
S O M E C O M M E N T S
0 7 T H E F O R T H C O M I N G

~ K X T E N D E D P A S C A L n S T A N D A R D

Philippe Ranger
6120 Hutchlson, M0ntreal h2v 4c2, C,m~a~

20 August 1987

& n o t e o n t h e d e b a t e

Courtesy rules that rejected opinions be left
unrentioned, save in private conversation. This cer-
tainly helps peaceful debate, but at the cost of
obscurity once the debate is over. It's more often
in rejezting a proposal than in accepting one that
we're impelled to state the general prlneiples we
pursue -- often it seems a proposal is more likely
to become the object of consensus if the reasons
for proposing it are left out of the debate. Once
the consensus is reached, however, those outside
the deciding circle are met with the proverbial camel
because all the details are clear but their c~mon
aim, if shy, remains unstated.

Pascal, originally the ~rk of one man, appeared
in a context where it was quite clear what the author
was rejecting: the Swiss-army-knife approa=h guiding
what became Algol 68. I suspect that this clarity of
purpose, from controversy, was one reason for the
e~zeptlonal success of Pascal in a field of several
other interesting small Algol-type languages.

Another argurent for stretching the rules of cour-
tesy is that, over the last twenty years, we have

been forced to re-veto the square wheel (silently)
any number of times. Every few years, we achieve
peace at the cost of letting the next few years pro-
ceed in the same confusion that we have just worked
so hard to overcome.

David A. Joslin's '%Ighly probable" preview of
the forthcoming revision of the Pascal standard [i]
is admirably infcrmatlve. But, in the spirit of the
above, I must say that there is much missing in it.
Arguments for the possible extem~si~ns are only impli-
cit in the illustrations. Propositions rejected are
completely unmentioned. And, since the aims pursued
are not explicit, the quite sensible reasons not to
consider contrary p~sals will be clear only to
those who are not proponents of these proposals.

This is not criticize Joslin's paper, which is
only a preview (of a draft which, at the time of
writing, we have not yet seen). But I would wish,
when the draft proposal appears, that its authors
be ready do explain their choices in published
debate, and to ans~r other proposals with something
mm:e explicit than silence.

I s t h e r e a P a s c a l s t y l e l u l a a g u a g e s ~

I believe there is, and that it follows from these
hypotheses:

i. A teaching language for procedural program-
mlng can be fairly complete while remaining
small, by being extremely logical, clear and
s~mple-minded, and by being as orthogonal as
possible; if this be, the language will be
e~:ellent for its purpose.

2. This shonld also insure a high degree of
portability through machine independerHze.

Tne success of the original Pascal showed these
hypotheses to be true, at least in the case in point.
We my take them as guiding principles when discus-
sing extensions. Following this success, a third
principle seems also to have been cQnfirmed:

3. With very few extensions, in the spirit of
i, the language my become e~:ellent not only
for tea:king but for most of the applications
of a procedural language.

And it is easy to believe that Wirth also had in
mind:

107

http://crossmark.crossref.org/dialog/?doi=10.1145%2F43895.43907&domain=pdf&date_stamp=1988-03-01

4. With some care, it should be possible to

specify a language satisfying I for which it
is also fairly easy to write ccmpilers.

4 was certainly essential to Pascal' s success, and
we too should keep that "impure" thought in mind°
However, it speaks against 2. In fact, Pascal has
some implicit machine references that are as hard

to ignore as a pebble in a shoe: packed arrays, the

read and write (punchnard) "procedures", missing
I/0 for enumerated types, file pointers, type limita-

tions on function results, etc. Also, 4 suggests by
limiting orthogonality, and Pascal has some examples
of this, too: no constants for structured types,
limitations on CASE selectors, strict ordering of

declarations, etc.

A u e g a t l w e remark

Pascal not being PL/i, I cannot understand how
extensions to it can be proposed without explicit
regard for some principle such as above. There is
no other way to tell which extended language can be
called a Pascal and which cannot. My suggestions
are I and 2, plus upward compatibility with now-stan-
dard Pascal. It is a major virtue of Pascal that
the user achieves more varied and nmre involved
applications not by learning more "language la~'
but by using known forms differently. O~thogonality
with the core syntax must remain a criterion for
'~ascalian" extensions.

There is n~zh in the extensions foreseen by Joslin
that is praise~rthy -- in fact, much that it is hard
to wait for. To name a few decisions that yet will
not receive unanimous praise: loop-exit, return,
halt, date and time, environmental enquiries, and
above all modules and separate conl0ilation. My
thought on the last is that no cumLittee could do
better than a complete crib of ~bdula-2, and that
Joslin's prediction comes close to that, though VALUE
is a restriction on Modula's module-local emecutable
block.

What worries me, t~h, is that several points
breach principle i. The breaches may not be major,
but they are varied enough to indicate that this
principle is not a clear aim of the proposed stan-
dard. The first words of principle 1 are '% teaching
language", and a consequence of this orientation is
that syntax should be understandable without recourse
to: '"4ell, that's the way it is."

