework and describe the generation of a connec- 
tionist expert system knowledge base from training ex- 
amples. We will then detail MACIE, a general purpose 
connectionist inference engine, and look at some appli- 
cations. 

CONNECTIONIST NETWORK KNOWLEDGE BASES 

A Simple Connectionist Model: 
Linear Discriminant Networks 
We will be using connectionist models with the follow- 
ing properties: 

(1) Network properties. Networks are feedforward 
models (no directed cycles allowed). Weights wi,j are 
positive or negative integers. Since there are no di- 
rected cycles, cells may be indexed so that if a directed 
arc points from cell Uj to Ui then i > j (as in Figure 1). 
We henceforth assume a cell numbering consistent 
with this property. 

It is convenient to express the network by a weight 
matrix IV, where Wi,j = 0 if no arc connects cell Uj to ui. 
As usual, wi.0 are the bias values. Our cell numbering 
scheme for feedforward networks implies that Wi,j = 0 
for j 2 i. 

(2) Cell properties. Cell activations are discrete, tak- 
ing on values +l, -1, or 0. These values correspond to 
logical values of True, False, or Unknown, respectively. 
Cell ui computes its new activation u/ as a linear dis- 
criminant function [8]: 

Si = C Wi,jllj 
jr0 

+l or True if Si > 0 
u; = -1 or False if Si < 0 

0 or Unknown if Si = 0. 

Such cells are also called threshold logic units or 
McCulloch-Pitts cells [23], or perceptrons [33]. By con- 
vention, cell u. always has activation +I, and cells 
Ul,..., up are set externally as inputs to the network. 

(3) Dynamic properties. An iteration of the network 
consists of reevaluating each cell in index order and 
changing its activation before the next cell is reevalu- 
ated. One iteration suffices to bring the network to 
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steady state because of the lack of directed cycles and 
because of our indexing scheme. 

We call this network model a linear discriminant net- 
zuork.3 It is one of the simplest possible connectionist 
models, since there is no feedback and all computations 
can be performed using integer arithmetic. 

A Sample Problem: Diagnosis and Treatment of Acute 
Sarcophagal Disease 
To illustrate the workings of a connectionist expert sys- 
tem, we consider the following example that deals with 
acute theoretical diseases of the sarcophagus.4 

Our model consists of symptoms, diseases, and treat- 
ments. There are six symptoms, two diseases whose 
diagnoses are based on (subsets of) the symptoms, and 
three possible treatments. Each training example is a 
patient’s case history that lists 

l symptoms present, absent, and for which there was 
no information; 

l diseases present, absent, and for which there was no 
information; and 

l treatments performed and not performed. 

This information is used to generate a linear discrimi- 
nant network as in Figure 3. This network then serves 
as a knowledge base for a connectionist expert system. 

Figure 3 shows all connections and their associated 
weights wi,j. The numbers within the nodes are bias 
values, wi.0. By giving names to nodes of the network, 
we can specify a semantic interpretation for the activa- 
tion of any cell. Thus, if we set each input cell to either 
True (+l), False (-1), or Unknown (0) and make one 
iteration over the intermediate and output cells, the 
network will compute which diseases are present and 
which drugs to prescribe from corresponding cell acti- 
vations. For example, if the patient has swollen feet 
(ul = +l), but neither red ears (u2 = -1) nor hair loss 
(ug = -1), then we can conclude that supercilliosis is 
present (u7 = +l) because 

0 + (2)(l) + (-2)(-l) + (3)(-l) > 0. 

If other symptoms are False (u4, u5, u6 = -1), then we 
can similarly conclude namastosis is absent (u8 = -1), 
placibin should not be prescribed (ug = -1), and birami- 
bio should be prescribed (u 10 = +l). CdS u.4, us, and UC 

are intermediate cells added to help with the computa- 
tion of ull (posiboost). Their activations are seen to be 
uA = +l, uB = +l, and uc = -1. The addition of inter- 
mediate cells is necessary because without such cells 
no assignment of weights to ull would work for all 
training examples. Finally, we compute that posiboost 
should also be prescribed (uX1 = +I). 

This example illustrates a very weak type of infer- 
ence since it requires information on all input vari- 
ables. Later we will see how to make more useful de-. 
ductions based upon partial information. 

The network with weights in Figure 3 serves as the 
knowledge base for a connectionist expert system that 
uses a special inference engine as in Figure 4. 

“Such networks are also known as Gamha perceptcons [27]. 

‘Although this is a simple example. it nevertheless captures over 85 percent 
of what is currently known in this highly specialized domain. 

Network Generation: Inputs 
To generate the connectionist knowledge base, we must 
specify the following information (see Figure 5): 

(1) The name of each cell corresponding to variables of 
interest (symptoms, diseases, treatments). E:ach vari- 
able will correspond to a cell Ui. For Figure 3 the corre- 
spondence is as follows: 

Symptoms 
ul: Swollen feet 
up: Red ears 
u3: Hair loss 
u4: Dizziness 
us: Sensitive aretha 
&: Placibin allergy 

Diseases 
u7: Supercilliosis 
u8: Namastosis 

Treatments 
u9 : Placibin 
ul,,: Biramibio 
ull: Posiboost 

(2) A question for each input variable, to elicit the value 
of that variable from the user (“Does the patient have 
swollen feet?“). 

