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The problem of allocating the data of a database to the sites of a communication network is 
investigated. This problem deviates from the well-known file allocation problem in several aspects. 
First, the objects to be allocated are not known a priori; second, these objects are accessed by schedules 
that contain transmissions between objects to produce the result. A model that makes it possible to 
compare the cost of allocations is presented, the cost can be computed for different cost functions 
and for processing schedules produced by arbitrary query processing algorithms. 

For minimizing the total transmission cost, a method is proposed to determine the fragments to 
be allocated from the relations in the conceptual schema and the queries and updates executed by 
the users. 

For the same cost function, the complexity of the data allocation problem is investigated. Methods 
for obtaining optimal and heuristic solutions under various ways of computing the cost of an allocation 
are presented and compared. 

Two different approaches to the allocation management problem are presented and their merits 
are discussed. 
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1. INTRODUCTION 

The demand for more and more information both by industry and government 
leads to databases that will exceed the physical limitations of centralized systems 
and to the integration of already existing databases, which may be geographically 
dispersed. Advances in the areas of both computer networks and databases make 
it possible to build these distributed databases. Computers can easily be connected 
to form a network, making it possible for them to communicate with each other. 
On top of such a network a distributed database management system can be built 
in such a way that the distribution of logical and physical components of the 
databases is kept hidden from the users. 

Author’s address: Computer Science Department, University of Twente, P.O. Box 217, 7500 AE 
Enschede, The Netherlands. 
Permission to copy without fee all or part of this material is granted provided that the copies are not 
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by permission of the Association 
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific 
permission. 
0 1988 ACM 0362~5915/88/0900-0263 $01.50 

ACM Transactions on Database Systems, Vol. 13, No. 3, September 1966, Pages 263-304. 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F44498.45063&domain=pdf&date_stamp=1988-09-01


264 - Peter M. G. Apers 

The advantages of a distributed database compared with a centralized one are 
increased availability, decreased access time, easy expansion, and possible inte- 
gration of existing databases [l, 371. The acceptance and widespread usage of 
distributed databases will highly depend on their efficiency. Therefore, it is 
important to supply a database management system with tools to efficiently 
process queries and to determine allocations of the data such that the availability 
is increased, the access time is decreased, and/or the overall usage of resources 
is minimized. 

The problem of allocating files in a computer network has been extensively 
studied. However, the results obtained cannot be straightforwardly applied to 
distributed databases. One deviation from the file allocation problem is the unit 
of allocation. Tuples occur in the same relation because they contain data from 
the same set of domains to describe the same entity or relationship. However, 
one group of tuples may be mainly used in New York and another group in 
Amsterdam. Obviously, splitting the relation into fragments and locating one 
fragment on one side of the ocean and the other on the other side will tremen- 
dously decrease intercontinental traffic. 

Another deviation from the file allocation problem is the way the relations are 
accessed. From current research on distributed query processing we know it is 
common that more than one relation is accessed in a query and that complex 
processing schedules, which include transmissions between relations stored at 
different sites, are used. 

In this paper we will present a model that makes it possible to compare the 
cost of possibly not yet completely specified allocations for schedules produced 
by arbitrary query processing algorithms. The model is general enough to be used 
in both branch-and-bound and heuristic algorithms for minimizing various cost 
functions. For minimizing the total transmission cost, a method is proposed to 
determine the fragments to be allocated from the relations in the conceptual 
schema and the queries and updates executed by the users. Under restrictive 
conditions it can be shown that these fragments are the smallest ones that have 
to be considered. For the same cost function, it is shown that the problem of 
determining a nonredundant data allocation to minimize total transmission cost 
is NP-hard. Methods for obtaining optimal and heuristic solutions under various 
ways of computing the cost of an allocation are presented and compared. Cen- 
tralized and decentralized approaches to the problem of managing data allocations 
are presented and their merits are discussed. 

This paper is organized as follows. In Section 2 an overview is given of previous 
work in the area of file and data allocation. The differences between the well- 
known file allocation problem and the data allocation problem in distributed 
databases are discussed in Section 3. Section 4 contains the introduction of a 
model to compute the cost of allocations, the way updates are treated, and a way 
of determining the fragments to be allocated. In Sections 5 and 6 the problem of 
computing optimal and heuristic data allocations when using a static approach 
to compute the cost of an allocation are investigated. In Section 7 the same is 
done for a dynamic approach. Static or dynamic refers to adjusting or not 
adjusting the query processing schedules when computing the costs of various 
allocations in the process of determining a final allocation. Section 8 discusses 
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the problem of managing data allocations by one or several database administra- 
tors. We end with a summary of the results obtained. 

2. OVERVIEW OF PREVIOUS RESEARCH ON THE FILE 
AND DATA ALLOCATION PROBLEM 

The file allocation problem has many disguises. In this section we will not 
attempt to cover all the related research; only the main line of research will be 
discussed. For a more complete discussion of the file allocation problem we refer 
to [24]. 

Before distributed database management systems were investigated, networks 
already existed for many years. The problem of where to allocate a file and its 
copies, given a known set of retrievals and updates and their execution frequencies 
such that a cost function is minimized, is known as the file allocation problem. 

Chu was probably the first to work on the file allocation problem. In [17, 181 
he presented a simple model that only allows for a nonredundant allocation of 
the files. The optimization goal is to minimize total transmission cost subject to 
available secondary storage at each site and a given maximum on the expected 
retrieval time. The result is a zero-one programming problem subject to nonlinear 
constraints, which can be solved with standard linear integer programming 
techniques. 

The model proposed by Casey [12] allows for multiple copies. To do so, a 
distinction must be made between queries and updates, because an update must 
access all copies and a query needs to access only one. The optimization goal is 
to minimize the cost in dollars of the transmissions plus the storage cost of the 
files. In [21] it was shown that the file allocation problem modeled this way is 
NP-complete [4, 19, 221. 

In [28,29] both the allocation of the application programs that access the files 
and the allocation of files themselves were discussed. Data can be stored relatively 
easily at different sites or transmitted from one site to another. However, 
programs, because of the programming language in which they are written, are 
not as portable as one might wish. A second important aspect discussed by Levin 
and Morgan is the change in the access pattern over time, 

Another approach to the file allocation problem is to allow for changes in the 
hardware as well as in the allocation of the files. In [30] the capacity of the 
communication channels may be determined besides the allocation of the files. 
The resulting model is a nonlinear integer programming problem for which a 
heuristic approach is used to reach a solution. 

In [36] an attempt is made to consider the file allocation in the environment 
of a distributed database. Although queries that access more than one relation 
are allowed, the underlying assumption-that the query is processed at the result 
site without transmissions between the sites where the relations are located- 
reduces the whole problem again to the file allocation problem. 

In [5, 6, 81 we considered the integration of query processing and data 
allocation. A heuristic algorithm was developed to handle both the nonredundant 
and redundant case. Determining the unit of allocation was discussed and 
different ways of managing data allocations were compared in [7, 81. 

ACM Transactions on Database Systems, Vol. 13, No. 3, September 1988. 



266 l Peter M. G. Apers 

Later, in [13, 141, a similar goal was pursued in the context of a general 
distributed database design methodology. In [14], only predefined schedules 
consisting of a number of basic operations on relations were considered. 

In [38], limited processing and network capacities are assumed; transmission 
of the result of a query to the result site is not considered; only transmissions 
between fragments are considered, rendering the problem into a cluster analysis 
problem. 