The syntax of the BINDing operator and the seman-
tics of UNBIND are sul generis, non-orthogonal with
the rest of the l~_ge. So is the use of = to
declare a function result variable (the same
terseness co~11d be achieved with a second pair of
parentheses). Worse still is the perverse syntax
introduced simply to achieve the inverse of ORD --
is it mortal sin to follow Turbo Pascal and use any
ordinal type identifier as a conversion function?
Also regrettable are the use of the period and the

question mark in (the umHoubtedly essential) type
inquiries. For improvements on the last and other
anti-pedagogic non-orthogonalities, see [2].

To tell the truth, I was hoping that the question
mark, as well as several other non-alphabetic charac-
ters, wDuld be allowed in identifiers, both to
inprove expressiveness and to facilitate the use of
code-processing filters. We will return later to
the question of type inquiries.

One last exanple. The proposed STRING type and
operations are essential extensions. But, as Pascal
incompletely defines the ordering of the CHAR type,
all string ccmparisons will be implementation-depen-
dent. In this context, the use of the extant relatio-
nal operators (=, <, etc.) for strings padded with
spaces, and the addition a whole spate of new opera-
toms for straight string comparisons, is ~orse than
baroque, rococo. If we are going in for single-pur-
pose lexical categories, let's have F=, F4, CO=, CG~,
etc. for comparisons following the French and the
German alphabets! This can't be Pascal.

So as not to restrict my clarifying negativism
to what appears first of all an emzellent proposal,
let me mention an idea which often crops up else-
where: using line indents (overridably) in place of
the wordy and distracting BEGIN and END (e.g., [3]).
This does away with two major virtues of Pascal.

One, total formatting freedam (now, I ~uld have to
~Drry whether my layout implies any block limiters
or not; and any deliberate, ant~nati¢ or accidental
chmnge in format could change the program at the
next compile). Twos avoidance of default sesmntics,
which is not only a condition for orthogonality but
to my mind one of the most forward-looking features
of the language (default semantics freeze a context
of use into the lans~,~e definition). No, the solu-
tion to the BEGIN - END awkwardness lies Modula-way.

From the preceding remarks, as well as those at
the beginning of this letter, several positive sug-
gestlons can be drawn, let me add two more that
require some wccqs of explanation.

108

T h e F O R l o o @

It is hard to have a neutral opinion on the FOR
loop in standard Pascal. It's either special-purpose
baroque, or an eminent aid to learning and plain
clarity° I an sensitive to the first opinion, but

experience as taught me the second. Hence I would
like the construct's possibilities extended. This
Joslin suggests in the form of FOR i IN [set]. }bwe-
vet, a set is not congruent with the semantics of
the FCR loop. The order of execution ~uld have to
follow from the ord~of the elements, which is mean-
ingless for a true set. What we have here is rather
an enunerated type; instead of the brackets of a
set constsnt we should have the parentheses of an
enumeration, and IN (a boolean operator elsewhere)
should never have replaced the original := :

FOR v := (vail, val2, val3) DO
I do say enumerated ~. The bizarre possibility

in Pascal of using a control variable outside the
loop, or of assigning it a value inside it, comes
from using a normal variable for a loop counter.
Pascal should call a loop counter a loop coulter,
not a "control variable". It should have no meaning,
and no declaration, outside its loop. Inside the
loop, it should stand as a constant, unassignsble
to. Hence the FOR instruction should act as the coun-
ter declaration -- with implied or explicit type.

The special rules for the "control variable" in the
present standard make it downward-compatible with
this proposal, if the latter also keeps the TO and
Df~NID identifiers and their semantics.

A related possible extension would be enumerations
of non-ordlnal-type elements: records, arrays, etc.,
even files. In the present standard, an "enumerated
type" is bell type (compatibility-wise) and half
serial declaration of integer (cardinal) constants.
Since, according to Joslin, we are to have structured
value constructors (structured literal constants),
we should of course have structured symbolic (named)
constants. Thence to struct~ed enumerations is a
tempting step to take. The enumerated values wDuld
be naned by sy~olic constants, as always, and the
corresponding variables (or loop counters) could be
evaluated through the normal comparison operators,
and modified by SUCC, PRED, FOR and :=. They would
also be compatible with the base type, emzeept when
on the left side of an assignment. From an implement-
aticn point of view, this is simply a constant array
with an implicit index. Syntaxically, it is to struc-
tured constants what the present er~meration is to
integer (or rather cardinal) constants. But semanti-
cally it is a new structure: an ordered sequence.

T h e C A S E

Another embarrassment is the CASE construct. As
it stands in standard Pascal, it is an ugly growth
of special-use syntax. There will be no debate that
the extensions suggested by Joslln (OTHERNISE clause
and ranges in labels) bring in a needed helping of
logic. But we need not only to add to the syntax of
the CASE construct, but to renDve some of its spe-
cialness. If there were no OF following the selector,

we could re-instate the boolean syntax of IF state-
ments:

c o n m t r u c t

CASE ch
= 1.! : .0. ;

(> 'z') ' J,) : ... ;
IN ['?', '*', '1'..'5'] : ...
OI~E~ISE ...