(3) Dependency information for intermediate variables 
(diseases) and output variables (treatments). Each of 
these variables has a list of other variables whose val- 
ues suffice for computing it. For example, when decid- 
ing whether to prescribe placibin, it suffices to know 
which diseases the patient has and whether the patient 
is allergic to this drug. Symptoms such as “swollen feet” 
are not included in the placibin dependency list even 
though they indirectly influence whether placibin is 
prescribed. It is much easier to extract such qualitative 
information about “immediate causes” from a domain 
expert than it is to extract a specific function relating 
inputs to outputs. (See [29] and [31] for a discussion of 
this point.) 

The dependency information is optional because 
every output cell may be specified as dependent on 
every input cell, as in Figure 6. This figure shows a 
default dependency that is useful for some applications. 
If more precise dependency information is available, 
however, then dependency lists improve network gen- 
eration algorithms since accidental correlations be- 
tween unrelated variables are prevented from influenc- 
ing the final network weights. 

For the sarcophagal problem, suppose the depend- 
ency information is as follows: 

UT directly depends on ul, u2, u3. 
us directly depends on u3, u4, us. 
uQ directly depends on u7, us, u6. 
ulo directly depends on u,, us. 
u,, directly depends on uQ, ulO. 

The dependency information specifies a dependency 
network consisting of an arc from uj to ui for every node 

156 Communications of the ACM February 1988 Volume 31 Number 2 



Articles 

Swollen feet 
Ul 

Red ears 
UP 

Hair loss Dizziness 
us u4 

Sensitive aretha 
u5 

0 Output cell (treatment) 
A Intermediate cell added by algorithm (not in original dependency network) 

Intermediate cell (disease) (in original dependency network) 
Input cell (symptom) 

Placibin allergy 
us 

Biases are pictured within cells. The triangular cells were added to the original dependency network by the learning algorithm. 

FIGURE 3. Final Linear Discriminant Network for Sarcophagal Disease 
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End 
US3 

- 

Swollen feet 
0 2 -2 3 ... Does the -1 3 3 3 patient ... 

have swollen feet? 

Matrix of 
integers 

(weight matrix) 

Variable names 
and questions 

Knowledge base 

. 
interface - 

* Matrix Controlled 
Inference Engine 

(MACIE) 

FIGURE 4. Connectionist Expert System 

uj on the dependency list for ui. This is the same net- 
work topology as in Figure 3, except triangular-shaped 
cells are not present. In Figure 5 this network is repre- 
sented as an adjacency matrix. 

Another way to think of dependency networks is 
from the point of view of connections not present. If Uj 
is not connected to ui, then this means we can always 
compute ui without directly considering Uj, even 
though uj might affect other variables that we do look 
at for Ui’s computation. Eliminating a connection from 
uj makes it easier to learn ui’s function because it re- 
duces the number of inputs to ui, thereby reducing the 
complexity of the learning problem. Therefore, we 
should expect better generalization to new data from 
our learned model of ui, given that the same set of 
examples is used for training with or without the con- 
nection. 

Some caution may be required to prevent directed 
loops from occurring in the dependency network when, 
for example, two cells could logically depend on each 
other. This situation is handled by eliminating arcs and 
letting the training examples implicitly specify any mu- 
tual dependency or by the use of choice variables (see 
the sidebar on p. 160). 

(4) The final information supplied to the learning 
program is the set of training examples. For the sarco- 
phagal problem, each example is a particular case and 

specifies which symptoms and diseases were present 
and which treatments were appropriate. This is illus- 
trated in the input data where variables take on values 
+l, -1, or 0 for True, False, or Unknown, respectively. 
As was previously mentioned, non-Boolean data can be 
represented by groups of Boolean variables. 

The Final Network 
The dependency network may not be capable of per- 
fectly modeling a given set of training examples be- 
cause not every Boolean function can be represented as 
a single linear discriminant. If a Boolean function can 
be computed by a single cell, it is called a se,oarabIe 
function; otherwise it is a nonseparable function. The 
sarcophagal problem involves a nonseparablls function 
since it can be proved that no set of weights for cell ull 
can produce correct behavior for all training examples. 
It is possible, however, to add additional intermediate 
(triangular) cells to form a final network that is capable 
of modeling any self-consistent set of training exam- 
ples.5 One way to do this is to add cells with random 
weights (e.g., integers between -5 and +5), as described 
in [Ii’]. Such random cells were added to produce the 
final network pictured in Figure 3. 

Because the added cells have fixed input weights that 

‘We do not require the network to compute intermediate or output variables 
with values of Unknown (0). 
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623 
NAMES AND QUESTIONS: 

suollen feet 
Does the patient have swollen feet? 
red ears 
Does the patient have red ears? 
hair loss 
Is the patient suffering from hair loss? 
dizziness 
Is the patient dizzy? 
sensitive aretha 
Is the aretha sensitive? 
placibin allergy 
Is the patient allergic to placibin? 
Supercilliosis 
Namastosis 
Placibin 
Biraraibio 
Posiboost 

DEPENDENCY: Ul 
1 
0 
0 
0 
0 

EXAMPLES : 
1 

-1 
-1 

1 
1 
1 
1 

-1 

U2 U3 U4 U5 U6 U7 U8 u9 UIO Ull 
1 1 0 0 0 0 0 0 0 0 -> u7 
0 1 1 1 0 0 0 0 0 0 -> U8 
0 0 0 0 1 1 1 0 0 0 -> u9 
0 1 0 0 0 1 1 0 0 0 -> UIO 
0 0 0 0 0 0 0 1 1 0 -> Ull 