In [41] the file allocation problem is discussed for a local area network with 
broadcasting facilities. It turns out that some of the NP-hard problems can be 
solved in polynomial time for such an environment. 

3. ALLOCATION PROBLEM IN DISTRIBUTED DATABASES 

In this section we will discuss and elaborate on the reasons why the file allocation 
problem does not adequately describe the allocation problem in distributed 
databases and state the data and operation allocation problem. 

A distributed file system differs greatly from a distributed database. The 
solutions for the file allocation problem do not characterize solutions to the 
allocation problem in a distributed database for the following reasons: 

-The objects to be allocated are not known prior to allocation. Relations, which 
describe logical relationships between data, are not suited as units of allocation 
because users at different sites might be interested in different fragments of a 
relation. 

-The way the data are accessed is far more complex. In the file allocation 
problem the only transmissions required to combine data from different files 
are transmissions from sites containing files to the result site, where the result 
is computed. In current research on distributed query processing we observe 
that to process a query, data transmissions between sites where fragments are 
allocated are also needed. This means that the fragments cannot be allocated 
independently. 

To capture these aspects, the file allocation problem is generalized into the data 
and operation allocation problem: 

Given the queries and updates, the frequencies of their usage, and the sites 
where the results have to be sent, determine (1) the fragments to be allocated, 
and (2) allocate these fragments, possibly redundant, and the operations on 
them to the sites of the computer network such that a certain cost function is 
minimized. 

For short, we will often use the term data allocation when we mean data and 
operation allocation. 

Before going on we will elaborate on the above-mentioned deviations from the 
file allocation problem. 

3.1 Data Allocation 

The various ways of splitting a relation into fragments and the terminology for 
the different allocations will be discussed in this section. 

Grouping together complete tuples is called horizontal splitting, and grouping 
together attribute values of all tuples is called vertical splitting. If the relations 
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are split horizontally and/or vertically and the resulting fragments are placed at 
different locations, the database is called partitioned. If copies of relations or 
fragments are placed at several locations, the database is called replicated. 

Example 1. Figure l(a) shows the relation WINE with attributes YEAR, 
NAME, PRODUCER, AREA, and COUNTRY, Each tuple represents a wine for 
which the grapes were grown in a certain area, picked in a certain year, and 
bottled by a certain producer. 

Figure l(b) shows the relation WEATHER, containing the attributes YEAR, 
AREA, COUNTRY, SUN, and RAIN. SUN stands for the hours of sun and 
RAIN for the number of millimeters of rain in a particular area in a particular 
year. The two relations will be used in the examples to come. 

One way to partition the relation WINE is to split it based on countries that 
produce wines, assuming those are France, Italy, and the USA: 

WINE-F = WINEjCOUNTRY = France) 
WINE-I = WINE (COUNTRY = Italy) 

WINE-U = WINE{COUNTRY = USA). 

Locating WINE-F in Paris, WINE-I in Rome, and WINE-U in San Fran- 
cisco is an example of a partitioned allocation. 

An example of a vertical split is 

WEATHER-R = WEATHER[YEAR, AREA, COUNTRY, RAIN] 
WEATHER-S = WEATHERIYEAR, AREA, COUNTRY, SUN]. 

Locating WEATHER-R in Oslo, WEATHER-S in Rome, and WEATHER in 
New York is an example of a partitioned and replicated allocation. 

Note that the primary key of relation WEATHER, which is YEAR, AREA, 
and COUNTRY, is part of both fragments WEATHER-R and WEATHERS; 
this is necessary to be able to update both fragments. 

3.2 Query Processing 
To get an idea of the problems involved in distributed query processing, we will 
discuss some of the problems involved. Assume we want to process the query: 

Give the name and the year of wines and the hours of sun of areas where the 
grapes were picked and where more than 1,700 mm. of rain fell 

stated by a user in Amsterdam. 
Some of the distributed query processing algorithms require that the database 

management system supplies a materialization of the fragments. This means that 
for each fragment a single copy has to be selected such that together with other 
copies a consistent view of the database is given. Here we assume that the 
materialization looks like: fragment (WEATHER (RAIN > 1,700])[ YEAR, SUN, 
AREA] at the site in New York and the fragments WINE-F, WINE-I, and 
WINE- U in Paris, Rome, and San Francisco, respectively. 

The query may have many processing schedules for executing it, of which we 
will discuss only two. 
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WINE 

YEAR NAME 

1970 Margaux 
1972 Beaune 
1978 Chianti Classico 
1976 Cabernet Sauvienon 

PRODUCER 

Chateau Margaux 
Louis Latour 
Villa Antinori 
Christian Brothers 

AREA 

Bordeaux 
Bourgogne 
Toscana 
Nana VaIIev 

COUNTRY 

France 
France 
Italy 
USA 

(4 

WEATHER 

YEAR AREA COUNTRY SUN RAIN 

1970 Ardennes Belgium 1551 1105 
1976 Napa Valley USA 3022 601 
1970 Bordeaux France 2008 900 

(b) 

Fig. 1. (a) relation WINE and (b) relation WEATHER. 

Schedule 1. Transmit (WEATHER(RAIN > 1,70O))[YEAR, SUN, AREA] 
from New York to Paris, Rome, and San Francisco, and compute the joins based 
on YEAR and AREA at the respective locations. After that, the results are 
transmitted to Amsterdam. If the size of the selected and projected relation 
WEATHER is 18,000 and the sizes of the results are 400, 800, and 200 bytes, 
respectively, the total number of bytes transmitted is 3 X 18,000 + 400 + 800 + 
200 = 55,400. 

Schedule 2. Transmit the fragments WINE-F, WINE-I, and WINE-U to 
New York, where they are united and the join based on YEAR and AREA is 
computed between this union and WEATHER. If the sizes of the three fragments 
of the relation WINE are 12,000, 15,000, and 20,000, respectively, and the size of 
the result is 1,400 bytes, the total number of bytes transmitted is 12,000 + 15,000 
+ 20,000 + 1,400 = 48,400. 

Clearly, the first schedule is more expensive in terms of the number of bytes 
transmitted; however, most of the transmissions and computations are done in 
parallel, resulting in a smaller response time. 

The purpose of query processing algorithms is to determine processing sched- 
ules for queries such that a certain cost function is minimized. There are different 
ways of measuring the cost of a schedule. The cost function may include the cost 
to transmit data and/or the cost to execute a certain operation. Here we will 
confine ourselves to the total transmission cost. This cost function just adds up 
the costs of all the data transmitted in the schedule. As far as the model 
introduced in the following sections is concerned, this confinement is merely for 
presentational reasons, because the model does not depend on it. The methods, 
however, are especially designed for minimizing the total amount of data 
transmitted. 

To correctly represent processing schedules we also need to know something 
about executing them. The processing schedules contain data transmissions from 
one site to another and local processing at the different sites. To let the individual 
operations and transmissions cooperate in the way described in the schedule we 
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require synchronization and forking processes before and after every operation 
and transmission. A synchronization process lets an operation wait until its 
input(s) are completely or partly available. For example, the union of the 
fragments WINE-F, WINE-I, and WINE-U in Schedule 2 may start its 
execution if its operands are only partially locally available. A forking process 
allows the result of an operation or transmission to be the input of one or more 
other operations or transmissions. For example, the forking process after the 
selection and projection on the relation WEATHER creates copies of the result 
and gives them to the synchronization processes of the transmissions for trans- 
mission to different sites. 

For a more detailed discussion on distributed query processing we refer to the 
current research on this topic [g-11, 20, 23, 26, 32, 34, 39, 40, 42-441. 

