
ARTICLES

CONNECTIONIST EXPERT SYSTEMS

Connectionist networks can be used as expert system knowledge bases.
Furthermore, such networks can be constructed from training examples by
machine learning techniques. This gives a way to automate the generation of
expert systems for classification problems.

STEPHEN I. GALLANT

Connectionist [or neural network) models are drawing
increasing interest as useful tools for mainstream artifi-
cial intelligence (AI) tasks. Here we give an introduc-
tion to these models and examine expert systems that
have connectionist networks for their knowledge bases.
We call such systems connectionist expert systems.

There are powerful machine learning techniques for
generating connectionist networks from training exam-
ples. These methods allow us to automate the construc-
tion of network knowledge bases for certain types of
applications, thereby reducing the effort required for
expert system development.

We have implemented a two-program package for
constructing connectionist expert systems from training
examples. The first program is a network knowledge-
base generator that uses several connectionist learning
techniques, and the second (MACIE) is a stand-alone
expert-system inference engine that interprets such
knowledge bases. The system has been tested on a large
number of artificial problems and on several medical
and economic problems where data were readily
available.

Part of the work presented here is also described in
[lo], [ll], and [14].

This work is partially supported by the National Science Foundation under
Grant IRI-6611596.

0 1986 ACM OOOl-0782/&3/0200-0152 $1.50

CONNECTIONIST MODELS
The popularity of connectionist models in AI has taken
wide swings, ranging from extreme enthusiasm in the
1960s to utter anathema in the 1970s. Currently there is
an explosion of interest in these approaches: we esti-
mate that research in this area has increased. by two
orders of magnitude over the last five years.

Theoretical developments triggered these shifts in
interest. Early success with learning by neuron-like
models called perceptrons [XI] excited many research-
ers. Then in 1969 Minsky and Papert [27] pointed out
key limitations of perceptrons that led to mass aban-
donment of this line of research. Recent advances have
managed to sidestep or overcome many of tb.e deficien-
cies with respect to learning, thereby bringing about
the current flourishing of connectionist activity. Psy-
chologists are now interested in connectionist models
because of their structural and behavioral resemblance
to systems of neurons [22], while AI researchers seek
the ability to develop algorithms for machine learning,
one of the key problems in the field of AI.

Connectionist models can be described according to
their network, cell, and dynamic properties as follows:

(1) Network properties. A connectionist model con-
sists of a network of (more or less) autonomous process-
ing units called cells that are joined by directed arcs as
in Figure 1. Each arc (“connection”) has a numerical

152 Communications of the ACM February 1988 Volume 32 Number 2

http://crossmark.crossref.org/dialog/?doi=10.1145%2F42372.42377&domain=pdf&date_stamp=1988-02-01

Articles

weight Wi,j that roughly corresponds to the influence of
cell Uj on cell ui. Positive weights indicate reinforce-
ment: negative weights represent inhibition. The
weights determine the behavior of the network, playing
somewhat the same role as a conventional program. It
has been known for a long time that any computer
program could be simulated by an appropriate net-
work [23].

In some models a subset of cells u, , . . . , up are con-
sidered as network inputs that are set externally and that
do not recompute their outputs. These cells have no
entering arcs and are represented by squares in Fig-
ure 1. Other output cells have outputs that are taken to
be the outputs of the network as a whole. In Figure 1,
ull and ulz are the output cells and are pictured with
heavier exit connections. Cells that are neither input
cells nor output cells are called intermediate cells or
“hidden units”. Intermediate cells are necessary for a
network to compute difficult functions known as non-
separable functions; more on these functions later. We
classify networks as either feedfonvard networks if they
do not contain directed cycles or feedback networks if
they do contain such cycles. For example, the network
in Figure 1 is a feedforward network.

Lr f&l 1112 output cells

I - us ho Intermediate cells

/t vt A\
Input cells

FIGURE 1. Connectionist Network

(2) Cell properties. Each cell, ui, computes a single
numerical cell output or activation. For example, the
output of ul, is both an output of the network as a
whole and an input for cell ulz to be used in the com-
putation of its activation. Typically, every cell uses the
same algorithm for computing its activation. The acti-
vation for a cell must be computed from the activations
of cells directly connected to it and the corresponding
weights for these connections. Thus, in Figure 1, when
uzl is reevaluated its activation is determined by the
activations of u3, u8, ug, and u10 and the weights w~~,~,
w~,,~, w,,,~, and wll,lO. We refer to the weights wi,* as
the weights of cell ui.

Cell inputs and activations may be discrete, taking on
values (0, 1) or I-1, 0, 1); alternatively, they may be
continuous, assuming values in the interval [0, l] or

[-1, +l]. Where there is no confusion, we use Ui to
refer to both the cell and the numerical activation of
that cell. Every cell ui (except for input cells) computes
its new activation ul as a function of the weighted sum
of the inputs to cell ui from directly connected cells.

Si = i Wi,jUj
j=O

(1)
Ul = f(s)

If ui is not connected to Ui, then Wi,i = 0. By convention
there is a cell u. whose output is always +1 that is
connected to every other cell ui (except for input cells).
The corresponding weights (wi.0) are called biases. The
biases are merely a constant term added to the sum in
eq. (1).

(3) Dynamic properties. A connectionist model must
specify when a cell computes a new activation value
and when the change to that cell’s output actually
takes place. In some models, cells are visited in a fixed
order, each cell reevaluating and changing its activa-
tion before the next one is visited. In other models, all
cells compute their new activations simultaneously and
then make changes to the cell outputs simultaneously.
Still other models pick a cell at random, compute its
new activation, and then change the output immedi-
ately before any other cell computes its new activation.

Machine learning is an additional part of many con-
nectionist models. It deals with finding weights (and
sometimes network topology) that will produce desired
behavior for the model in question. Usually the learn-
ing algorithms work from training examples of desired
behavior to generate appropriate weights. Each training
example consists of correct values for a set of output
cells in the network when input cells are given certain
settings. (See Figure 1.)

In some paradigms (“easy learning”), the training ex-
amples specify values for intermediate cells;! otherwise
the learning algorithm must also find appropriate inter-
mediate cell values for the training examples (“hard
learning”). Algorithms for easy learning are usually
faster than those for hard learning and are more likely
to produce one of the optimal sets of weights.

Machine learning is one of the most interesting and
important research areas in the study of connectionist
models. We will give only the briefest introduction to
this work, focusing instead on the structure and work-
ings of connectionist expert systems.

Clearly, there are a great variety of possible connec-
tionist models, but a review of the major ones would be
beyond the scope of this article. Some of the interesting
properties of these systems include the following:

(1) Lenrning. There are powerful learning algo-
rithms for determining connection weights, wi,j, from
training examples [17, 341.

’ For “easy learning” the intermediate cells are treated as output cells during
training.

February 1988 Volume 31 Number 2 Communications of the ACM 153

Articles

(2) Knowledge representation. Connectionist models
facilitate robust representations for certain types of
problems [12], particularly problems involving recogni-
tion processes.

(3) System integration. Networks provide uniform
representations of inputs from diverse sources. For ex-
ample, a cell’s input may come from p other cells con-
cerned with vision, touch, and hearing. Connectionist
models can automatically adjust to the cases where
information is available from one of the 2P possible
subsets of the inputs. This is often important for real-
world problems.

(4) Parallelism. Many models are well suited for
parallel hardware implementation. We will not concern
ourselves with hardware here since conventional com-
puters are quite adequate for the algorithms being
discussed.’

(5) Error resistance. Connectionist networks tend to
be tolerant of errors in cell weights or activations. Net-
work behavior gradually decays (“gracefully degrades”)
as the number of errors increases [20]. By contrast, if a
single bit of a standard computer program is altered,
that program might well become totally inoperative.

To learn more about connectionist research, readers
should consult [13], [18], [22], [34], the January 1985
(Vol. 9, no. 1) issue of Cognitive Science, the proceedings
of the annual Cognitive Science Society conferences,
and the proceedings of the International Conference on
Neural Networks.