1 1 -1 0 -1 
-1 -1 1 1 -1 
-1 1 1 -1 1 

1 -1 -1 1 -1 
-1 0 1 1 1 
-1 -1 1 1 -1 

1 1 -1 -1 1 
1 1 -1 1 1 

1 -1 
-1 1 

1 1 
-1 -1 

1 1 
1 1 
1 -1 

-1 1 

FIGURE 5. Input to the Learning Program 

are chosen at random, adding cells is a very easy task 
indeed. In fact we did not really need to add all three 
cells in Figure 3; either one of the first two cells (uA or 
ua) would have permitted us to compute weights for ull 
that worked for all examples. The third randomly gen- 
erated cell, UC, duplicates an input and is therefore of 
no help whatsoever; it could have been eliminated, and 
different but equivalent weights computed for utl. We 
do not bother to test for and eliminate such useless 
cells, since the increase in speed would be negligible. 

In some cases the original dependency network can 
be used unchanged for the final network if it can cap- 
ture the behavior specified by the training examples. 
Also it is sometimes better to dispense with the addi- 
tion of extra cells, even though original cells cannot 
correctly model all of the examples (i.e., the training 
examples are nonseparable). Forgoing extra cells can 
prevent “overfitting the data” with a model that is ac- 

1 
1 

-1 
-1 
-1 

1 
-1 
-1 

-1 1 TE#l 
1 -1 TE#2 

-1 -1 TElt3 
-1 -1 TE#4 

1 1 TE#5 
1 -1 TE#6 

-1 -1 TE#7 
-1 -1 TE118 

curate on the training examples, but does not properly 
generalize to new inputs. 

For simplicity, the sarcophagal examples were cho- 
sen so that additional cells were needed only for cell 
ull. A more typical example would generate a layer of 
new intermediate cells just above the input cells for 
use by the rest of the network. 

FIGURE 6. Default Network with No Dependency Information 
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The Pocket Algorithm: A Procedure that Generates Weights for Discrete Networks; 

Although a comprehensive treatment of learning in connec- 
tionist models lies beyond the scope of this article, we pre- 
sent a quick overview of the learning algorithms used in our 
system. 

It is important that the training examples specify the de- 
sired activations for intermediate and output cells in the net- 
work (easy learning). This allows us to decompose the prob- 
lem and consider each cell independently in terms of training 
example inputs, desired cell activations, and weights to be 
generated. Therefore, we can drop the subscript i and refer 
only to u and w, to state the learning algorithm for a single 
cell. This makes weight computations much simpler. 

To compute the vector of weights w, for intermediate or 
output cell II, we first set Wj = 0 for every connection from a 
cell that is not in u’s dependency list. We ignore these 
weights for the remainder of the computation. For connec- 
tions from the remaining cells (that are in u’s dependency 
list), we use the following procedure to compute the rest of 
w,: For cell u let (E’J be the set of training example activa- 
tions, and (C”) the corresponding correct activations for u. 
For simplicity we assume Boolean activations so that each 
C’ takes on values {+l , -1) for (True, False ) , respectively, 
while each component of E’ can take on values of (+l, -1, 
O} for {True, False, Unknown). Et = +l so that w0 will be the 
computed bias for the cell in question. 

The basic learning algorithm for generating weights is a 
modification of perceptron learning [33] called the pocket 
algorithm [13]. It computes perceptron weight vectors, P, 
which occasionally replace pocket weight vectors, w, , as 
follows: 

(1) 

(2) 

Pa) 

W 

Set P to the 0 vector. 

Let P be the current perceptron weights. Randomly 
pick a training example Ek (with corresponding dassifica- 
tion C’). 

If P correctly classifies E’, that is, 

(P.E’>O and cx= +1) 

or 

{P. EL-z0 and cx = -11, 

then, 

(3aa) if the current run of correct classifications with 
P is longer than the run of correct classifkzations 
for the weight vector w, in your pocket, 

(3aaa) replace the pocket weights w, by P, 
and remember the length of its correct 
run.* 

Otherwise, form a new set of weights P’ as follows: 

P’ = P + CkE*. 

(4) Goto(2). 

Table I illustrates the algorlthm for several iteration steps. 
A drawback to the pocket algorithm is that there is no 

‘It might be said that these weights fit handily in pocket or perceptron. 

known bound on the number of iterations required to achieve 
a fixed probability that the pocketed weights are the best 
possible. Nevertheless, if there are not too many tlraining 
examples (cl 05), it is relatively easy to periodically check the 
pocketed weights against the set of all training examples in 
order to evaluate their performance. 

An important advantage of the pocket algorithm over per- 
ceptron learning is that it works well with nonseparable or 
even contradictory training examples. 

RATCHETS 
Whenever there is a fixed set of training examples, we have 
found it very useful to modify (3aa) above to inclucle a 
ratchet: 

(3aa)’ If the current run of correct classifications with P is 
kmger than the run of correct classifications for the 
weight vector w, in your pocket and P correctly clas- 
sifies more training examples than w, , . . . . 

Thus, we check a potential new w, to see if it is really an 
improvement before making it the pocketed weights, This 
guarantees the new w, correctly classifies a greater number 
of training examples than the previous w, . Note that (3aa)’ is 
not possible when training examples are generated dynarni- 
tally as described in the ‘Extensions” section since there are 
too many potential training examples to examine. 