4. UNIT, REPRESENTATION, AND COST OF DATA ALLOCATIONS 

In Subsections 4.1 and 4.2, notions are introduced to represent allocations and 
to compute their costs. In Subsection 4.3 the cost of updating several copies is 
discussed. A way of determining the unit of allocation is proposed in Sub- 
section 4.4. 

4.1 Representation of Data Allocations 

In this section we introduce some notions to describe a model to represent data 
allocations. We assume that the unit of allocation is a fragment. 

To allocate the fragments we have to know the processing schedules of all the 
queries and updates that access these fragments. However, these schedules 
depend on the allocation of the fragments that we want to determine. One way 
of solving this circular problem is to do an exhaustive search to find an optimal 
allocation. For a large number of fragments this is not feasible. Therefore, the 
representation model should be general enough to allow for both heuristic and 
branch-and-bound approaches. Both approaches have in common that allocations 
in which only part of the data is allocated can occur. To represent these 
allocations and compare their costs we introduce some notions. 

A nucleus-site is a pair (FS, OS), where FS is a set of fragments and OS is a 
set of operations. An operation is a triple (i, f, x), where x is the execution time 
of the operation and f the frequency with which the ith transaction of which the 
operation is part is executed. A transaction consists of a set of operations. There 
are two types of nucleus-sites, namely physical sites (PhS) and virtual sites (VS). 
A physical site represents a site in the computer network and a virtual site 
represents a fictitious site, the purpose of which will be explained in a moment. 
Both types of nucleus-sites are used to represent allocations. 

Putting fragment F in the set of fragments of PhS corresponds to allocating F 
to the site in the computer network corresponding to PhS. If part of the allocation 
looks like VS = ((F,, F2j, ( )), it represents that fragments F, and F2 are to be 
allocated to the same site in the computer network but that which site is not 
specified. Below we will introduce two operations on allocations and discuss their 
differences. 

A physical site may have assigned to it a set of virtual sites; this set will be 
called the assigned set. A virtual site can be assigned to at most one physical site, 
which means that it is placed in the assigned set of that physical site. 
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The union of two nucleus-sites is a nucleus-site whose set of fragments is the 
union of the sets of fragments of the two nucleus-sites, whose set of operations 
is the union of the sets of operations, and whose assigned set is the union of the 
assigned sets. The result of a union of two virtual sites is again a virtual site, and 
the union of a virtual site and a physical site is that physical site. Note that the 
union between two physical sites is not defined. 

The difference between an assignment and a union is that applying the union 
to an allocation means changing it permanently. The assignment, however, allows 
for changing the allocation back and forth. To make the assignment look like a 
temporary union, the cost of an allocation, which will be defined later, should 
not be different whether a virtual site is assigned to or united with a physical 
site. These two operations make it possible to search through the space of possible 
allocations by branch-and-bound techniques and heuristic algorithms. 

A completely specified allocation is an allocation in which all fragments and 
operations are in sets of physical sites. A partially specified allocation is one where 
some of the fragments or operations are still in the corresponding sets of virtual 
sites. 

4.2 The Cost of a Data Allocation 

In this subsection we will introduce tools to compute the cost of a completely 
and partially specified allocation. 

The computation of the cost of an allocation is done by means of a processing- 
schedules graph. Such a multigraph consists of 

(1) PhS-nodes, for the physical sites, 
(2) VS-nodes, for the virtual sites, and 
(3) edges, for the data transmission between two nodes, PhS- or VS-nodes. 

The edges, which are directed, are labeled with a triple (i, f, d), where d stands 
for the amount of data transmitted between the sites that correspond to the 
nodes in the processing-schedules graph for processing the ith transaction, and f 
stands for the frequency with which this transaction is executed. Because most 
of the time we are interested in the processing-schedules graph and not merely 
in the allocation itself, we will talk about the nodes in the processing-schedules 
graph as if they were the physical or virtual sites themselves. 

First, we show how to construct a processing-schedules graph and how it is 
graphically represented, and then we show how this construction is used to 
compute the cost of an allocation. The basic idea is that given an allocation we 
can construct a processing-schedules graph by (1) creating PhS- and VS-nodes 
for the physical and virtual sites, respectively; (2) creating edges that represent 
the transmissions of the processing schedules, which are computed by an arbitrary 
query processing algorithm based on the allocation; and (3) adding the operations 
of the processing schedules to the operation-sets of the physical and virtual sites. 

The processing schedules of the queries and updates are computed based on 
the allocation of the fragments distributed over a hypothetical network. This 
hypothetical network has a site for every physical and virtual site, and they are 
connected with each other by communication channels of the same bandwidth; 
however, if VS is assigned to PhS we assume that sending data between VS and 
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Fig. 2. Graphical representation of a physical site with virtual sites. 

PhS does not cost anything. It is just as if the data of VS and PhS were stored 
at the same site. 

The node of a nucleus-site in the processing-schedules graph is graphically 
represented by a box; in this box there is a black dot representing the nucleus- 
site itself. The boxes that represent the elements of the assigned set are placed 
on the edges of the box such that they do not overlap with each other. Figure 2 
shows part of a processing-schedules graph with one physical site, PhSi, and two 
virtual sites, VSj and VSk, of which VSj is assigned to PhSi. 

Example 2. Figure 3 shows a processing-schedules graph of a partially specified 
allocation for three transactions. There are two physical sites, PhS, and Ph&, 
and three virtual sites, VS1, V&, and VS3, of which V& is assigned to Ph&. 
Transaction 1, which is executed ten times per unit of time, computes a join 
between FI, allocated to VS,, and F,, allocated to VS,. A distributed query 
processing algorithm can determine that sending data between V& and PhS2 
does not cost anything. Its processing schedule consists of the selections O1 and 
02, which are elements of the sets of operations of VSI and V&, respectively. 
The result of 0, , whose size is 200 bytes, is transmitted to V&, where the join 
(0,) with the result of O2 is computed. Finally, this result, 800 bytes in size, is 
sent to the physical site Ph&. 

Transaction 2, which is executed six times per unit of time, represents updates 
(04) by a user at PhS, of fragment F,, which is allocated to VS1. The edge from 
PhS, to VSI represents the transmission of the actual changes supplied by the 
user. 

Transaction 3 retrieves (05) data from F3, allocated to VS,. It is executed 
20 times per unit of time. 

To compute the cost of a completely (partially) specified allocation we start 
by constructing the processing-schedules graph based on the allocation and 
the processing schedules. This processing-schedules graph contains all the 
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PhS, 

;3,20,1000) 

VSl = (IPJ.{O1.0,)) 
vs2 = ((F21.(02,031) 
vs3 = W31~~0~1) 

Fig. 3. An example of a processing-schedules graph. 

information necessary to check constraints, such as bandwidth, CPU-utilization, 
availability, etc., and to determine the cost of the individual queries and updates. 

For example, for each communication channel and each CPU, all transmissions 
and operations are known. Based on that, the expected waiting times for the 
channels can be computed. For each physical site the expected waiting time of 
its operations is determined as if all the sets of operations of the virtual sites 
that are assigned to it were united. The expected waiting time of the operations 
of a virtual site VS that is assigned to a physical site PhS is computed as if the 
set of operations of only VS and PhS were united. Note that although more than 
one virtual site may be assigned to a physical site, the expected waiting times of 
their operations are computed for each virtual site independently. 

Possible costs of an allocation could be the sum of the total transmission costs 
of queries and updates weighted by their execution frequencies, the average 
response time of queries and updates, etc., possibly subject to one of the con- 
straints mentioned above. If a constraint is violated the cost of the corresponding 
allocation is infinite. 