EXPERT SYSTEMS
Although there is not general agreement as to what
defines an expert system, we will be interested in the
following features of a program designed to solve (or
help solve) problems in a particular narrow domain:

(I) Inferencing. The program should be able to
draw conclusions without seeing all possible informa-
tion. For example, a medical system cannot require all
potentially available tests prior to reaching a conclu-
sion

(2) Interactive acquisition of data. The program
should direct the acquisition of new information in an
efficient manner. For a medical system, this means
seeking out highly relevant information through ques-
tions and ignoring possible tests that would not be rele-
vant to the case at hand.

(3) Modular structure. An expert system usually
contains three major parts (Figure 2):

(a) The knowledge base is a problem-specific
module containing information that controls
inferencing. Traditional expert systems gen-
erally employ if -then rules to represent
this information, while connectionist expert
systems use a network model for this pur-
pose.

(b) The inference engine is the driver program
for the expert system. Ideally it is problem

lConnectionist models should not be confused with the Connection Ma-
chine’ trademark of Thinking Machines Corporation, one of several highly
parallel hardware configurations that are suitable for connectionist models.

154 Communications of the ACM

independent so that it does not vary from
one expert system to another.

(c) The user interface links the inference engine
to the external environment using standard
programming techniques.

(4) Justification of conclusions. The expert system
should be able to tell how a conclusion was reached.
This provides a check on the internal logic of the sys-
tem and might give a novice user insights into the prob-
lem at hand.

These four features will serve as a definit:ion of expert
system for the purposes of this article. Readers inter-
ested in a more thorough overview should c:onsult [7]
or one of the many texts on the subject.

Classification Expert Systems
We restrict our consideration of expert systems to clas-
sification expert systems where the outputs from the
system can be represented by variables, each of which
assumes one of several possible values. The simplest
case of a classification system is where there is only
one output variable and it assumes one of two possible
values; in other words a Boolean dichotomy.

t
User * 0 interface 1

FIGURE 2. Expert System Structure

Limiting ourselves to classification systems is not as
severe a restriction at it may appear at first, since many
applications can be recast as classification p:roblems.
For example, a particular output variable x that takes
on continuous values in the range [0, l] (suc:h as a
probability) could be approximated by several Boolean
choice variables, xi, x$, x4, where each xl corresponds
to ranges of values:

if x > %, then xi = 1; else xi = -1;

if x 2 Vz, then xi = 1; else x; = -1; (2)

if x2%, then xj = 1; else x4 = -1;

so that x = .6 would be represented by

x; = x; = +1, XB = -1.

Classification systems can approximate continuous out-
put variables to arbitrary precision using this tech-
nique.

February 1988 Volume 31 Number 2

Articles

Programs for diagnosis, fault detection, and pattern
recognition are examples of applications that can be
represented as classification problems. Other tasks that
are irregularly structured or procedural in nature
would not be well suited for representation as classifi-
cation problems, and therefore could not be handled
conveniently by the methods presented here. An
example of such a nonclassificatory task would be con-
figuring computers as is done by the expert system
Rl/XCON [24].

The Problem of Knowledge Base Construction
The most difficult, time-consuming, and expensive task
in building an expert system is constructing and debug-
ging its knowledge base. In light of the proliferation of
commercially available expert system environments (or
shells), one could even argue that knowledge base con-
struction is the only real task in building an expert
system.

Several approaches have been explored for easing the
knowledge-acquisition bottleneck for expert systems.
Davis [6] developed an interactive system to aid in ex-
tracting knowledge from experts that does some clever
consistency checks against the already existing knowl-
edge base.

Work in symbolic machine learning also bears upon
this problem [25, 261. The former reference contains
Quinlan’s ID3 algorithm [32], a decision-tree-based
method that is the basis for several commercially avail-
able packages. See [3] for a comparison of these meth-
ods to each other and [12] and [16] for comparisons
with the connectionist expert system approach. An-
other approach focuses on probabilistic aspects, includ-
ing belief networks. See [4], [5], [21], [39], and [30] for
some of this work.

CONNECTIONIST EXPERT SYSTEMS
Can the learning power of connectionist models be har-
nessed for expert system construction? Alternatively,
can connectionist models be used for inferencing in an
interactive fashion, and can they be made to give rea-
sonable justifications for their conclusions? Our aim is
to answer both questions affirmatively by showing how
to construct such connectionist expert systems.

We fear that our functional definition of the term
expert system might offend those who consider the task
of extracting rules from a human expert to be a prereq-
uisite for a program to be called an expert system.
These readers might prefer the term interactive classifi-
cation system with justification capability to our use of
expert system. Nevertheless, our goals have been to ease
or eliminate the knowledge-acquisition bottleneck for
expert system creation in data rich situations and to
make a connectionist model behave as much as possi-,
ble like an expert system.

Early research on connectionist inferencing was done
by James A. Anderson [19] using an autoassociative
model, where input cells and output cells are in corre-
spondence. The system is trained so that when one of a
fixed set of patterns is presented to the input cells then
that same pattern is reproduced by the output cell acti-

vations. Now, when a partial (or perturbed) pattern is
presented to the input cells, the system will often re-
construct the entire pattern of the closest training ex-
ample in the activations of its output cells. This may
take several iterations during which the output activa-
tions from the previous iteration are copied to the input
cells for the next iteration.

Anderson’s autoassociative model was not intended
to direct the acquisition of data (backward chain), to
provide justifications for inferences, or to determine
when enough information was known to commit to a
final conclusion. The question “What is the most likely
answer?” is a separate question from “Is there sufficient
evidence to adopt that conclusion or is more evidence
needed?” Both tasks are important for inferencing from
partial information. In the following sections we will
specify a particular connectionist model for use with
expert systems, express a medical-like problem in this
framework and describe the generation of a connec-
tionist expert system knowledge base from training ex-
amples. We will then detail MACIE, a general purpose
connectionist inference engine, and look at some appli-
cations.

CONNECTIONIST NETWORK KNOWLEDGE BASES

A Simple Connectionist Model:
Linear Discriminant Networks
We will be using connectionist models with the follow-
ing properties:

(1) Network properties. Networks are feedforward
models (no directed cycles allowed). Weights wi,j are
positive or negative integers. Since there are no di-
rected cycles, cells may be indexed so that if a directed
arc points from cell Uj to Ui then i > j (as in Figure 1).
We henceforth assume a cell numbering consistent
with this property.

It is convenient to express the network by a weight
matrix IV, where Wi,j = 0 if no arc connects cell Uj to ui.
As usual, wi.0 are the bias values. Our cell numbering
scheme for feedforward networks implies that Wi,j = 0
for j 2 i.

(2) Cell properties. Cell activations are discrete, tak-
ing on values +l, -1, or 0. These values correspond to
logical values of True, False, or Unknown, respectively.
Cell ui computes its new activation u/ as a linear dis-
criminant function [8]:

Si = C Wi,jllj
jr0

+l or True if Si > 0
u; = -1 or False if Si < 0

0 or Unknown if Si = 0.

Such cells are also called threshold logic units or
McCulloch-Pitts cells [23], or perceptrons [33]. By con-
vention, cell u. always has activation +I, and cells
Ul,..., up are set externally as inputs to the network.

(3) Dynamic properties. An iteration of the network
consists of reevaluating each cell in index order and
changing its activation before the next cell is reevalu-
ated. One iteration suffices to bring the network to

February 1988 Volume 31 Number 2 Communications of the ACM 155

Articles

steady state because of the lack of directed cycles and
because of our indexing scheme.

We call this network model a linear discriminant net-
zuork.3 It is one of the simplest possible connectionist
models, since there is no feedback and all computations
can be performed using integer arithmetic.

A Sample Problem: Diagnosis and Treatment of Acute
Sarcophagal Disease
To illustrate the workings of a connectionist expert sys-
tem, we consider the following example that deals with
acute theoretical diseases of the sarcophagus.4

Our model consists of symptoms, diseases, and treat-
ments. There are six symptoms, two diseases whose
diagnoses are based on (subsets of) the symptoms, and
three possible treatments. Each training example is a
patient’s case history that lists

l symptoms present, absent, and for which there was
no information;

l diseases present, absent, and for which there was no
information; and

l treatments performed and not performed.

This information is used to generate a linear discrimi-
nant network as in Figure 3. This network then serves
as a knowledge base for a connectionist expert system.