RULES 
Another important modiication allows rules to be specified in 
addition to the training examples. Here we define a rule as 
an example E’ with corresponding classification C’ that must 
be satisfied by the resulting weights w, . Normal training ex- 
amples, on the other hand, need not be satisfied by w, if 
they are noisy or contradictory, or if no w, exists that can 
simultaneously satisfy all training examples (i.e., nonsepara- 
ble training examples). Thus, we now seek w, that 

(1) satisfies all rules, and 
(2) satisfies as many training examples as possibse without 

violating (1). 

To meet these conditions, we first must modify the initial 
dependency network to form a final network where the rules 
are separable. Note that directly contradictory rules (E’ = E”, 
but C’ # Cl) are not allowed. (Training examples, however, 
may be specified arbitrarily.) 

We now modii (3b) as follows: 

(3b)’ Otherwise, form a new set of weights P’ as, follows: 

P’ = P + CkEk, (3) 

and while P’ violates uny rule E’ (with classification C’) 
repeat eq. (3) using E’ and c’. 

One final modiication to the basic algorithm involves a 
choice group of cells. Here we stipulate that exactly one cell 
from a group of cells should be True for any input presented 
to the group; in other words, we make a single choice from 
the group for any input. (Nilsson [28] refers to such groups 
as linear machines.) Bee [14] for more details. 
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TABLE I. Computation for Cell u,~ Over Several Iterations 

Perceptron weights 
Perceptron 

Pocket weights 
Pocket Example ossireu corr5ct 

PO PI P7 9 nmlensth w. wt w7 w8 nmlength selected mspon5@ lespoll55 ACtlOll 

0 -3 2 4 3 1 1 1 -1 3 TE 6 1 Yes 3aaa 
0 -3 2 4 4 0 -3 2 4 4 TE 3 -1 No 3b 

-1 -4 1 3 0 0 -3 2 4 4 TE 2 1 Yes - 
-1 -4 1 3 1 0 -3 2 4 4 TE4 -1 Yes - 

Weights 
Once the shape of the final network has been deter- 
mined by the dependency network (with the possible 
addition of random cells), we use connectionist learning 
methods to generate the corresponding weights and 
biases. There are a variety of algorithms that can be 
used for this purpose. The Pocket Algorithm (see side- 
bar) presents the basic method we use, but other meth- 
ods are possible such as Back Propagation [34, 351, 
Associative Reward-Penalty cells [Z], and Boltzmann 
machines [M]. 

The network, weights, and names and questions for 
variables constitute the knowledge base for a connec- 

tionist expert system as diagramed in Figure 4. The 
actual knowledge base for the sacrophagal example is 
given in Figure 7. In this file the connectionist network 
of Figure 3 is represented in matrix form, with one row 
being used for each intermediate or output cell in the 
final network. There is one column for each cell, in- 
cluding input cells and the bias terms. 

MACIE: A CONNECTIONIST EXPERT SYSTEM 
INFERENCE ENGINE 
We now present the details of an expert system infer- 
ence engine that uses a connectionist network knowl- 
edge base. The connectionist network is represented 

6 5 3 
swollen feet 
Does the patient have swollen feet? 
red ears 
Does the patient have red ears? 
hair loss 
Is the patient suffering from hair loss? 
dizziness 
Is the patient dizzy? 
sensitive aretha 
Is the aretha sensitive? 
placibin allergy 
Is the patient allergic to placibin? 

I/ Supercilliosis 
0 2-2 3 0 0 0 0 0 0 0 0 0 0 0 

I/ Namastosis 
-1 0 0 3 3 3 0 0 0 0 0 0 0 0 0 

O/ Placibin 
-2 0 0 0 0 o-4 2 2 0 0 0 0 0 0 

O/ Biramibio 
-1 0 0 -4 0 0 0 1 3 0 0 0 0 0 0 

I/ Intermediate Var. 1 for Posiboost 
2 0 0 0 0 0 0 0 o-4 5 0 0 0 0 

I/ Intermediate Var. 2 for Posiboost 
3 0 0 0 0 0 0 0 o-2 2 0 0 0 0 

I/ Intermediate Var. 3 for Posiboost 
0 0 0 0 0 0 0 0 0 -1-3 0 0 0 0 

O/ Posiboost 
3 0 0 0 0 0 0 0 0 -3 1 -3 -3 -1 0 

BIAS swol red hair dizz sens plac Supe Nama Plac Bira Intl Int2 Int3 Posi 

FIGURE 7. Knowledge Base for the Sarcophagal Example (ediied) 
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internally by a weight matrix suggesting the acronym 
MACIE for Matrix Controlled Inference Engine. 

MACIE must use the connectionist network for the 
several tasks: 

l inferencing based on partial information, 
l finding unknown input variables that are key for 

reaching additional inferences, and 
l producing justifications for inferences. 

Expert System Algorithms: Initial Information 
The program starts by listing for the user all variables 
and allowing any input variable to be initialized to True 
or False. Initialization is important since it focuses the 
subsequent problem solving. By contrast, systems based 
on decision trees cannot take full advantage of initial 
information because such information does not change 
the order in which nodes of the tree are examined [12]. 

When prompting for initial information and when- 
ever else names must be given to the user, the system 
uses the appropriate character strings placed in the 
knowledge base (see Figure 4). 

Inferencing/Forward Chaining 
It is usually possible to deduce the activation for a cell 
ui without knowing the values of all of its inputs; in 
other words, inferencing is possible from partial infor- 
mation. 