In this paper we will confine ourselves to the total transmission cost of an 
allocation defined as the sum of the total transmission costs of queries and 
updates weighted by their execution frequencies. We will show how this can be 
computed. For each transaction i we extract from the processing-schedules graph 
the transmissions labeled with the identification number i that are not connecting 
a physical site with one of its assigned virtual sites. This value is multiplied by 
the execution frequency of transaction i and summed up by the total cost. Note 
the algorithmic way the cost of the allocation is computed. 

Example 3. From the processing-schedules graph of the partially specified 
allocation discussed in Example 2, we will construct the processing schedules of 
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the three transactions, taking into account the assignment of VS2 to Ph&. 
Because KS1 and VS, are not assigned to any physical site the adjacent edges 
will be part of the schedules of the queries and updates. For simplicity, we confine 
ourselves to the transmissions in the processing schedules. 

Transaction 1. 

F1 2 result site 
total transmission cost = 200 

Transaction 2. 

result site 2 Fl 
total transmission cost = 800 

Transaction 3. 

F3 z result site 
total transmission cost = 1,000 

This results in a total transmission cost of the allocation of 10 X 200 + 6 X 
800 + 20 x 1,000 = 26,800. 

In this subsection the costs of completely and partially specified allocations 
were computed by means of a processing-schedules graph. This graph was 
constructed by giving the allocation to a query-processing algorithm that returns 
a processing schedule for each query. The transmissions and operations in such 
a schedule are incorporated in the processing-schedules graph and the physical 
and virtual sites. 

4.3 Forking Processes and Forking Graphs 

So far, we have discussed the way a processing-schedules graph can be constructed 
given a partially specified allocation and how the cost of such an allocation can 
be determined from it. Our goal is to obtain a completely specified allocation by 
manipulating partially specified allocations such that a given cost function is 
minimized. Changing an allocation may have an effect on the processing sched- 
ules of the transactions. 

The placement of forking processes in a schedule depends on the allocation. 
Therefore, we will introduce a forking graph, which enables us to more efficiently 
handle forking processes when changing partially specified allocations. The cases 
in which forking processes are used are listed below. The first case is concerned 
with the notification of the processing schedule of a query or update to all sites 
involved, the second case concerns the notification of the tuples to be updated to 
the copies of a fragment in an update transaction, A third case will be seen when 
discussing the splitting of relations. All cases have in common that the forking 
process is used to start a parallel computation. The representation of a forking 
graph is shown in Figure 4. Such a forking graph will be a subgraph of a 
processing-schedules graph and consists of a notification node and a set of 
receiving nodes. All the nodes are VS-nodes. All edges in a forking graph are 
labeled with the same triple, because to each receiving site the same amount of 
data will be transmitted with the same frequency. Each receiving node is part of 
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notification node 

receiving nodes 

Fig. 4. Representation of a forking-graph. 

a schedule for a query that references the fragment allocated to that receiving 
node. 

Imagine that this forking graph is part of an update schedule. After the tuples 
that have to be changed are determined, the actual changes are sent to the copies 
of the fragment. At the notification node the changes are computed and the 
copies are located at the receiving nodes. 

What kind of changes can occur in the allocation? Two copies that were located 
at different virtual sites can be allocated to the same virtual site. This means 
that the two virtual sites are united and two copies of the same fragment are put 
in the fragment-set of the resulting virtual site. Having two identical copies at 
one nucleus-site is, as far as efficiency is concerned, useless and, therefore, only 
one is maintained. If in a forking-graph two receiving nodes are united, one of 
the edges to these nodes disappears. Also, if one of the copies of the fragment is 
allocated to the site corresponding to the notification node, there is no need to 
transmit data to it. Therefore, if a receiving node is united with a notification 
node, the edge between them is deleted. 

Besides the removal of an edge representing a superfluous transmission, 
operations directly involved with this transmission and operations that worked 
on superfluous copies are also removed from the operation-sets. 

4.4 Unit of Allocation and Processing Schedules 

Having explained how a processing-schedules graph for a given allocation can be 
constructed and how it is used to compute the cost of that allocation, we will 
now discuss how to determine the unit of allocation. In [7] we gave a global 
outline of the splitting algorithm. Later, in [15] a similar goal was pursued, in 
[31] only vertical partitioning is considered. 

Let us assume that we have a set of queries and updates and the frequencies 
of their usage. As far as the relational operations are concerned, queries and 
updates are the same and therefore we only discuss queries. A query will use only 
fragments of the relations in the global conceptual schema. These fragments are 
characterized by selections and projections. 

First, we take a look at just one relation, say R. A selection is a Boolean 
expression of a number of simple clauses A 13 a, where A is an attribute, /3 is a 
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comparison operation, and a is a value from the domain of A. Each of these 
Boolean expressions describes a subset of the tuples of the relation R. We are 
interested in the intersections, caused by overlapping subsets, which can be 
uniquely identified by saying in which selections they participate. 

The partition caused by the overlapping subsets form the horizontal split of R. 
If there are n selections there will, in general, be (2” - 1) fragments. The vertical 
split of R is done based on the attributes. Each attribute together with the 
primary key is put in a separate fragment. The reason for this will become clear 
after Theorem 2. If there are m attributes of which Iz form the primary key, there 
will be m - k + 1 fragments after vertical splitting. Combine the above results: 
The number of fragments caused by horizontal and vertical splits equals 
(2” - l)(m - K + l), where n is the number of selections, m is the number of 
attributes, and k is the number of attributes in the primary key. 

Example 4. Assume we have relation WEATHER with relational schema: 

WEATHER (YEAR, AREA, SUN, RAIN). 

Also the following queries are given: 

Q1 = WEATHER(AREA = Bordeaux AND SUN > 2,00O][YEAR, AREA, SUN] 
Q2 = WEATHER(RAZN c lOOO)[YEAR, AREA, RAIN]. 

From the selections in these queries and the attributes in the schema we 
determine the following fragments: 

F, = WEATHER (AREA = Bordeaux AND SUN > 2,000 
AND RAZN 2 l,OOO] [ YEAR, AREA] 

F2 = WEATHER {AREA = Bordeaux AND SUN > 2,000 
AND RAIN 2 l,OOO)[YEAR, AREA, SUN] 

F3 = WEATHER {AREA = Bordeaux AND SUN > 2,000 
AND RAZN >- l,OOO}[ YEAR, AREA, RAIN] 

F4 = WEATHER (AREA = Bordeaux AND SUN > 2,000 
AND RAIN c 1,000) [YEAR, AREA] 

Fe = WEATHER (AREA = Bordeaux AND SUN > 2,000 
AND RAIN < l,OOO)[ YEAR, AREA, SUN] 

F6 = WEATHER (AREA = Bordeaux AND SUN > 2,000 
AND RAIN < l,OOO][ YEAR, AREA, RAIN] 

F7 = WEATHER ((AREA # Bordeaux OR SUN 5 2,000) 
AND RAIN < l,OOO][ YEAR, AREA] 

Fs = WEATHER ((AREA # Bordeaux OR SUN 5 2,000) 
AND RAIN c l,OOO)[YEAR, AREA, SUN] 

Fg = WEATHER ((AREA # Bordeaux OR SUN I 2,000) 
AND RAIN c 1,000) [YEAR, AREA, RAIN]. 