END;

What I llke about this solution is that it is
very Pascalian: we remove a syntaxic category (case

labels) and find both that the ser-aantics is clearer
(cascading else if) and that the syntax is far mare
powerful (any type at all for the ease selector).
Yet, it does not forbid the present standard OF and
its senmntics.

C o n f o r n a a t c o n s t r u c t e d t y p e s

RECDRD, ARRAY, SET, POINTER ~nd FILE are not types

in Pascal, but type constructors. What's awkward is
that some operations are defined for all types ~on-
strutted with a given constructor but, contrary to
Pascal's %uild it yourself" style, no further gene-

ric operations can be built frcm these. The language
definition invokes tools for sts~d~rd operators,
functions or procedures that it refuses to the user's
own definitions. An exanple of the way things should
be is the string encodlng-decoding prqx)sal in Jos-

109

lin, which returns to the user the string coding
now reserved to I/O operations.

I believe that this restriction is original Pas-
cal's worst shortcut to compiler s~mpllcity. Twenty
years later, it has no remaining hint of an exnuse°
Most of the restriction could be removed by allow-
ing parameter declarations to specify only a con-
structor, as proposed in Joslln, and allowlng local
constant dsclarations of the form:

vail: MAG construct;
val2: SIZEOF construct;
val3: MAG construct [suhzonstruct];

where MAG (magnitude) is the number of el~mlents in
construct, and sizeof the number of bytes occupied
by it. Val3 shows the syntax for nested constructs.
The reserved ward ~MENT could be used for files.
The actual values c~ald of course be passed on the
stsck at time the procedure or function is called.

The point is to have a general solution available

for any constructor o It is an error to create special
categories for ccnformant-this-or-that.

Applied to standard Pascal beyond ccnformant
arrays, all this seems principle for prlnciple's
sake° However, the principle makes a major difference
as soon as we include a string ccnstructor, as propo-
sed. The need for tools to build generic string func-
tions is obvious.

Moreover, there is no reason to restrict strings
(lists of simple elsrents) to characters. Strings
should be declared using the same syntax as arrays°
(This fruitful simplification, h~ver, might have
to be sacrificed to established usage.) Standard
string functions should be as generic as those of
arrays. With "S17EOF element", a generic user-defined
string procedure could apply to strings of integers,
chars, reals, etc. Of co~se, impler~utations would
limit strings to a certain ms~nitude.

C l o s i n g

The general principles I wanted to illustrate
are certainly clear by new. Several other points
could still be made about the forthzcmlng standard.
For instsnce, orthogonality w~id suggest that any
form specified for structured literal constants also
he available for READs and ~ITEs of struntured
values. The use of enumerated types would be clearer
if SL~C and PRED accepted a second parameter for
non-unity increments or decrements. Nicer still ~ould
be ~L (emm, n), increasing enum by (positive or
regative) n, modulo the eardinality of the type --
in fact ROLL should apply to any ordinal type, inclu-
ding INIEGER.

But the one last point I ~uld feel remiss not
to n~ntien, though it my be quixotic, concerns the
file pointer. In the abstract, the standard file
type constructor is as defendable as any other. }bwe-
vet, it was never put in Pascal for abstract reasons,
but for the most ccncrete purpose in computing: I/O.
The notion of a file pointer leads to proSlems even
with s~mple console I/O. The sts~dmrd file type con-
structor maps buffered I/O only. By 1975, Wirth [4,
which see] was opting for the abandonmnt of ~T
and FUT. But by then they were a basic trick in eve-
rybody's I/O coding. Eight years later, when Turbo
Pascal came out with neither (~T nor PUT, it was
simply driven frcm the fold (and into the wilderness
of popular success).

d e t a i l s

The habit of file-windcw-watchlng leads to disre-
garding another trick that is far more useful with
today's large mamories: massive, unhuffered block
reads and writes. In Joslin's digest, I see no men-
tion of file accesses in nlaltiple-elament blocks.
But I do see that the file pointer, instead of being
relegated to the status of a footbridge for upward-
compatibility, rerslns a basic semantic element, as
shown by the needlessly involved definitions for
direct-acceas I/O. The file pointer will be confir-
med, it seams, as the most dated, devlce-mircoring,
major elsrent in standard Pascal.

[i] David A. Joslin: "Extended Pascal -- Illustrative
Features", SIGPLAN Notices, Dec. 1986.

[2] Ronald T. }buse: 'qhoughts on 'Extended Pascal
-- Illustrative Examples'", SIGPLAN Notices, Aug.
1987.

[3] Morashwar R. ~njade: '"~isual Specification of
Blocks in Programming Languages, SIGPLAN Notices,
Aug. 1987.

[4] Niklaus Wirth: "An Assessment of the Prog~mming
Lengusge Pascal", Proc. of the Int. Conf. on Reli-
able Software, lm~E, 1975.

i!0