Figure 3 shows all connections and their associated
weights wi,j. The numbers within the nodes are bias
values, wi.0. By giving names to nodes of the network,
we can specify a semantic interpretation for the activa-
tion of any cell. Thus, if we set each input cell to either
True (+l), False (-1), or Unknown (0) and make one
iteration over the intermediate and output cells, the
network will compute which diseases are present and
which drugs to prescribe from corresponding cell acti-
vations. For example, if the patient has swollen feet
(ul = +l), but neither red ears (u2 = -1) nor hair loss
(ug = -1), then we can conclude that supercilliosis is
present (u7 = +l) because

0 + (2)(l) + (-2)(-l) + (3)(-l) > 0.

If other symptoms are False (u4, u5, u6 = -1), then we
can similarly conclude namastosis is absent (u8 = -1),
placibin should not be prescribed (ug = -1), and birami-
bio should be prescribed (u 10 = +l). CdS u.4, us, and UC

are intermediate cells added to help with the computa-
tion of ull (posiboost). Their activations are seen to be
uA = +l, uB = +l, and uc = -1. The addition of inter-
mediate cells is necessary because without such cells
no assignment of weights to ull would work for all
training examples. Finally, we compute that posiboost
should also be prescribed (uX1 = +I).

This example illustrates a very weak type of infer-
ence since it requires information on all input vari-
ables. Later we will see how to make more useful de-.
ductions based upon partial information.

The network with weights in Figure 3 serves as the
knowledge base for a connectionist expert system that
uses a special inference engine as in Figure 4.

“Such networks are also known as Gamha perceptcons [27].

‘Although this is a simple example. it nevertheless captures over 85 percent
of what is currently known in this highly specialized domain.

Network Generation: Inputs
To generate the connectionist knowledge base, we must
specify the following information (see Figure 5):

(1) The name of each cell corresponding to variables of
interest (symptoms, diseases, treatments). E:ach vari-
able will correspond to a cell Ui. For Figure 3 the corre-
spondence is as follows:

Symptoms
ul: Swollen feet
up: Red ears
u3: Hair loss
u4: Dizziness
us: Sensitive aretha
&: Placibin allergy

Diseases
u7: Supercilliosis
u8: Namastosis

Treatments
u9 : Placibin
ul,,: Biramibio
ull: Posiboost

(2) A question for each input variable, to elicit the value
of that variable from the user (“Does the patient have
swollen feet?“).

(3) Dependency information for intermediate variables
(diseases) and output variables (treatments). Each of
these variables has a list of other variables whose val-
ues suffice for computing it. For example, when decid-
ing whether to prescribe placibin, it suffices to know
which diseases the patient has and whether the patient
is allergic to this drug. Symptoms such as “swollen feet”
are not included in the placibin dependency list even
though they indirectly influence whether placibin is
prescribed. It is much easier to extract such qualitative
information about “immediate causes” from a domain
expert than it is to extract a specific function relating
inputs to outputs. (See [29] and [31] for a discussion of
this point.)

The dependency information is optional because
every output cell may be specified as dependent on
every input cell, as in Figure 6. This figure shows a
default dependency that is useful for some applications.
If more precise dependency information is available,
however, then dependency lists improve network gen-
eration algorithms since accidental correlations be-
tween unrelated variables are prevented from influenc-
ing the final network weights.

For the sarcophagal problem, suppose the depend-
ency information is as follows:

UT directly depends on ul, u2, u3.
us directly depends on u3, u4, us.
uQ directly depends on u7, us, u6.
ulo directly depends on u,, us.
u,, directly depends on uQ, ulO.

The dependency information specifies a dependency
network consisting of an arc from uj to ui for every node

156 Communications of the ACM February 1988 Volume 31 Number 2

Articles

Swollen feet
Ul

Red ears
UP

Hair loss Dizziness
us u4

Sensitive aretha
u5

0 Output cell (treatment)
A Intermediate cell added by algorithm (not in original dependency network)

Intermediate cell (disease) (in original dependency network)
Input cell (symptom)

Placibin allergy
us

Biases are pictured within cells. The triangular cells were added to the original dependency network by the learning algorithm.

FIGURE 3. Final Linear Discriminant Network for Sarcophagal Disease

February 1988 Volume 31 Number 2 Communications of the ACM 157

Articles

End
US3

-

Swollen feet
0 2 -2 3 ... Does the -1 3 3 3 patient ...

have swollen feet?

Matrix of
integers

(weight matrix)

Variable names
and questions

Knowledge base

.
interface -

* Matrix Controlled
Inference Engine

(MACIE)

FIGURE 4. Connectionist Expert System

uj on the dependency list for ui. This is the same net-
work topology as in Figure 3, except triangular-shaped
cells are not present. In Figure 5 this network is repre-
sented as an adjacency matrix.

Another way to think of dependency networks is
from the point of view of connections not present. If Uj
is not connected to ui, then this means we can always
compute ui without directly considering Uj, even
though uj might affect other variables that we do look
at for Ui’s computation. Eliminating a connection from
uj makes it easier to learn ui’s function because it re-
duces the number of inputs to ui, thereby reducing the
complexity of the learning problem. Therefore, we
should expect better generalization to new data from
our learned model of ui, given that the same set of
examples is used for training with or without the con-
nection.

Some caution may be required to prevent directed
loops from occurring in the dependency network when,
for example, two cells could logically depend on each
other. This situation is handled by eliminating arcs and
letting the training examples implicitly specify any mu-
tual dependency or by the use of choice variables (see
the sidebar on p. 160).

(4) The final information supplied to the learning
program is the set of training examples. For the sarco-
phagal problem, each example is a particular case and

specifies which symptoms and diseases were present
and which treatments were appropriate. This is illus-
trated in the input data where variables take on values
+l, -1, or 0 for True, False, or Unknown, respectively.
As was previously mentioned, non-Boolean data can be
represented by groups of Boolean variables.

The Final Network
The dependency network may not be capable of per-
fectly modeling a given set of training examples be-
cause not every Boolean function can be represented as
a single linear discriminant. If a Boolean function can
be computed by a single cell, it is called a se,oarabIe
function; otherwise it is a nonseparable function. The
sarcophagal problem involves a nonseparablls function
since it can be proved that no set of weights for cell ull
can produce correct behavior for all training examples.
It is possible, however, to add additional intermediate
(triangular) cells to form a final network that is capable
of modeling any self-consistent set of training exam-
ples.5 One way to do this is to add cells with random
weights (e.g., integers between -5 and +5), as described
in [Ii’]. Such random cells were added to produce the
final network pictured in Figure 3.

Because the added cells have fixed input weights that

‘We do not require the network to compute intermediate or output variables
with values of Unknown (0).

158 Communications of the ACM February 1988 Volume 31 Number 2

Articles

623
NAMES AND QUESTIONS:

suollen feet
Does the patient have swollen feet?
red ears
Does the patient have red ears?
hair loss
Is the patient suffering from hair loss?
dizziness
Is the patient dizzy?
sensitive aretha
Is the aretha sensitive?
placibin allergy
Is the patient allergic to placibin?
Supercilliosis
Namastosis
Placibin
Biraraibio
Posiboost

DEPENDENCY: Ul
1
0
0
0
0

EXAMPLES :
1

-1
-1

1
1
1
1

-1

U2 U3 U4 U5 U6 U7 U8 u9 UIO Ull
1 1 0 0 0 0 0 0 0 0 -> u7
0 1 1 1 0 0 0 0 0 0 -> U8
0 0 0 0 1 1 1 0 0 0 -> u9
0 1 0 0 0 1 1 0 0 0 -> UIO
0 0 0 0 0 0 0 1 1 0 -> Ull

1 1 -1 0 -1
-1 -1 1 1 -1
-1 1 1 -1 1

1 -1 -1 1 -1
-1 0 1 1 1
-1 -1 1 1 -1

1 1 -1 -1 1
1 1 -1 1 1

1 -1
-1 1

1 1
-1 -1

1 1
1 1
1 -1

-1 1

FIGURE 5. Input to the Learning Program

are chosen at random, adding cells is a very easy task
indeed. In fact we did not really need to add all three
cells in Figure 3; either one of the first two cells (uA or
ua) would have permitted us to compute weights for ull
that worked for all examples. The third randomly gen-
erated cell, UC, duplicates an input and is therefore of
no help whatsoever; it could have been eliminated, and
different but equivalent weights computed for utl. We
do not bother to test for and eliminate such useless
cells, since the increase in speed would be negligible.