Note that simply applying this method might generate fragments that contain 
only a few or even one tuple [16]. This is, of course, not desirable. Therefore this 
method should be handled with care and some clustering may be done by the 
database designer, for example, by only considering view definitions. 

Before discussing whether further splitting is necessary as far as minimizing 
the cost of data allocations is concerned, we show the extension for queries that 
reference more than one relation. If a query contains a join, the fragments 
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required by the join can also be described by projections and selections. A selection 
consists of the clauses that are applicable to the corresponding relation and may 
also include clauses that are obtained by transitivity on clauses on the other 
relation and the joining clauses. 

Assume a set of queries were used to split the relations into fragments and 
that these fragments are distributed over a computer network. To investigate 
whether further splitting is necessary, we discuss execution of queries by pro- 
cessing schedules that use the relational algebra operations select, project, and 
join in the way described below. 

The result of a select is obtained by taking those fragments whose describing 
clause is contained in the Boolean expression of the select. What is done with 
these fragments depends on the next operation in the processing schedule. If 
there is none, all these fragments are sent to the result site. 

The result of a project is obtained by taking those fragments whose attributes 
are part of the project. The result of a project is computed in several phases. 
First, all fragments with the same set of primary keys are collected at one site, 
and there local projects are computed (the same as a distributed project in [34]). 
Then the results are collected at one site where again a project is computed. 

Which fragments are involved in a join can be determined in the same way as 
was done for a select and a project. There are many ways to compute a join. Here 
we will assume that the result of a join is computed as follows. For one relation 
all fragments with the same set of primary keys are collected at one site. So now 
the relation is only horizontally split and distributed over several sites. All the 
fragments of the other relation are sent to these sites and there the joins are 
computed [20]. What is done with the resulting fragments of the join again 
depends on the next operation. If there is none, all of them are sent to the result 
site. 

Example 5. The result of the select RAIN < 1,000 is obtained by taking 
fragments F4, F5, F,, F7, F8, and F9. The result of the project [YEAR, AREA, 
SUN, RAIN] is obtained by taking the fragments F,, F3, F5, Fs, F,, and F9. 

Assume that all fragments are located at different sites in a computer network. 
The processing schedule of query Qz of Example 4 may then look like: 

(1) consider F4, F5, F6, F7, F8, and FS as input of the project, 
(2) send Fs to F5 and F9 to Fs and execute local projects. 
(3) send the results to the result site and do again a project. 

Note that because the primary key is among the attributes in the project, the 
projects in steps 2 and 3 have no effect. 

Now we will discuss whether further splitting the fragments obtained by 
applying the selection predicates of the queries is necessary. To do so, we need 
to introduce the notions static under splitting and weighted split and try to relate 
them for horizontal and vertical splitting. We call a distributed query processing 
algorithm static under splitting if a split of a fragment F into F’ and F” will only 
cause changes in a schedule concerning the incoming and outgoing edges of F in 
such a way that an edge coming from F is now replaced by an edge coming from 
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Fig. 5. Changes in schedule caused by static splitting algorithm. 

F’, or from F”, or from both. Furthermore, an edge going to F is now replaced 
by an edge going to F’, or to F”, or to both. 

Figure 5(a) shows part of a processing schedule involving the fragments A, B, 
C, D, and F; Figure 5(b) shows the changes in the schedule caused by splitting F 
into F’ and F”. The changes reflect the changes by a query processing algorithm 
that is static under splitting. 

A split of F into F’ and F” is called a weighted split if an outgoing edge of F 
labeled with (i, f, d) is replaced by two edges labeled (i, f, d 1 F’ l/l F 1) and 
(i, f, d 1 F” l/l F 1) leaving F’ and F”, respectively. An incoming edge of F labeled 
(j, g, e) is replaced by two edges both labeled (j, g, e) going to F’ and F”. 

The value d stands for the estimated amount of data transmitted in trans- 
action i from fragment F to another fragment. The estimation is done by a 
query processing algorithm. What the definition of weighted split says is that the 
data that come from F now come from both F’ and F” and the amount of data 
is proportional to the sizes of F’ and F”. Now we will prove a theorem that 
relates the notions static under splitting and weighted split for a horizontal split. 
This is only possible when the split is done randomly. If the split is not random 
and information about the split is used in query processing, this information 
should be added to the set of queries on which the relations are split. 

THEOREM 1. For minimizing total transmission cost, a horizontal split of F into 
F’ and F” that is done randomly is a weighted split if the distributed query 
processing algorithm is static under splitting. 

PROOF. Assume that we split a fragment horizontally into F’ and F”. An 
outgoing edge of F is the transmission of a result of an operation in which F 
participated. Because the split is done randomly a tuple of F’ is equally likely 
part of the result as a tuple of F”. The result can be obtained by applying the 
operation to both F’ and F” and uniting the two results. Because of these two 
reasons the estimated size of the result produced by F’ and F” is 1 F’ l/l F 1 and 
I F” l/l F 1 times the estimated size of the result produced by F. 

Because the split is done randomly no information is known about the tuples 
in F’ and F” and, therefore, the incoming edges are both labeled with the label 
of the original edge. Hence, the split is weighted. 0 
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A similar result cannot be obtained for a vertical split. A vertical split is not 
necessarily weighted because the change in the schedule may cause all the 
incoming edges to go to F’ and none to F”. An example of this is the schedule 
for a project. Assume that F and H are fragments obtained by a vertical split of 
relation R. The schedule of a project on R will first compute local projects on F 
and H and possibly send the result of the project on H to the site of F. If F is 
split vertically into F’ and F”, the schedule will change drastically because F no 
longer exists. A new schedule will first compute local projects on F’, F”, and H 
and then send results of F” and H to F’. But then the split is not weighted. 

Now we come to the main result of this section. 

THEOREM 2. Further splitting the fragments obtained by horizontally splitting 
the relations based on clauses of queries and vertically splitting them on (primary 
hey, attribute)-pairs will not decrease the total transmission cost, if the schedules 
are static under splitting. 

PROOF. Because the cost function is the total transmission cost, the labels 
(i, f, d) are replaced by fd. The fragments obtained cannot be split vertically 
because they contain only one attribute besides the primary key, which is 
mandatory. 

Let us consider a horizontal split of fragment F into F’ and F”. Let us assume 
that F’ and F” are allocated to different physical sites in the optimal allocation. 
We will show that allocating F’ and F” to the same physical site will not increase 
the total transmission cost. Figure 6 shows part of the processing-schedules graph 
in the split form; r ’ stands for 1 F’ 1 /I F 1 an d r” for 1 F” 1 /I F 1. All virtual sites 
have been united with physical sites except VS’ and VS”, which contain F’ and 
F”, respectively. to, tl, and tz stand for the total amount of data weighted by the 
frequencies of their transactions from a fragment of Ph& to F, from F to a 
fragment of Ph&, and from F to a fragment of Ph&, respectively. In the 
complete processing-schedules graph there may be more incoming edges for VS’ 
and VS”, but suppose that the one labeled with to is the largest of them. 

In this partial processing-schedules graph there are six possible assignments 
such that VS ’ and VS” are assigned to different physical sites. In all of them 
either VS’ or VS” is assigned to PhS, or Ph&. Without loss of generality, 
assume that VS ’ is assigned to Ph&. This means that r ‘t, 2 r’t2, which implies 
rNtl > r”tz. Removing VS” from the site to which it was assigned and uniting 
it with VS’ changes the total transmission cost as follows: 

max(r”&, to) - to - r”h, 

which is less than or equal to zero. Hence, the two fragments F’ and F” have 
been brought together without increasing the total transmission cost. So that 
further splitting the fragments horizontally is not required either. 0 

In practice, it may happen that distributed query processing algorithms are 
not static under splitting, but we expect that changes in the processing schedules 
caused by splitting a fragment can be modified back to the processing schedule 
before the fragment was split, just as in the theorem, without increasing total 
transmission cost. Therefore, the fragments Fij will be the objects to be allocated. 
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PhS, 

Fig. 6. Partial processing-schedules graph. 