For example, in Figure 3, if we know that the patient 
has swollen feet (ul = +I) and suffers from hair loss 
(uJ = +l) then we can conclude the patient has super- 
cilliosis (u7 = +I) regardless of whether he or she has 
red ears. This is because the unknown variable cannot 
force the discriminant sum to change to negative. 

More generally, for cell ui we compute KNOWNi, the 
partial weighted sum for cell Ui, and MAX-UNKNOWNi, 
the most that this weighted sum can change when we 
find values for all currently unknown variables: 

KNOWNi= C Wijuj 
j:ui known 

MAX-UNKNOWNi = 
&.u x &,. ’ wi,k ‘* 

Now, whenever 

1 KNOWNi I> MAX-UNKNOWNi (4) 

any additional information will not change the sign of 
the discriminant for ui so that we can conclude 

+1 
Ui = 

if KNOWNi > 0 
-1 if KNOWNi < 0. (5) 

It should be noted that this simple procedure ad- 
dresses the question of when an inference is valid 
(eq. (4)) as well as what that inference should be 
(eq. (5)). 

A newly changed activation of Ui can propagate up 
the network triggering further inferences. Thus, in Fig- 
ure 3, if we infer a value for cell u7 then this might 
provide enough additional information to conclude val- 
ues for ug or ulo and so on. Each allowable inference 
can be made in one bottom-up pass through the cells 
due to the indexing scheme previously mentioned. 

This inferencing technique works well in practice to 
allow the expert system to reach conclusions when 
only a fraction of the input values are known. 

Confidence Estimation 
At any time during a run, we can compute Conf(ui), an 
estimate of the likelihood that an unknown variable ui 
will eventually be deduced to be True or False. Conf(ui) 
is useful for comparing two unknown variables (but 
cannot be interpreted as the probability that ui will 
eventually be found true). 

Several heuristics are available for computing 
Conf(ui). One of the simplest is the following: 

l For a known cell, 

Conf(ui) = Ui. 

l For an unknown input cell, 

COnf(Ui) = 0. 

l For other unknown cells, we compute Conf(ui) in in- 
dex order by 

Conf(u,) = Z2j-l Wi,j COnf(uj) 
I 

C I Wi.j I ’ j:ui unknown 

We can compare likelihoods for all cells with one 
bottom-up pass through the network. It is easy to check 
that -1 5 Conf(ui) I +l. 

Question Generation/Backward Chaining 
If the system has not yet reached conclusions for 
enough of the output cells to complete the session, it 
must find an input cell with unknown activation and 
ask the user for its value. Again there are several possi- 
ble heuristics for this task. Perhaps the simplest is the 
following: 

(1) Select the unknown output variable UC such that 
] Conf(ui) ] is maximum. (This strategy starts with an 
output cell close to having its value set.) We :say ui is 
the cell being pursued. 

(2) If pursuing cell ui, find the unknown cell uj with 
the greatest absolute influence on ui. In other words, 
find a j yielding 

max 1 wi,j I: uj unknown. 
i 

If uj is an input variable, ask the user for its value 
(employing the character string question for flj in the 
knowledge base). Otherwise pursue Uj and re:peat (2). 

Since we have been careful to prevent directed loops 
in the connectionist network, no variable can be pur- 
sued more than once without a question being asked. 
Therefore, this method of backward chaining quickly 
chooses an unknown variable to ask the user with no 
need for backtracking. 

Other heuristics are also possible. For example, in 
step (1) we might look for max Conf(ui) rather than max 
] Conf(ui) ] to emphasize output variables with values of 
Tnre. Or for step (2) we might choose uj to maximize 
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I W&j I ( 1 
1 COnf(uj) I + - 

ll?Vd(Uj) > 

to take into account confidence estimates and how far 
removed nodes are from the input nodes. Here we de- 
fine 

level(r+) = 1 + distance to closest input cell. 

For confidence estimates and backward chaining, the 
choice of heuristics does not appear to affect the practi- 
cal performance of the inference engine very much. 

When the user is queried to obtain the value of an 
unknown variable, he or she can respond with True, 
False, or Unobtainable. Unobtainable means that the 
value of that variable will not be available for the re- 
mainder of the session. The inferencing mechanism 
treats such variables as known but with activations of 
0. It should be noted the distinction between unknown 
and unobtainable variables: An unobtainable variable 
has a known final value of 0; an unknown variable has 
a temporary value of 0 that might be changed later in 
the session. In particular, a response of unobtainable 
might allow a cell’s activation to be inferred because it 
reduces the value of MAX-UNKNOWN in eq. (4). 

Explaining Conclusions by i f -then Rules 
The user can ask the system why it concluded a partic- 
ular cell was True or False (see the sidebar on p. 164-65). 
The system will answer with an if -then rule applica- 
ble to the case at hand. It is amusing to note that these 
if -then rules are not represented explicitly in the 
knowledge base; they are generated by the inference 
engine as needed for explanations. Figure 8 gives an 
example to illustrate rule generation. 

+l = True 

1 -1 0 0 1 -1 

True False 
UI U2 

?? 
u3 

?? 
u4 

True 
US 

False 
% 

Rule: 
If 

& = False and Us = True, 

Then, conclude 

U, is True. 

FIGURE 8. Explanations by i f-then Rules 

The basic idea is that the system has already inferred 
that cell u, has value True, so we can take a minimal 
subset of the currently known information that is suffi- 
cient to make this inference. More explicitly, we per- 
form the following calculation: 

(1) List all inputs that are known and contributed 
to the ultimate positivity of the discriminant for u,. In 
Figure 8 this gives ul, u2, and us. We omit u6 since 
weug < 0 and since u, was concluded to be True. 