In some cases the original dependency network can
be used unchanged for the final network if it can cap-
ture the behavior specified by the training examples.
Also it is sometimes better to dispense with the addi-
tion of extra cells, even though original cells cannot
correctly model all of the examples (i.e., the training
examples are nonseparable). Forgoing extra cells can
prevent “overfitting the data” with a model that is ac-

1
1

-1
-1
-1

1
-1
-1

-1 1 TE#l
1 -1 TE#2

-1 -1 TElt3
-1 -1 TE#4

1 1 TE#5
1 -1 TE#6

-1 -1 TE#7
-1 -1 TE118

curate on the training examples, but does not properly
generalize to new inputs.

For simplicity, the sarcophagal examples were cho-
sen so that additional cells were needed only for cell
ull. A more typical example would generate a layer of
new intermediate cells just above the input cells for
use by the rest of the network.

FIGURE 6. Default Network with No Dependency Information

February 1988 Volume 31 Number 2 Communications of the ACM 159

Articles

The Pocket Algorithm: A Procedure that Generates Weights for Discrete Networks;

Although a comprehensive treatment of learning in connec-
tionist models lies beyond the scope of this article, we pre-
sent a quick overview of the learning algorithms used in our
system.

It is important that the training examples specify the de-
sired activations for intermediate and output cells in the net-
work (easy learning). This allows us to decompose the prob-
lem and consider each cell independently in terms of training
example inputs, desired cell activations, and weights to be
generated. Therefore, we can drop the subscript i and refer
only to u and w, to state the learning algorithm for a single
cell. This makes weight computations much simpler.

To compute the vector of weights w, for intermediate or
output cell II, we first set Wj = 0 for every connection from a
cell that is not in u’s dependency list. We ignore these
weights for the remainder of the computation. For connec-
tions from the remaining cells (that are in u’s dependency
list), we use the following procedure to compute the rest of
w,: For cell u let (E’J be the set of training example activa-
tions, and (C”) the corresponding correct activations for u.
For simplicity we assume Boolean activations so that each
C’ takes on values {+l , -1) for (True, False) , respectively,
while each component of E’ can take on values of (+l, -1,
O} for {True, False, Unknown). Et = +l so that w0 will be the
computed bias for the cell in question.

The basic learning algorithm for generating weights is a
modification of perceptron learning [33] called the pocket
algorithm [13]. It computes perceptron weight vectors, P,
which occasionally replace pocket weight vectors, w, , as
follows:

(1)

(2)

Pa)

W

Set P to the 0 vector.

Let P be the current perceptron weights. Randomly
pick a training example Ek (with corresponding dassifica-
tion C’).

If P correctly classifies E’, that is,

(P.E’>O and cx= +1)

or

{P. EL-z0 and cx = -11,

then,

(3aa) if the current run of correct classifications with
P is longer than the run of correct classifkzations
for the weight vector w, in your pocket,

(3aaa) replace the pocket weights w, by P,
and remember the length of its correct
run.*

Otherwise, form a new set of weights P’ as follows:

P’ = P + CkE*.

(4) Goto(2).

Table I illustrates the algorlthm for several iteration steps.
A drawback to the pocket algorithm is that there is no

‘It might be said that these weights fit handily in pocket or perceptron.

known bound on the number of iterations required to achieve
a fixed probability that the pocketed weights are the best
possible. Nevertheless, if there are not too many tlraining
examples (cl 05), it is relatively easy to periodically check the
pocketed weights against the set of all training examples in
order to evaluate their performance.

An important advantage of the pocket algorithm over per-
ceptron learning is that it works well with nonseparable or
even contradictory training examples.

RATCHETS
Whenever there is a fixed set of training examples, we have
found it very useful to modify (3aa) above to inclucle a
ratchet:

(3aa)’ If the current run of correct classifications with P is
kmger than the run of correct classifications for the
weight vector w, in your pocket and P correctly clas-
sifies more training examples than w, ,

Thus, we check a potential new w, to see if it is really an
improvement before making it the pocketed weights, This
guarantees the new w, correctly classifies a greater number
of training examples than the previous w, . Note that (3aa)’ is
not possible when training examples are generated dynarni-
tally as described in the ‘Extensions” section since there are
too many potential training examples to examine.

RULES
Another important modiication allows rules to be specified in
addition to the training examples. Here we define a rule as
an example E’ with corresponding classification C’ that must
be satisfied by the resulting weights w, . Normal training ex-
amples, on the other hand, need not be satisfied by w, if
they are noisy or contradictory, or if no w, exists that can
simultaneously satisfy all training examples (i.e., nonsepara-
ble training examples). Thus, we now seek w, that

(1) satisfies all rules, and
(2) satisfies as many training examples as possibse without

violating (1).

To meet these conditions, we first must modify the initial
dependency network to form a final network where the rules
are separable. Note that directly contradictory rules (E’ = E”,
but C’ # Cl) are not allowed. (Training examples, however,
may be specified arbitrarily.)

We now modii (3b) as follows:

(3b)’ Otherwise, form a new set of weights P’ as, follows:

P’ = P + CkEk, (3)

and while P’ violates uny rule E’ (with classification C’)
repeat eq. (3) using E’ and c’.

One final modiication to the basic algorithm involves a
choice group of cells. Here we stipulate that exactly one cell
from a group of cells should be True for any input presented
to the group; in other words, we make a single choice from
the group for any input. (Nilsson [28] refers to such groups
as linear machines.) Bee [14] for more details.

160 Communications of the ACM February 1988 Volume 31 Number 2

Articles

TABLE I. Computation for Cell u,~ Over Several Iterations

Perceptron weights
Perceptron

Pocket weights
Pocket Example ossireu corr5ct

PO PI P7 9 nmlensth w. wt w7 w8 nmlength selected mspon5@ lespoll55 ACtlOll

0 -3 2 4 3 1 1 1 -1 3 TE 6 1 Yes 3aaa
0 -3 2 4 4 0 -3 2 4 4 TE 3 -1 No 3b

-1 -4 1 3 0 0 -3 2 4 4 TE 2 1 Yes -
-1 -4 1 3 1 0 -3 2 4 4 TE4 -1 Yes -

Weights
Once the shape of the final network has been deter-
mined by the dependency network (with the possible
addition of random cells), we use connectionist learning
methods to generate the corresponding weights and
biases. There are a variety of algorithms that can be
used for this purpose. The Pocket Algorithm (see side-
bar) presents the basic method we use, but other meth-
ods are possible such as Back Propagation [34, 351,
Associative Reward-Penalty cells [Z], and Boltzmann
machines [M].

The network, weights, and names and questions for
variables constitute the knowledge base for a connec-

tionist expert system as diagramed in Figure 4. The
actual knowledge base for the sacrophagal example is
given in Figure 7. In this file the connectionist network
of Figure 3 is represented in matrix form, with one row
being used for each intermediate or output cell in the
final network. There is one column for each cell, in-
cluding input cells and the bias terms.

MACIE: A CONNECTIONIST EXPERT SYSTEM
INFERENCE ENGINE
We now present the details of an expert system infer-
ence engine that uses a connectionist network knowl-
edge base. The connectionist network is represented

6 5 3
swollen feet
Does the patient have swollen feet?
red ears
Does the patient have red ears?
hair loss
Is the patient suffering from hair loss?
dizziness
Is the patient dizzy?
sensitive aretha
Is the aretha sensitive?
placibin allergy
Is the patient allergic to placibin?