When minimizing response time the problem of determining the objects to be 
allocated is more complicated. A good heuristic to minimize the response time is 
to allow for as much parallelism as possible. At first glance, it may seem a good 
idea to just split R horizontally in sets containing an equal number of tuples. 
However, no information is known about the tuples in the obtained fragments, 
and, hence, every query or update must access all the fragments, causing less 
concurrency. Therefore the same approach is taken as for minimizing total 
transmission cost. The relations are split into fragments based on the queries 
stated by the users at the sites in the computer network. Further splitting the 
obtained fragments vertically will not enhance more parallelism. Further splitting 
it horizontally, on the other hand, is a good idea. Because the clauses of all 
queries have already been used, this further splitting will be done randomly. 
Owing to overhead it is better not to place every tuple at a different site. We 
assume that threshold values regarding the minimum and maximum number of 
tuples per fragment are given as system parameters. So the fragments obtained 
for minimizing total transmission cost are horizontally split further based on the 
threshold values. 

The fragments constructed in the way described above are the objects to be 
allocated. If two fragments that contain the same primary key end up in the 
same fragment-set of a virtual or physical site, they together can be viewed as 
one large fragment with only one primary key. 

Knowledge about a completely specified allocation is put in a global data 
dictionary. Such a dictionary may contain data about attributes that are con- 
tained in fragments, selections on the relations that define the fragments, number 
of tuples in the fragments, selectivity of certain attributes, allocation of copies, 
etc. Each of these items is of interest to different parts of the distributed database 
management system. Probably each will be accessed by different sites with a 
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different access pattern. Therefore, an allocation of the global data dictionary can 
be computed in exactly the same way as was done for the relations. 

To summarize this subsection we may conclude that just looking at the logical 
components of a database is not enough to determine the objects to be allocated. 
Therefore, a way to split relations horizontally, based on the predicates of the 
queries, and vertically based on the attributes, was proposed. 

5. OPTIMAL DATA ALLOCATION USING STATIC SCHEDULES 

In this and the coming sections we assume that total transmission cost is to be 
minimized. First, we will introduce the notion of static processing schedules. 
Then, we will investigate the complexity of the data allocation problem using 
static processing schedules and discuss computing optimal allocations. 

5.1 Complexity of Data Allocation Problem Using Static Schedules 

In Section 4 a way of computing the cost of an allocation was given. The idea 
was to give the data allocation and the set of queries to a query processing 
algorithm, determine the processing schedules, put these in a processing-sched- 
ules graph, and compute the cost of the allocation based on this processing- 
schedules graph. The labels (i, f, d) for the edges will now be replaced by fd, 
because for computing the total transmission cost the identification of the 
transaction is not required and the execution frequencies can be multiplied by 
the individual data transmissions. 

During any search for an optimal or efficient allocation the costs of many 
different allocations have to be compared. To avoid recomputing the schedules 
every time a different allocation is considered, we will use static processing 
schedules. We will explain what we mean by that. An initial allocation is an 
allocation where, for each query and update, a copy of a fragment is created and 
placed in its own virtual site, and none of the virtual sites are assigned to a 
physical site. For this initial allocation the processing schedules of the queries 
and updates are computed and put in a processing-schedules graph. Also, virtual 
sites containing different copies of the same fragments are interconnected by a 
forking graph, if the fragment is updated. The processing-schedules graph of an 
arbitrary allocation A is determined by applying unions and assignments to the 
initial allocation and adjusting the processing-schedules graph until A is reached. 
Adjusting a processing-schedules graph means that edges between two nucleus- 
sites that are united are removed. Given this processing-schedules graph we can 
compute the cost of allocation A, as described in Section 4, by adding up the 
labels of all edges except the ones between a physical site and its assigned virtual 
sites. Note that because we start from the initial allocation, where each query 
and update has its own copies of the fragments it accesses, we do not have to 
consider the nonredundant and redundant case separately. 

Although the computation of the cost of allocations using static allocations is 
more efficient, finding a nonredundant, minimum total transmission cost allo- 
cation is still NP-complete [4, 19, 221. 

THEOREM 3. The problem of whether there exists a completely specified non- 
redundant allocation with total transmission cost less than or equal to a certain T 
using static processing schedules is NP-complete. 
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PROOF. See Appendix. 0 

COROLLARY 1. Theproblem whether there exists a nonredundant data allocation 
with total transmission cost less than or equal to T is NP-hard. 

5.2 Computing Optimal Allocations Using Static Schedules 

In this section we will use techniques such as branch-and-bound [27] or the 
Heuristic Path Algorithm [33] to search the large solution space for determining 
data allocations to minimize total transmission cost. In [35] it was shown that 
these techniques are basically the same. 

These search techniques construct decision trees. A node in such a tree is 
identified by the path from the root to that node. Each edge on this path 
corresponds to a decision taken about the data allocation; an example decision is 
to unite VSi with PhSj. During the search for an optimal data allocation the 
decision tree constructed so far partitions the space of completely specified 
allocations into subsets that belong to the leaves. We say that a completely 
specified allocation satisfies a partially specified allocation if it is possible to 
modify the partially specified allocation by uniting virtual sites with physical 
sites such that the result is the completely specified allocation. A subset belonging 
to a leaf of a decision tree contains all completely specified allocations that satisfy 
the partially specified allocations defined by the decisions taken to reach that 
leaf. The cost of a subset is defined as the minimum cost among all solutions in 
the subset. Ideally, this value is known for each subset; however, normally this 
is not the case, and then it should be estimated. 

For a partially specified allocation we define a cost-estimator as the sum of two 
components: (1) the cost caused by the decisions taken to reach the partially 
specified allocation from the initial allocation, and (2) an estimate of the cost 
that will be caused by decisions that still have to be taken to reach a completely 
specified allocation with least cost that satisfies the partially specified allocation. 
Depending on the latter, the cost-estimator may underestimate or overestimate 
the cost of the solution. The cost caused by decisions will be discussed in more 
detail later on. 

The search proceeds as follows. At each iteration a leaf with the smallest cost- 
estimator is expanded. Expanding a leaf means that for the corresponding 
partially specified allocation the following decisions are considered: unite one of 
the virtual sites with each of the physical sites. In the decision tree this is 
represented by creating new edges under that leaf for every decision; this renders 
the leaf into an internal node. For each of the leaves of the newly created edges 
the cost-estimator of the corresponding subset is computed. Then the algorithm 
goes through the next iteration, again expanding a leaf with the smallest cost- 
estimator, until a leaf whose corresponding subset contains only one completely 
specified allocation is expanded, this allocation is chosen as the result. 

The cost-estimator of a subset underestimates the cost of the subset; therefore, 
the Heuristic Path Algorithm will eventually find the optimal completely speci- 
fied allocation [33]. An estimator with this property is called admissible. Ob- 
viously, if the cost-estimator only contains the cost caused by decisions taken to 
reach the partially specified allocation from the initial allocation, the search 
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deteriorates into an exhaustive search. So the estimator is important: The closer 
its values are to the real cost the sooner the search terminates. 