(2) Arrange the list by decreasing absolute value of 
the weights. This gives uz, u5, ul. 

(3) Generate clauses for an if -then rule from this 
ordered list until 

c c I WI 
ui used for clause remaining inputs to ui 

is satisfied. This produces the rule 

if uz is False and 
us is True 

then Conclude that u, is True. 

This rule always holds by eq. (4) and justifies the infer- 
ence made for the current problem. It should be noted 
that any rule for cell ui will only involve cells con- 
nected to ui in the final network. 

In principle it would be possible to examine a con- 
nectionist network and produce every such if -then 
rule. These rules could then form the knowledge base 
of a traditional expert system. 

However, this procedure would work only if the con- 
nectionist network was very small. Even for a network 
consisting of a single cell, the number of implicitly en- 
coded if -then rules can grow exponentially with the 
number of cell inputs7 

A second type of explanation is available to the user. 
The user can request an explanation of why the cur- 
rent question is being asked. In response, the system 
can list the backward-chaining logic used to produce 
that particular question. See p. 164-65 for an example 
of this type of explanation. 

MAINLINE FOR MACIE 
We can now construct an inference engine based on the 
above capabilities. Here is the mainline procedure: 

(1) Obtain initial information (under “Expert-System 
Algorithms: Initial Information,” p. 162). 

(2) Forward chain to make inferences (“Inferencing/ 
Forward Chaining,” p. 162). 

(3) Quit if enough variables have been deduced. 
(4) Backward chain to find an unknown variable 

whose value, if known, would likely be useful for 
inferencing (“Question Generation/Backward 

‘But not conversely. Any disjunctive normal form expression can be com- 
puted by a network model of approximately the same size [X?]. In this arose 
connecttonist models are more efficient for knowledge representation than 
disjunctive nomal form expressions. 
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Sample Run of MACIE (edited) 

MACIE Version 2.4 

Numbers and names of variables: 
1: swollen feet 
2: red ears 
3: hair loss 
4: dizziness 
5: sensitive aretha 
6: placibin allergy 
7: Supercilliosis 
8 : Namastoeis 
9: Placibin 

10: Biramibio 
11: Intermediate Var. I for Poeiboost 
12: Intermediate Var. 2 for Posibooet 
13: Intermediate Var. 3 for Poeiboost 
14: Posiboost 

Enter initial values for Input variables. 

Format: Variable number, value, . . . 
2t 4f 

PURSUING Posibooet 
PURSUING Intermediate Var. 2 for Posiboost 
PURSUING Placibin 

Is the patient allergic to placibin? 
--> y)es, n)o, u)nknoan, ?)explain, Qnforration on vars. 

n 

PURSUING Posiboost 
PURSUING Intermediate Var. 2 for Posiboost 
PURSUING Biramibio 

Is the patient suffering from hair loss? 
--> y)es, n)o, u)nhnoun, ?)explain, i)nformation on wire. 

? 
Enter '0' for explanation of the last question 

*#' for explanation of variable number # (E.g. '3') 

0 

hair loss is a factor 
vhich gives negative support for Biramibio 
vhich gives positive support for Intermediate Var. 2 for Posibooet 
vhich gives negative support for Posibooet 
which is the Goal Variable oith highest Likelihood. 

PUBSUING Posiboost 
PUBSUING Intermediate Var. 2 for Posiboost 
PURSUING Biramibio 

Is the patient suffering from hair loss? 
--> y)ee. n)o, u)nhnown, ?)explain, iInformation on vers. 

Y 

CONCLUDE: (IO) Biramibio FALSE. 

CONCLUDE: (13) Intermediate Var. 3 for Posibooet TRUE. 

PURSUING Placibin 
PURSUING Supercillioeie 
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Does the patient have swollen feet? 
--> y)es, n>o, u)nknovn, ?)explain. iInformation on vars. 

? 

Enter '0' for explanation of the last question 
'#' for explanation of variable number t (E.g. '3') 

10 

Biramibio is FALSE due to the following rule: 

IF hair loss is TRUE 

THEN CONCLUDE Biramibio is FALSE 

Does the patient have swollen feet? 
--> y)es, n)o, ujnknovn, ?)explain, i)nformation on vars. 

Y 

CONCLUDE: (7) Supercilliosis TRUE. 

CONCLUDE: (9) Placibin TRUE. 

CONCLUDE: (11) Intermediate Var. 1 for Posiboost FALSE. 

CONCLUDE: (12) Intermediate Var. 2 for Posiboost FALSE. 

CONCLUDE: (14) Posiboost TRUE. 

Would you like to try a new case? 
--> y)es, n>o, ?)explain, iInformation on vars. 

't' for explanation of variable number # (E.g. '3') 

9 

Placibin is TRUE due to the following rule: 

IF placibin allergy is FALSE 
AND Supercilliosis is TRUE 

THEN CONCLUDE Placibin is TRUE 

Uould you like to try a new case? 
--> y)es. n>o, ?)explain, i)nformation on vars. 

? 

'#' for explanation of variable number # (E.g. '3') 

14 

Posiboost is TRUE due to the following rule: 

IF Intermediate Var. 1 for Posiboost is FALSE 
AND Intermediate Var. 2 for Posiboost is FALSE 

THEN CONCLUDE Posiboost is TRUE 

Would you like to try a new case? 
--> y)es. n>o. ?)explain, ijnformation on vars. 

n 
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Chaining,” p. 162). Ask the user for the value of 
this variable, and respond to any user request for 
explanations (“Explaining Conclusions by if - 
then Rules,” p. 163). 