I/ Supercilliosis
0 2-2 3 0 0 0 0 0 0 0 0 0 0 0

I/ Namastosis
-1 0 0 3 3 3 0 0 0 0 0 0 0 0 0

O/ Placibin
-2 0 0 0 0 o-4 2 2 0 0 0 0 0 0

O/ Biramibio
-1 0 0 -4 0 0 0 1 3 0 0 0 0 0 0

I/ Intermediate Var. 1 for Posiboost
2 0 0 0 0 0 0 0 o-4 5 0 0 0 0

I/ Intermediate Var. 2 for Posiboost
3 0 0 0 0 0 0 0 o-2 2 0 0 0 0

I/ Intermediate Var. 3 for Posiboost
0 0 0 0 0 0 0 0 0 -1-3 0 0 0 0

O/ Posiboost
3 0 0 0 0 0 0 0 0 -3 1 -3 -3 -1 0

BIAS swol red hair dizz sens plac Supe Nama Plac Bira Intl Int2 Int3 Posi

FIGURE 7. Knowledge Base for the Sarcophagal Example (ediied)

February 1988 Volume 31 Number 2 Communications of the ACM 161

Articles

internally by a weight matrix suggesting the acronym
MACIE for Matrix Controlled Inference Engine.

MACIE must use the connectionist network for the
several tasks:

l inferencing based on partial information,
l finding unknown input variables that are key for

reaching additional inferences, and
l producing justifications for inferences.

Expert System Algorithms: Initial Information
The program starts by listing for the user all variables
and allowing any input variable to be initialized to True
or False. Initialization is important since it focuses the
subsequent problem solving. By contrast, systems based
on decision trees cannot take full advantage of initial
information because such information does not change
the order in which nodes of the tree are examined [12].

When prompting for initial information and when-
ever else names must be given to the user, the system
uses the appropriate character strings placed in the
knowledge base (see Figure 4).

Inferencing/Forward Chaining
It is usually possible to deduce the activation for a cell
ui without knowing the values of all of its inputs; in
other words, inferencing is possible from partial infor-
mation.

For example, in Figure 3, if we know that the patient
has swollen feet (ul = +I) and suffers from hair loss
(uJ = +l) then we can conclude the patient has super-
cilliosis (u7 = +I) regardless of whether he or she has
red ears. This is because the unknown variable cannot
force the discriminant sum to change to negative.

More generally, for cell ui we compute KNOWNi, the
partial weighted sum for cell Ui, and MAX-UNKNOWNi,
the most that this weighted sum can change when we
find values for all currently unknown variables:

KNOWNi= C Wijuj
j:ui known

MAX-UNKNOWNi =
&.u x &,. ’ wi,k ‘*

Now, whenever

1 KNOWNi I> MAX-UNKNOWNi (4)

any additional information will not change the sign of
the discriminant for ui so that we can conclude

+1
Ui =

if KNOWNi > 0
-1 if KNOWNi < 0. (5)

It should be noted that this simple procedure ad-
dresses the question of when an inference is valid
(eq. (4)) as well as what that inference should be
(eq. (5)).

A newly changed activation of Ui can propagate up
the network triggering further inferences. Thus, in Fig-
ure 3, if we infer a value for cell u7 then this might
provide enough additional information to conclude val-
ues for ug or ulo and so on. Each allowable inference
can be made in one bottom-up pass through the cells
due to the indexing scheme previously mentioned.

This inferencing technique works well in practice to
allow the expert system to reach conclusions when
only a fraction of the input values are known.

Confidence Estimation
At any time during a run, we can compute Conf(ui), an
estimate of the likelihood that an unknown variable ui
will eventually be deduced to be True or False. Conf(ui)
is useful for comparing two unknown variables (but
cannot be interpreted as the probability that ui will
eventually be found true).

Several heuristics are available for computing
Conf(ui). One of the simplest is the following:

l For a known cell,

Conf(ui) = Ui.

l For an unknown input cell,

COnf(Ui) = 0.

l For other unknown cells, we compute Conf(ui) in in-
dex order by

Conf(u,) = Z2j-l Wi,j COnf(uj)
I

C I Wi.j I ’ j:ui unknown

We can compare likelihoods for all cells with one
bottom-up pass through the network. It is easy to check
that -1 5 Conf(ui) I +l.

Question Generation/Backward Chaining
If the system has not yet reached conclusions for
enough of the output cells to complete the session, it
must find an input cell with unknown activation and
ask the user for its value. Again there are several possi-
ble heuristics for this task. Perhaps the simplest is the
following:

(1) Select the unknown output variable UC such that
] Conf(ui)] is maximum. (This strategy starts with an
output cell close to having its value set.) We :say ui is
the cell being pursued.

(2) If pursuing cell ui, find the unknown cell uj with
the greatest absolute influence on ui. In other words,
find a j yielding

max 1 wi,j I: uj unknown.
i

If uj is an input variable, ask the user for its value
(employing the character string question for flj in the
knowledge base). Otherwise pursue Uj and re:peat (2).

Since we have been careful to prevent directed loops
in the connectionist network, no variable can be pur-
sued more than once without a question being asked.
Therefore, this method of backward chaining quickly
chooses an unknown variable to ask the user with no
need for backtracking.

Other heuristics are also possible. For example, in
step (1) we might look for max Conf(ui) rather than max
] Conf(ui)] to emphasize output variables with values of
Tnre. Or for step (2) we might choose uj to maximize

162 Communications of the ACM Februa y 1988 Volume 31 Number 2

Articles

I W&j I (1
1 COnf(uj) I + -

ll?Vd(Uj) >

to take into account confidence estimates and how far
removed nodes are from the input nodes. Here we de-
fine

level(r+) = 1 + distance to closest input cell.

For confidence estimates and backward chaining, the
choice of heuristics does not appear to affect the practi-
cal performance of the inference engine very much.

When the user is queried to obtain the value of an
unknown variable, he or she can respond with True,
False, or Unobtainable. Unobtainable means that the
value of that variable will not be available for the re-
mainder of the session. The inferencing mechanism
treats such variables as known but with activations of
0. It should be noted the distinction between unknown
and unobtainable variables: An unobtainable variable
has a known final value of 0; an unknown variable has
a temporary value of 0 that might be changed later in
the session. In particular, a response of unobtainable
might allow a cell’s activation to be inferred because it
reduces the value of MAX-UNKNOWN in eq. (4).

Explaining Conclusions by i f -then Rules
The user can ask the system why it concluded a partic-
ular cell was True or False (see the sidebar on p. 164-65).
The system will answer with an if -then rule applica-
ble to the case at hand. It is amusing to note that these
if -then rules are not represented explicitly in the
knowledge base; they are generated by the inference
engine as needed for explanations. Figure 8 gives an
example to illustrate rule generation.

+l = True

1 -1 0 0 1 -1

True False
UI U2

??
u3

??
u4

True
US

False
%

Rule:
If

& = False and Us = True,

Then, conclude

U, is True.

FIGURE 8. Explanations by i f-then Rules

The basic idea is that the system has already inferred
that cell u, has value True, so we can take a minimal
subset of the currently known information that is suffi-
cient to make this inference. More explicitly, we per-
form the following calculation:

(1) List all inputs that are known and contributed
to the ultimate positivity of the discriminant for u,. In
Figure 8 this gives ul, u2, and us. We omit u6 since
weug < 0 and since u, was concluded to be True.

(2) Arrange the list by decreasing absolute value of
the weights. This gives uz, u5, ul.

(3) Generate clauses for an if -then rule from this
ordered list until

c c I WI
ui used for clause remaining inputs to ui

is satisfied. This produces the rule

if uz is False and
us is True

then Conclude that u, is True.

This rule always holds by eq. (4) and justifies the infer-
ence made for the current problem. It should be noted
that any rule for cell ui will only involve cells con-
nected to ui in the final network.

In principle it would be possible to examine a con-
nectionist network and produce every such if -then
rule. These rules could then form the knowledge base
of a traditional expert system.

However, this procedure would work only if the con-
nectionist network was very small. Even for a network
consisting of a single cell, the number of implicitly en-
coded if -then rules can grow exponentially with the
number of cell inputs7

A second type of explanation is available to the user.
The user can request an explanation of why the cur-
rent question is being asked. In response, the system
can list the backward-chaining logic used to produce
that particular question. See p. 164-65 for an example
of this type of explanation.

MAINLINE FOR MACIE
We can now construct an inference engine based on the
above capabilities. Here is the mainline procedure:

(1) Obtain initial information (under “Expert-System
Algorithms: Initial Information,” p. 162).