Before we introduce some notions that are needed to explain the algorithm 
that computes the cost-estimator of a partially specified allocation, we will take 
a look at the basic ideas behind it. 

If each virtual site in a partially specified allocation is directly or indirectly 
connected with only one physical site, the cost-estimator could simply be deter- 
mined based on the transmissions between physical sites. If this is not the case, 
then we would like to remove certain transmissions such that it becomes true. 
These transmissions will be searched for by considering paths between physical 
sites. A path between physical sites can, intuitively, be considered as a chain of 
nucleus-sites starting at one physical site and going via zero or more virtual sites 
to the other physical site. To underestimate the cost that will be caused by 
uniting these virtual sites with physical sites, the cost of the cheapest connection 
is taken. 

The cost-estimator of a partially specified allocation, obtained by uniting 
virtual sites with physical sites, is computed as follows. A path from PhSi to PhSj 
is a sequence of nucleus-sites NSO, NS1, . . . , NS,, where NSO is PhS; and NS, 
is PhSj, NSI, NSZ, . . . , NS,-l are virtual sites, and that for i = 0, 1, . . . , m - 1 
there is at least one edge in the processing-schedules graph between NSi and 
NSi+l or that NSi and NSi+l are nodes in at least one forking graph. The length 
of a path is the number of virtual sites on that path plus 1. The cost of a path of 
length greater than 1 is the minimum of the total cost of the edges or forking 
graphs between two successive nucleus-sites in the sequence defining the path. 
Paths of length 1 form a special case. If the two physical sites on that path are 
merely connected by an edge, the cost of that path is the cost of the edge. If the 
two physical sites on the path are part of a forking graph, we have to consider 
all the paths of length 1 concerning that forking graph at once. If k nodes of the 
forking graph are physical sites, then the total cost of such paths is k - 1 times 
the cost of the forking graph. 

Removing a path means the removal of all the edges between the successive 
nucleus-sites in the sequence defining the path and the complete removal of all 
the forking graphs in which successive nucleus-sites are part of the processing- 
schedules graph. The reason that all edges and forking graphs are removed is 
that we do not know which edge or forking graph will appear in the processing- 
schedules graph of the completely specified allocation. If all paths are removed 
each virtual site is connected directly or indirectly with only one physical site. 

To compute the cost-estimator of the partially specified allocation, the algo- 
rithm psa-static-cost shown in Figure 7 is applied. It considers paths between 
physical sites and sums up their cost. To ensure that the edges and the forking 
graphs are not used in two different paths, they are removed. A forking graph is 
replaced by an edge between the notification node and one of the receiving nodes; 
the choice of receiving node is quite arbitrary. Therefore, it should be interpreted 
that a forking graph may be used only once in a path. 

Example 6. To show how psa-static-cost computes the cost-estimator of a 
partially specified allocation, we will apply it to a simple allocation, shown in 
Figure 8. 
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proc psa-static-cost = (schedules graph psg)real: 
begin 

real sum; 
sum := the sum of the cost of all paths of length 1; 
remove all paths of length 1; 
replace all forking graphs by one edge from their notification nodes to one of the receiving nodes; 
while there exists a path between two physical sites, say P 
do 

sum := sum + cost of path P; 
remove path P 

Od; 

psa-static-cost := sum 
end 

Fig. 7. Algorithm psa-static-cost. 

Fig. 8. Processing-schedules graph. 

First, paths of length 1 are considered. There is only one, namely between 
PhS, and PhS,. Because it is part of a forking graph, the whole forking graph is 
considered at once. Two physical sites are part of it and, therefore, the cost is 
(2 - 1) x 10 = 10. Then the forking graph is completely removed from the 
processing-schedules graph. 

After this, all remaining forking graphs are replaced by one edge from the 
notification node to one of the receiving nodes. Here, we assume that this edge 
connects VS1 with Ph&. The only path left is PhSl, V&, Ph&, with cost equal 
to 3. Hence, the cost-estimator is 10 + 3 = 13. Note that if the edge between VSI 
and VS, were put in the processing-schedules graph to replace the forking graph, 
there would be no paths between physical sites, resulting in a value for the cost- 
estimator of 10. As a rule, psa-static-cost should try to replace forking graphs 
by edges between subgraphs containing physical sites. 

The optimal completely specified allocation that satisfies the partially specified 
allocation is obtained by uniting VSI with PhS, and V& with either Ph& or 
PhS,; its cost is 3 + 3 + 10 = 16. 

ACM Transactions on Database Systems, Vol. 13, No. 3, September 1988. 



284 - Peter M. G. Apers 

Now we will show that the result of psa-static-cost is always less than or equal 
to the cost of all completely specified allocations satisfying the partially specified 
allocation. 

THEOREM 4. Algorithm psa-static-cost is an admissible estimator if static 
schedules are used. 

PROOF. Assume we are given a partially specified allocation PSA and its 
processing-schedules graph. First consider the cost of paths of length 1. Every 
completely specified allocation must satisfy PSA and, therefore, any path of 
length 1 represents an edge in the processing-schedules graph, so it will be part 
of the processing-schedules graphs of all completely specified allocations. Hence 
algorithm psa-static-cost correctly includes the cost of these paths. 

The replacement of the forking graphs by one edge cannot increase the cost of 
the partially specified allocation. 

Now paths of greater length are considered. Let us say NSO, NS1, . . . , NS, is 
such a path between PhSi and PhSj, m 2 2. In a completely specified allocation 
satisfying PSA there exists at least one pair (NSi, NSi+l) such that NSi and 
NSi+l are united with different physical sites. In that case the total cost of the 
edges between N& and NSi+l is part of the cost of the completely specified 
allocation. The total cost of these edges can be underestimated by taking the 
minimum total cost of the edges on that path. 

Hence algorithm psa-static-cost underestimates the cost of any completely 
specified allocation that satisfies a partially specified allocation. 0 

COROLLARY 2. If the Heuristic Path Algorithm uses psa-static-cost, the com- 
pletely specified allocations produced hove minimum total transmission cost if static 
schedules are used. 

6. HEURISTIC DATA ALLOCATION USING STATIC SCHEDULES 

A heuristic algorithm for determining data allocations when using static process- 
ing schedules to compute the cost of allocations will be presented. Both theoretical 
and experimental results will be discussed. 

6.1 Algorithm total-data -a/location 

A well-known heuristic technique to find an efficient solution is to start from an 
initial solution and to locally optimize this until no improvements are possible. 
When, during optimization, several improvements are possible, the one that 
decreases the cost function most is chosen. Algorithms that use this technique 
are called greedy [ 251. 

The heuristic approach that we propose here is based on the following two 
ideas: 

-Virtual sites cannot be united with physical sites independently of each other. 
Therefore, uniting virtual sites with each other before uniting them with 
physical sites is considered. 

-The label of an edge in the processing-schedules graph gives a measure of how 
important it is that the adjacent nucleus-sites are united, when minimizing the 
total transmission cost. The adjacent nodes of the edges with the largest labels 
are therefore considered first for uniting. 
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Before introducing the algorithm we introduce some notions. The sum of the 
labels of the edges that disappear if two nucleus-sites NSi and NSj are united, or 
that one is assigned to the other, is called LINKij(= LINKji). Remember that 
although two virtual sites may be assigned to one physical site in a partially 
specified allocation, the edges between the virtual sites still count when comput- 
ing the total transmission cost as long as they are not united. 