(5) Go to (2). 

Step (3) is problem specific. In some cases we seek 
the values of all output variables, whereas for other 
problems we might want to quit as soon as the first 
output variable was inferred to be True. 

EXTENSIONS 

Combining Learning with Expert System Operation 
(on-line learning) 
So far we have separated the production of the connec- 
tionist network from the operation of the expert sys- 
tem, but this need not be the case. We can integrate the 
learning algorithm with the expert system according to 
the following time sequencing: 

(1) 
(2) 

(31 

(4) 

Receive inputs at time t. 
Compute outputs from the expert system using the 
best (pocket) weights. 
Obtain the correct output for previous inputs pre- 
sented at time t - d, where d is a nonnegative 
delay between the time inputs are received and 
the time the correct response is known. 
Perform one iteration of the learning algorithm 
with a training example consisting of the original 
input at time t - d and its correct output. This may 
change perceptron weights or, less frequently, the 
pocket weights. 

The input from time t - d must be retained by the 
system for step (4) to take place, but the delay d can 
vary for inputs at different times. In other words the 
correct outputs need not arrive in temporal order. 

The pocket algorithm (see p. 160) is appropriate for 
such dynamic systems because of two useful properties: 
First, the algorithm does not require that training 

examples be stored if there is a way of obtaining them 
as needed. Thus, an on-line learning system would 
need to retain only the last d inputs. Second, the pocket 
algorithm tracks changes to desired behavior in accor- 
dance with the training examples. Thus, if the training 
examples indicated a change in correct performance, 
the dynamically changing weights would eventually 
conform. 

Noisy Data 
The ability to handle dynamically generated training 
examples is important for constructing expert systems 
for problems involving noisy data. It is sometimes easy 
to list noise-free training examples and make a model 
of the noise involved, thereby allowing generation of 
noisy training examples. 

To illustrate, suppose we have a problem i.nvolving 
20 input variables where only 100 basic input patterns 
exist in the absence of noise. Due to noise, however, 
suppose that any input might be corrupted irtdepend- 
ently with some probability P. One way to handle this 
problem would be to create a set of noisy traming ex- 
amples containing copies of examples according to the 
effects of noise. Unfortunately this would require 
around 2” training examples since any set of feature 
patterns would be possible due to the noise. 

Figure 9 shows an easier way to handle this situation. 
When selecting training examples (step (2) in the 
pocket algorithms, p. 160), we use dynamic learning 
properties as follows: 

(1) Select one of the 100 basic input patterns. 
(2) Add noise to the 20 features using the noise model 

by reversing the sign for each feature with proba- 
bility P. Do not alter the desired output. 

(3) Use this training example for one iteration of the 
pocket algorithm. 

See [14], and [15] for an example of this process ap- 
plied to a fault detection system for a noisy environ- 
ment. 

Inputs 

Noise-free 
training 

examples 

Noise 
model 

Noisy 
inputs 

+ 

Learning 
program 

knowledge 

b base 

(weight 
matrix) 

Desired output 

FIGURE 9. Dynamic Generation of Noisy Training Examples 
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APPLICATIONS 
We have programmed the network generation algo- 
rithms on pages 160 and 164-65 and have produced 
connectionist expert systems from actual data for a 
variety of applications. Generally the results have been 
fairly good, but these problems were chosen as demon- 
strations because data were readily available and not 
because a particular expert system was actually 
planned for commercial or other reasons. 

One early system was for diagnosis of causes of 
infantile diarrhea where the choices were salmonella, 
shigella, rotovirus, or nonspecific. Diagnosis prior to re- 
ceiving laboratory results is difficult for experts, and 
their opinions are correct roughly 70 percent of the 
time. A doctor at Children’s Hospital in Boston supplied 
about 70 cases from a study she had performed, and a 
connectionist expert system was constructed with little 
difficulty. Before demonstrating the system to the doc- 
tor, the connectionist network was examined, and sim- 
ple rules involving two or fewer factors were written 
down.’ Independently, the doctor wrote down rules she 
relied on, and the lists were compared. Almost all the 
induced rules were judged reasonable, and conversely, 
the human rules were not at great variance from the 
connectionist network generated from data. The system 
performance was interesting enough that new cases 
were brought in and tested. The results were about 70 

percent correct diagnoses on these previously unseen 
cases, roughly the same performance as by doctors. 

Another demonstration of these techniques involved 
the management decision of whether to continue with 
development of a new product or cancel development 
[16]. Here a wrong choice in either direction might 
mean a significant loss for the business concerned. We 
relied on data consisting of about 40 input features and 
over 100 actual cases that a colleague in the Northeast- 
ern College of Business Administration had collected 
previously. The resulting system behaved reasonably 
well, but would have required extensive interface work 
to bring it to market as a commercial product. Other 
demonstration projects now in progress involve medical 
and economic systems, and a chemical process fault 
diagnosis model that includes temporal information. 

DISCUSSION 

Connectionist Expert Systems (not) as Psychological 
Models 
Connectionist researchers interested in psychological 
modeling would probably argue that MACIE is an im- 
plausible model for human reasoning. We would agree. 
We would also argue that expert systems in general do 
not reason like humans do (despite some claims to the 
contrary). 