(2) Forward chain to make inferences (“Inferencing/
Forward Chaining,” p. 162).

(3) Quit if enough variables have been deduced.
(4) Backward chain to find an unknown variable

whose value, if known, would likely be useful for
inferencing (“Question Generation/Backward

‘But not conversely. Any disjunctive normal form expression can be com-
puted by a network model of approximately the same size [X?]. In this arose
connecttonist models are more efficient for knowledge representation than
disjunctive nomal form expressions.

February 1988 Volume 31 Number 2 Communications of the ACM 163

Articles

Sample Run of MACIE (edited)

MACIE Version 2.4

Numbers and names of variables:
1: swollen feet
2: red ears
3: hair loss
4: dizziness
5: sensitive aretha
6: placibin allergy
7: Supercilliosis
8 : Namastoeis
9: Placibin

10: Biramibio
11: Intermediate Var. I for Poeiboost
12: Intermediate Var. 2 for Posibooet
13: Intermediate Var. 3 for Poeiboost
14: Posiboost

Enter initial values for Input variables.

Format: Variable number, value, . . .
2t 4f

PURSUING Posibooet
PURSUING Intermediate Var. 2 for Posiboost
PURSUING Placibin

Is the patient allergic to placibin?
--> y)es, n)o, u)nknoan, ?)explain, Qnforration on vars.

n

PURSUING Posiboost
PURSUING Intermediate Var. 2 for Posiboost
PURSUING Biramibio

Is the patient suffering from hair loss?
--> y)es, n)o, u)nhnoun, ?)explain, i)nformation on wire.

?
Enter '0' for explanation of the last question

*#' for explanation of variable number # (E.g. '3')

0

hair loss is a factor
vhich gives negative support for Biramibio
vhich gives positive support for Intermediate Var. 2 for Posibooet
vhich gives negative support for Posibooet
which is the Goal Variable oith highest Likelihood.

PUBSUING Posiboost
PUBSUING Intermediate Var. 2 for Posiboost
PURSUING Biramibio

Is the patient suffering from hair loss?
--> y)ee. n)o, u)nhnown, ?)explain, iInformation on vers.

Y

CONCLUDE: (IO) Biramibio FALSE.

CONCLUDE: (13) Intermediate Var. 3 for Posibooet TRUE.

PURSUING Placibin
PURSUING Supercillioeie

164 Communications of the ACM February 1988 Volume 33’ Number 2

Articles

Does the patient have swollen feet?
--> y)es, n>o, u)nknovn, ?)explain. iInformation on vars.

?

Enter '0' for explanation of the last question
'#' for explanation of variable number t (E.g. '3')

10

Biramibio is FALSE due to the following rule:

IF hair loss is TRUE

THEN CONCLUDE Biramibio is FALSE

Does the patient have swollen feet?
--> y)es, n)o, ujnknovn, ?)explain, i)nformation on vars.

Y

CONCLUDE: (7) Supercilliosis TRUE.

CONCLUDE: (9) Placibin TRUE.

CONCLUDE: (11) Intermediate Var. 1 for Posiboost FALSE.

CONCLUDE: (12) Intermediate Var. 2 for Posiboost FALSE.

CONCLUDE: (14) Posiboost TRUE.

Would you like to try a new case?
--> y)es, n>o, ?)explain, iInformation on vars.

't' for explanation of variable number # (E.g. '3')

9

Placibin is TRUE due to the following rule:

IF placibin allergy is FALSE
AND Supercilliosis is TRUE

THEN CONCLUDE Placibin is TRUE

Uould you like to try a new case?
--> y)es. n>o, ?)explain, i)nformation on vars.

?

'#' for explanation of variable number # (E.g. '3')

14

Posiboost is TRUE due to the following rule:

IF Intermediate Var. 1 for Posiboost is FALSE
AND Intermediate Var. 2 for Posiboost is FALSE

THEN CONCLUDE Posiboost is TRUE

Would you like to try a new case?
--> y)es. n>o. ?)explain, ijnformation on vars.

n

February 1988 Volume 31 Number 2 Communications of the ACM 165

Articles

Chaining,” p. 162). Ask the user for the value of
this variable, and respond to any user request for
explanations (“Explaining Conclusions by if -
then Rules,” p. 163).

(5) Go to (2).

Step (3) is problem specific. In some cases we seek
the values of all output variables, whereas for other
problems we might want to quit as soon as the first
output variable was inferred to be True.

EXTENSIONS

Combining Learning with Expert System Operation
(on-line learning)
So far we have separated the production of the connec-
tionist network from the operation of the expert sys-
tem, but this need not be the case. We can integrate the
learning algorithm with the expert system according to
the following time sequencing:

(1)
(2)

(31

(4)

Receive inputs at time t.
Compute outputs from the expert system using the
best (pocket) weights.
Obtain the correct output for previous inputs pre-
sented at time t - d, where d is a nonnegative
delay between the time inputs are received and
the time the correct response is known.
Perform one iteration of the learning algorithm
with a training example consisting of the original
input at time t - d and its correct output. This may
change perceptron weights or, less frequently, the
pocket weights.

The input from time t - d must be retained by the
system for step (4) to take place, but the delay d can
vary for inputs at different times. In other words the
correct outputs need not arrive in temporal order.

The pocket algorithm (see p. 160) is appropriate for
such dynamic systems because of two useful properties:
First, the algorithm does not require that training

examples be stored if there is a way of obtaining them
as needed. Thus, an on-line learning system would
need to retain only the last d inputs. Second, the pocket
algorithm tracks changes to desired behavior in accor-
dance with the training examples. Thus, if the training
examples indicated a change in correct performance,
the dynamically changing weights would eventually
conform.

Noisy Data
The ability to handle dynamically generated training
examples is important for constructing expert systems
for problems involving noisy data. It is sometimes easy
to list noise-free training examples and make a model
of the noise involved, thereby allowing generation of
noisy training examples.

To illustrate, suppose we have a problem i.nvolving
20 input variables where only 100 basic input patterns
exist in the absence of noise. Due to noise, however,
suppose that any input might be corrupted irtdepend-
ently with some probability P. One way to handle this
problem would be to create a set of noisy traming ex-
amples containing copies of examples according to the
effects of noise. Unfortunately this would require
around 2” training examples since any set of feature
patterns would be possible due to the noise.

Figure 9 shows an easier way to handle this situation.
When selecting training examples (step (2) in the
pocket algorithms, p. 160), we use dynamic learning
properties as follows:

(1) Select one of the 100 basic input patterns.
(2) Add noise to the 20 features using the noise model

by reversing the sign for each feature with proba-
bility P. Do not alter the desired output.

(3) Use this training example for one iteration of the
pocket algorithm.

See [14], and [15] for an example of this process ap-
plied to a fault detection system for a noisy environ-
ment.

Inputs

Noise-free
training

examples

Noise
model

Noisy
inputs

+

Learning
program

knowledge

b base

(weight
matrix)

Desired output

FIGURE 9. Dynamic Generation of Noisy Training Examples

166 Communications of the ACM Februan/ 1988 Volume 31 Number 2

Articles

APPLICATIONS
We have programmed the network generation algo-
rithms on pages 160 and 164-65 and have produced
connectionist expert systems from actual data for a
variety of applications. Generally the results have been
fairly good, but these problems were chosen as demon-
strations because data were readily available and not
because a particular expert system was actually
planned for commercial or other reasons.

One early system was for diagnosis of causes of
infantile diarrhea where the choices were salmonella,
shigella, rotovirus, or nonspecific. Diagnosis prior to re-
ceiving laboratory results is difficult for experts, and
their opinions are correct roughly 70 percent of the
time. A doctor at Children’s Hospital in Boston supplied
about 70 cases from a study she had performed, and a
connectionist expert system was constructed with little
difficulty. Before demonstrating the system to the doc-
tor, the connectionist network was examined, and sim-
ple rules involving two or fewer factors were written
down.’ Independently, the doctor wrote down rules she
relied on, and the lists were compared. Almost all the
induced rules were judged reasonable, and conversely,
the human rules were not at great variance from the
connectionist network generated from data. The system
performance was interesting enough that new cases
were brought in and tested. The results were about 70

percent correct diagnoses on these previously unseen
cases, roughly the same performance as by doctors.

Another demonstration of these techniques involved
the management decision of whether to continue with
development of a new product or cancel development
[16]. Here a wrong choice in either direction might
mean a significant loss for the business concerned. We
relied on data consisting of about 40 input features and
over 100 actual cases that a colleague in the Northeast-
ern College of Business Administration had collected
previously. The resulting system behaved reasonably
well, but would have required extensive interface work
to bring it to market as a commercial product. Other
demonstration projects now in progress involve medical
and economic systems, and a chemical process fault
diagnosis model that includes temporal information.

DISCUSSION

Connectionist Expert Systems (not) as Psychological
Models
Connectionist researchers interested in psychological
modeling would probably argue that MACIE is an im-
plausible model for human reasoning. We would agree.
We would also argue that expert systems in general do
not reason like humans do (despite some claims to the
contrary).

It is important to distinguish between the process hu-
mans use for arriving at a conclusion and the process
they use for communicating (sequentially, by language)

‘This if -then rule generation can be automated to produce lists of short
rules.

a justification for that conclusion [12]. We believe hu-
mans seldom follow logical rules in daily life, yet they
may construct such rules to justify or explain those
conclusions to other humans. Therefore, requiring a
system to be both a good model of human reasoning
and a close kin of a rule-driven expert system is asking
for the impossible. Our desire for a practical system led
us to favor performance over modeling and has resulted
in a system much closer to conventional expert systems
than to psychological models.

The Problem of Generalization
A key question for any inductive learning method is
how well that method handles new input data after the
system has been trained. This is a difficult question to
answer in general because of the wide variety of prob-
lem types. We would face similar difficulties in trying
to categorize how well conventional expert systems
work in practice. About the best we can do is to collect
individual cases of connectionist expert system imple-
mentations and compare them, whenever possible,
with corresponding implementations by conventional
methods. We plan to do this over the next several
years.

Currently we are examining a relatively large family
of noisy fault detection (or pattern recognition) prob-
lems where it will be possible to get overall quantita-
tive results. Our tests so far have been quite promising
with this class of problems [14, 151.

There is a related notion of generalization that in-
volves recognizing spatial or temporal deformations of
the input data. For example, if each input cell corre-
sponds to a pixel on a rectangular grid we might want
the system to recognize certain shapes regardless of
their position on the grid [g]. This is an important area
for connectionist research.

Discrete versus Continuous Models
So far we have worked with discrete rather than con-
tinuous connectionist models. When generating expert
systems the functionality of the final network is the
primary consideration, not the topological structure of
the network used to achieve that functionality. This
allows us to pick whatever shape network we want and
employ faster learning algorithms that use only integer
calculations.

On the other hand, it is possible that learning meth-
ods such as back propagation [34] that use continuous
variables might generalize better to unseen examples,
thereby creating more robust systems. This is an open
question for future investigation.

Bayesian Models
It is interesting to compare connectionist expert sys-
tems with Bayesian methods. The former are geared
more toward making decisions; the latter toward com-
puting probabilities. Of course, the probabilities com-
puted by a Bayesian model can aid decisions by a hu-
man (or computer) decision maker. Similarly, the con-
nectionist model can compute approximate ranges of

February 1988 Volume 31 Number 2 Communications of the ACM 167

Articles

probabilities for its outputs (as in eq. (2) under “Classifi-
c:ation Expert Systems”).

The Bayesian methods can give optimal accuracy
provided that good underlying models are selected. In
this sense connectionist models might be viewed as
easy-to-compute approximations of probabilistic
models. We are currently analyzing the fault detection
problems mentioned earlier to determine how closely
these connectionist models approach the Bayesian opti-
mal decision rules.

Bayesian models seem not well suited for deciding
z&en to commit to a value, as discussed under “Con-
nectionist Expert Systems.” We must either calculate
over a large number of cases (corresponding to all possi-
ble values of unknown variables) or make some simpli-
fying assumption on the model. Simplifying the model,
however, raises the question of whether the result con-
tinues to be more faithful probabilistically than a corre-
sponding connectionist network.

One often cited drawback of Bayesian models is a
requirement for large amounts of data and computa-
tions. Recently Pearl [SO], Kim [21], and others have
shown that under certain conditions we can use net-
work models to avoid such problems. Their belief net-
works (also called causal or Bayesian networks) have
underlying structures that are identical to what we
have referred to as dependency networks in the “Net-
work Generation: Inputs” section (except that arrows
point in the opposite directions for the two models).

In some ways belief networks are more flexible. They
automatically allow probability inferences in all direc-
tions, such as from diseases to likely symptoms. For
connectionist models this type of inference would re-
quire reversing the dependency network connections
and regenerating the final network (using the same
training examples). In other ways belief networks are
less flexible because efficient propagation algorithms
are limited to singly connected models (i.e., networks
where two cells are joined by at most one undirected
path in the dependency network). Both the dependency
network and the final network for the sarcophagal
problem would violate this restriction.

A Tool, Not a Replacement, for Knowledge Engineers
When we originally began this work, we thought auto-
mated methods might eliminate the need for knowl-
edge engineers in many cases. We now believe, to the
contrary, that these techniques best serve as additional
tools that a knowledge engineer can employ for con-
structing all or part of an expert system. Furthermore,
an understanding of the theory involved appears neces-
sary for avoiding “garbage in, garbage out,” the bane of
automated tools.

CONCLUSION
We have examined how to construct a connectionist
network from training examples and how to use it as
the knowledge base for an expert system. The principal
reason for doing this was to harness connectionist
learning techniques for generating expert systems.

We believe connectionist expert systems present a
promising approach to the knowledge-acquisition prob-
lem for expert systems. These methods are most appro-
priate for classification problems in environ:ments
where data are abundant and noisy, and where, con-
versely, humans tend to generate brittle and perhaps
contradictory if -then rules. Moreover, the resulting
systems run very fast, even on standard computers.
This makes connectionist expert systems especially
well suited for real-time applications such as process
control.

The next several years should give us a better under-
standing of how useful this approach can be for produc-
ing commercial expert systems.

Acknowledgments. The author wishes to thank Gene
Cooperman, Emmanouil Kalfaoglu, Joanna DeRiso, and
the referees for their helpful suggestions.

REFERENCES
1. Anderson. J.A.. and Rosenfeld, E., Eds. Neurocomputing, A Reader.

MIT Press, Cambridge, Mass., 1988.
2. Barto. A.G.. and Anandan, P. Pattern recognizing stochastic learning

automata. IEEE Trans. Syst. Man Cybern. 15, 1985, 360.-375.
3. Bundy, A., Silver. B.. and Plummer, Il. An analytical comparison of

some rule-learning programs. Artif. Infell. 27, 2 (November 19851,
137-161.

4. Cheeseman, P.C. A method of computing generalized Bay&an prob-
ability values for expert systems. In Proceedings of the 8th Interna-
tional \oinf Conference on Artificial Intelligence (Karlsruhe. W. Ger-
many. Aug. E-12). 1983, pp. 198-202.

5. Cheeseman, P.C. Learning of expert system data. In Proceedings of
the 1EEE Workshop on Principles of Knowledge Based Systems (Denver,
Cola.. Dec. 3-4). IEEE Press, New York, 1984. pp. 115..122.