It is important to distinguish between the process hu- 
mans use for arriving at a conclusion and the process 
they use for communicating (sequentially, by language) 

‘This if -then rule generation can be automated to produce lists of short 
rules. 

a justification for that conclusion [12]. We believe hu- 
mans seldom follow logical rules in daily life, yet they 
may construct such rules to justify or explain those 
conclusions to other humans. Therefore, requiring a 
system to be both a good model of human reasoning 
and a close kin of a rule-driven expert system is asking 
for the impossible. Our desire for a practical system led 
us to favor performance over modeling and has resulted 
in a system much closer to conventional expert systems 
than to psychological models. 

The Problem of Generalization 
A key question for any inductive learning method is 
how well that method handles new input data after the 
system has been trained. This is a difficult question to 
answer in general because of the wide variety of prob- 
lem types. We would face similar difficulties in trying 
to categorize how well conventional expert systems 
work in practice. About the best we can do is to collect 
individual cases of connectionist expert system imple- 
mentations and compare them, whenever possible, 
with corresponding implementations by conventional 
methods. We plan to do this over the next several 
years. 

Currently we are examining a relatively large family 
of noisy fault detection (or pattern recognition) prob- 
lems where it will be possible to get overall quantita- 
tive results. Our tests so far have been quite promising 
with this class of problems [14, 151. 

There is a related notion of generalization that in- 
volves recognizing spatial or temporal deformations of 
the input data. For example, if each input cell corre- 
sponds to a pixel on a rectangular grid we might want 
the system to recognize certain shapes regardless of 
their position on the grid [g]. This is an important area 
for connectionist research. 

Discrete versus Continuous Models 
So far we have worked with discrete rather than con- 
tinuous connectionist models. When generating expert 
systems the functionality of the final network is the 
primary consideration, not the topological structure of 
the network used to achieve that functionality. This 
allows us to pick whatever shape network we want and 
employ faster learning algorithms that use only integer 
calculations. 

On the other hand, it is possible that learning meth- 
ods such as back propagation [34] that use continuous 
variables might generalize better to unseen examples, 
thereby creating more robust systems. This is an open 
question for future investigation. 

Bayesian Models 
It is interesting to compare connectionist expert sys- 
tems with Bayesian methods. The former are geared 
more toward making decisions; the latter toward com- 
puting probabilities. Of course, the probabilities com- 
puted by a Bayesian model can aid decisions by a hu- 
man (or computer) decision maker. Similarly, the con- 
nectionist model can compute approximate ranges of 
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probabilities for its outputs (as in eq. (2) under “Classifi- 
c:ation Expert Systems”). 

The Bayesian methods can give optimal accuracy 
provided that good underlying models are selected. In 
this sense connectionist models might be viewed as 
easy-to-compute approximations of probabilistic 
models. We are currently analyzing the fault detection 
problems mentioned earlier to determine how closely 
these connectionist models approach the Bayesian opti- 
mal decision rules. 

Bayesian models seem not well suited for deciding 
z&en to commit to a value, as discussed under “Con- 
nectionist Expert Systems.” We must either calculate 
over a large number of cases (corresponding to all possi- 
ble values of unknown variables) or make some simpli- 
fying assumption on the model. Simplifying the model, 
however, raises the question of whether the result con- 
tinues to be more faithful probabilistically than a corre- 
sponding connectionist network. 

One often cited drawback of Bayesian models is a 
requirement for large amounts of data and computa- 
tions. Recently Pearl [SO], Kim [21], and others have 
shown that under certain conditions we can use net- 
work models to avoid such problems. Their belief net- 
works (also called causal or Bayesian networks) have 
underlying structures that are identical to what we 
have referred to as dependency networks in the “Net- 
work Generation: Inputs” section (except that arrows 
point in the opposite directions for the two models). 

In some ways belief networks are more flexible. They 
automatically allow probability inferences in all direc- 
tions, such as from diseases to likely symptoms. For 
connectionist models this type of inference would re- 
quire reversing the dependency network connections 
and regenerating the final network (using the same 
training examples). In other ways belief networks are 
less flexible because efficient propagation algorithms 
are limited to singly connected models (i.e., networks 
where two cells are joined by at most one undirected 
path in the dependency network). Both the dependency 
network and the final network for the sarcophagal 
problem would violate this restriction. 

A Tool, Not a Replacement, for Knowledge Engineers 
When we originally began this work, we thought auto- 
mated methods might eliminate the need for knowl- 
edge engineers in many cases. We now believe, to the 
contrary, that these techniques best serve as additional 
tools that a knowledge engineer can employ for con- 
structing all or part of an expert system. Furthermore, 
an understanding of the theory involved appears neces- 
sary for avoiding “garbage in, garbage out,” the bane of 
automated tools. 

CONCLUSION 
We have examined how to construct a connectionist 
network from training examples and how to use it as 
the knowledge base for an expert system. The principal 
reason for doing this was to harness connectionist 
learning techniques for generating expert systems. 

We believe connectionist expert systems present a 
promising approach to the knowledge-acquisition prob- 
lem for expert systems. These methods are most appro- 
priate for classification problems in environ:ments 
where data are abundant and noisy, and where, con- 
versely, humans tend to generate brittle and perhaps 
contradictory if -then rules. Moreover, the resulting 
systems run very fast, even on standard computers. 
This makes connectionist expert systems especially 
well suited for real-time applications such as process 
control. 

The next several years should give us a better under- 
standing of how useful this approach can be for produc- 
ing commercial expert systems. 
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