6. Davis, R., and Lenat. D.B. Knowledge-Based Systems in Artificial Intel-
ligence. McGraw-Hill, New York, 1980.

7. Duda. R.O.. and Shortliffe. E.H. Exoert svstems research. Science 220.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

‘ . 4594 (Apr. 15. 1983), 261-266.
Fisher. R.A. The use of multiple measurements in taxonomic prob-
lems. Ann. Eugen. 7, (1936) Part II. 179-166. (Also in Contributions to
Mathematical Statistics, Wiley, New York. 1950.)
Fukushima, K., Miyake, S., and Ito, T. Neocognitron: A neural net-
work model for a mechanism of visual pattern recognition. IEEE
Trans. Syst. Man Cybern. SMC-13, 5 (Sept.-Oct. 1983). 826-834.
Gallant, S.I. Automatic generation of expert systems from examples.
In Proceedings of the 2nd International Conference on Arfificial Intelli-
gence Applications (Miami Beach, FL, Dec. 11-13). IEEE: Press. New
York. 1985, pp. 313-319.
Gallant, S.I. Matrix controlled expert system producible from exam-
ples. U.S. Patent Pending 707,458, 1985.
Gallant, S.I. Brittleness and machine learning. In International Meef-
ing on Advances in Learning sponsored by Association I‘ranGaise pour
I’Apprentissage Symbolique Automatique. CNRS, Paris. France. (Les
Arcs. France, July 28-Aug. 1. 1986).
Gallant. S.I. Optimal linear discriminants. In Proceedings of fhe 8th
International Conference on Pattern Recognition (Paris. France. Oct.
28-31). IEEE Press. New York. 1986, pp. 849-852.
Gallant, S.I. Automated generation of expert systems fix problems
involving noise and redundancy. In AAAI Workshop on Uncertainty in
Artifzcial Intelligence sponsored by AAAI. (Seattle, Wash., July 10-12.
19871. DO. 212-221.
Gallant, S.I. Bay&an assessment of a connectionist model for fault
detection. Tech. Rep. NU-CCS-87-25, College of Computer Science,
Northeastern Univ., Boston, Mass.. 1987.
Gallant. S.I., and Balachandra, R. Using automated techniques to
generate an expert system for R/D pr&ct monitoring. In Interna-
tional Conference on Economics and Artificial Intelligence sponsored by
AFCET. Paris. France. (Aix-en-Provence. France, Sept. z-4. 1986).
pp. 87-92.
Gallant, S.I.. and Smith, D. Random cells: An idea whose time has
come and gone and come again? In IEEE Internatiocal Conference
on Neural Networks (San Diego, Calif., June). IEEE Press;, New York.
1987, pp. 21-24.
Grossberg. S. Studies of Mind and Brain. Reidel. Hingham, Mass.
(1982).

166 Communications of the ACM February 1988 Volume 3.1 Number 2

Articles

19.

20.

21.

22.

23.

Hinton. G.E., and Anderson.].A., Eds. Parallel Models of Associative
Memory. Erlbaum, Hillsdale, N.J.. 1981.
Hopfield. J.J. Neural networks and physical systems with emergent
collective computational abilities. In Proceedings of the Nafional
Academy of Sciences USA. National Academy of Sciences, Washing-
ton. DC.. 1982, vol. 79, 2554-2556.
Kim. J.H.. and Pearl, J. CONVINCE: A conversational inference con-
solidation engine. IEEE Trans. Syst. Man Cybern. SMC-17. 2 (Mar.-
Apr. 1987). 120-132.
McClelland, J.L., and Rumelhart. D.E., Eds. Parallel Distributed Pro-
cessing: Explorations in fhe Microstructures of Cognition. Vol. 2. MIT
Press. Cambridge, Mass. (1986).
McCulloch. W.S.. and Pitts, W.H. A logical calculus of the ideas
imminent in nervous activity. Bull. Math. Biophys. 5 (1943), 115-133.
(Reprinted: McCulloch, W.S. Embodiments of Mind. MIT Press. Cam-
bridge, Mass.. 1965.)

24. McDermott, J. Rl: The formative years. AZ Msg. 2, 2 (1981). 21-29.
25. Michalski. R.S., Carbonell. J.C.. and Mitchell, T.M. Machine Learning.

Tioga, Palo Alto, Calif., 1983.
26. Michalski, R.S.. Carbonell, J.G., Mitchell, T.M. Machine Learning.

Vol. 2. Kaufmann, Los Altos, Calif.. 1986.
27. Minsky, M.. and Papert, S. Perceptrons: An Introduction to Computa-

tional Geomefy. MIT Press. Cambridge, Mass., 1969.
28. Nilsson, N.J. Learning Machines. McGraw-Hill. New York. 1965.
29. Pearl. J. How to do with probabilities what people say you can’t. In

Proceedings of the 2nd Internotional Conference on Arfificial Intelligence
Applications (Miami Beach, Fla., Dec. 11-13). 1EEE Press, New York,
1985. pp. 6-12.

30. Pearl. J. Fusion. propagation, and structuring in belief networks.
Arfif. Intell. 29, 3 (Sept. 1986). 241-288.

31. Pearl. J. The logic of representing dependencies by directed graphs.
In AAAI-87 sponsored by AAAI. Menlo Park. Calif. (Seattle, Wash.
July 13-17.1987). pp. 374-379.

32. Quinlan. J.R. Learning efficient classification procedures and their
application to chess end games. In Machine Learning. Eds. R.S. Mich-
alski. J.G. Carbonell. and T.M. Mitchell, Tioga. Palo Alto, Calif..
1983.

33. Rosenblatt, F. Principles of Neurodynamics: Percepfrons and the Theory
of Brain Mechanisms. Spartan. Washington. D.C.. 1961.

34. Rumelhart. D.E.. and McClelland, J.L.. Eds. Parallel Distributed Pro-
cessing: Explorations in the Microstructures of Cognition. Vol. 1. MIT
Press. Cambridge, Mass.

35. Werbos, P.J. Beyond regression: New tools for prediction and analy-
sis in the behavioral sciences. Ph.D. thesis, Dept. of Applied Mathe-
matics, Harvard Univ., Cambridge, Mass., 1974.

CR Categories and Subject Descriptors: H.4.2 [Types of Systems]:
Decision support; 12.1 [Applications and Expert Systems]: Industrial
Automation--medicine and science; 1.2.2 [Automatic Programming]: Pro-
gram synthesis; 12.3 [Deduction and Theorem Proving]: Answer/reason
extraction-deduction: 1.2.4 [Knowledge Representation Formalisms
and Methods]; 1.2.5 [Programming Languages and Software]: Expert
System Tools and Techniques-MACIE: 1.2.6 [Learning]: Concept Learn-
ing, Induction, Knowledge Acquisition: I.7 [Computers in Other Sys-
tems]: Process Control

General Terms: Algorithms
Additional Key Words and Phrases: Connectionist expert systems,

machine learning, MACIE, neural networks

Author’s Present Address: Stephen I. Gallant, College of Computer Sci-
ence, 221 Cullinane Hall, Northeastern University. Boston. MA 02115.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish. requires a fee and/or specific permission.

Announcement (continued from p. 108)

which both manuscript and illustrations can be deliv-
ered (machine-readable, camera-ready, etc.).

Subsequent to positive review, contracts will be of-
fered by representatives of the ACM in consultation
with Addison-Wesley. Terms will be competitive with
those of other publishers. The combination of the edito-
rial support described above, the marketing expertise of
Addison-Wesley, and the advertising exposure and
professional resources of the ACM should prove attrac-
tive to many authors.

Cast of Characters
ACM Press Books is a cooperative effort between ACM
volunteers, ACM Headquarters, and Addison-Wesley.
Inquiries should be addressed to the following repre-
sentatives of these three constituencies:

Peter Wegner, Box 1910, Brown University, Providence,
RI 02912. Te1:401-863-3311, E-Mail: pw@cs.brown.edu

Janet G. Benton, ACM, 11 West 42 St, New York, NY
10036. Te1:212-869-7440, E-Mail: janetb@acmvm.bitnet

Peter S. Gordon, Addison-Wesley, Route 128, Reading,
MA 01867. Te1:617-944-3700

Series and area editors are in the process of being
selected. An announcement of editors and of members
of the advisory board will be made at a later time.

Many people have helped in bringing ACM Press
Books to its present stage of development, including
Paul Abrahams, Robert Ashenhurst, Lorraine Barman,
Peter Denning, Adele Goldberg, Richard Hespos, Mar-
sha Hopwood, Michael Mahoney, Mark Mandelbaum,
Jim Maurer, Bernard Rous, Helen Takacs, Keith Woll-
man, and Steve Zilles.

We are keenly aware that building a reputation for
excellence and relevance will be difficult and will de-
pend critically on authors and volunteers. Your com-
ments and suggestions, particularly at this formative
stage, will be extremely useful. If you wish to explore
the possibility of being an author or volunteer, or have
suggestions and comments, please contact whichever
person above you deem most appropriate.

February 1988 Volume 31 Number 2 Communications of the ACM 169