The input of algorithm total-data-allocation is the processing-schedules graph 
of the initial allocation, meaning that every query and update has copies of 
fragments it accesses, placed in virtual sites of their own, and that none of these 
virtual sites are assigned to a physical site. This total-data-allocation determines 
a partially specified allocation by assigning every virtual site to the physical site 
for which LINKij is maximum. Gradually it works towards a completely specified 
allocation by considering unions of virtual sites. This is done in decreasing order 
of their LINK-values. Uniting two virtual sites consists of two actions. First, the 
two virtual sites, VSi and VSj, are removed from the physical sites to which they 
are assigned. This will increase the total transmission cost with 

max LINKik + max LINKjk. 
k k 

The second action is to unite them and to assign the virtual site that results from 
the union, VS,, again to the physical site PhSk for which LINK,,, is maximum. 
This decreases the total transmission cost with 

max LINK,k + LINK,. 
k 

The net result is the difference of these two amounts. The algorithm decides to 
unite the two virtual sites if the net result is nonpositive. Before VS, can be 
assigned its LINK-values, other nucleus-sites have to first be determined. 

At every iteration the algorithm takes the pair with the largest LINKi, that 
has not yet been considered since the last union. This continues until uniting 
any pair of virtual sites will increase the total transmission cost. The rationale 
behind the algorithm is to remove the heaviest transmissions first, if uniting the 
adjacent nodes of these transmissions is cost effective (i.e., decrease the total 
transmission cost). 

In the resulting allocation no two virtual sites will be assigned to the same 
physical sites. Let us assume that VSi and VSj are both assigned to PhSk. Then 

LINKik + LINKjk - (LINKuk + LINKij) 5 0, 

where VS, is the union of VSi and VSj, which contradicts the termination 
condition of the algorithm. Figure 9 shows the procedural form of algorithm 
total-data-allocation, which minimizes total transmission cost. Note that because 
total-data-allocation started from the initial allocation, it determines both how 
many copies of a fragment are required and their allocation. 

We will show by an example how the algorithm works. 

Example 7. Consider again the relations WINE and WEATHER of Figure 1 
and the following two queries and two updates: 

Q1: (WEATHER (YEAR = YEAR AND AREA = AREA) WINE) 
[YEAR, AREA, NAME, PRODUCER, COUNTR Y, SUN, RAIN ] 
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proc total~datu~allocation = (schedules graph PSG)allocation: 
begin 

set P; 
boolean goon := true; 
for i to n 
do assign VS; to PhSk with LINK;k is maximum od; 
while goon 
do 

P := set of pairs of virtual sites that are not yet united; 
goon := false; 
while P # { ) and not goon 
do 

take (VS,, V’S,) from P such that LINKii is maximum; 
if maxk LINK,, + maxk LINK,k - (LINK, + maxk LINK,,) 5 0 

then 
VS, := union of VSi and VSj; 
remove VSi and VS, from processing-schedules graph PSG; 
add VS, and recompute its LINK-values; 
goon := true 

fi 
od 

Od; 

unite virtual sites with their physical sites; 
end 

Fig. 9. Algorithm total-data-allocation. 

Qz: (WEATHER( YEAR = YEAR)( WINE(AREA = Napa Valley))) 
[YEAR, AREA, NAME, PRODUCER, COUNTRY, SUN, RAIN] 

u1: add new wines to WINE from Napa Valley. 
U2: add information about the weather. 

Because relation WINE is accessed in two queries it will be split according to 
the procedure of Subsection 4.4. Here it is split into two, W’ and W”, where 

W’ = WINE(AREA = Napa Valley) 
W” = WZNE(AREA # Napa Valley). 

The relation WEATHER will not be split because both queries require all its 
tuples. 

For query Q1 the virtual sites V&, If&, and VS, are created, containing W’, 
W”, and WEATHER, respectively. The processing schedule of Q1 consists of the 
following data transmissions: The relation WEATHER is sent to the two frag- 
ments W’ and W”. The results of the joins are sent to PhS,. For query Q2 the 
virtual sites VS, and VS6 are created, containing WEATHER and W”, respec- 
tively. The schedule for Q2 is: The relation WEATHER is sent to fragment W” 
where the join is computed and the result is sent to Ph&. For the updates VI 
and U, the virtual sites VSs and VS., are created, containing W” and WEATHER, 
respectively. For each query and each update, copies of the fragments involved, 
allocated to virtual sites, are interconnected in forking graphs. The resulting 
processing-schedules graph is shown in Figure 10. 
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PhS, 

PhS3 

Fig. 10. Processing-schedules graph of Example 7. 

Total-data-allocation starts with computing the initial assignment, character- 
ized by the assignment of each virtual site to a physical site for which the sum 
of the amount transmitted to it plus the amount received from it is largest; VS, 
and VS2 are assigned to Ph&, VS4, V& (arbitrarily), and V& to Ph&, and VS, 
(arbitrarily) and VS7 to PhS,. 

Note that the virtual sites that are not directly connected to a physical site are 
assigned to an arbitrary physical site. This situation is shown in Figure 11. 
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Fig. 11. Processing-schedules graph after initial assignment. 

PhS, 

The set P contains all the pairs of the virtual sites that can be united. They 
are listed below with their LINK-values: 

(VSi9 vsj) LINKij 

(VS,, m!) 20 

(W, VW 20 

(VS2, V&i) 20 

(V&!, V&l 5 

(V&5 VW 5 

(VS3, VW 15 

(VS,, VS,) 15 

(VS4, v&A 8 

( w, v&J 5 

(VSS, VS,) 15 

Because the pair ( VSI, V&J has the largest LINK-value it is considered first 
(among the pairs with LINK-value equal to 20 this choice is arbitrary). To unite 
VS, and VS, they have to be first removed from their respective physical sites, 
PhSl and PhS3. This increases the total transmission cost with: 

5 + 0. 

Uniting them and assigning the union, VSu13, to PhSl decreases the total 
transmission cost with 

20 + 0. 

The net result, the difference between the two changes, is nonpositive and, 
therefore, they are united (see Figure 12). 
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PhS, 

4 

I PhS, 

Fig. 12. Processing-schedules graph after the union of VS, and KS,. 

PhS, 

The next pair to be considered is ( VSu13, VS,), whose LINK-value is 20. The 
net result of uniting them is 

5 + 2 - (20 + 7) = -20 I 0. 

Again, the union, VSu123, decreases the total transmission cost. 
The next pair to be considered is ( VSu123, VS,), whose LINK-value is 15. The 

net result of uniting them is 

7 + 15 - (15 + 15) = -8, 

which is nonpositive; therefore, the two virtual sites, which contain copies of the 
same relation WEATHER, are united, resulting in VSu1237. This means that only 
one copy will be maintained in the system. 

Uniting V& and VSu1237 decreases the total transmission cost with: 

0 + 15 - (15 + 15) = -15; 

the result of the union is VSu12357. 
The LINK-value between the two virtual sites, VS, and VSu12357, is 8; uniting 

them increases the total transmission cost with: 

12 + 15 - (8 + 15) = 4; 

therefore, the allocation is not changed. 
Finally, VS, and V& are united because the total transmission cost decreases 

by 5; the result of the union is VSu46. 
Note that at most one virtual site is assigned to a physical site, thus uniting 

the virtual sites with their physical sites gives a completely specified allocation. 
The partially specified allocation obtained so far consists of the assignment of 
vs u12357 to PhS, and of VSu46 to PhS,. 
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The final allocation shows that all fragments and relations involved in Q1 
are located at one site, and that only the result has to be transmitted to PhSl. 
The data involved in query Q2 are distributed over two sites: The relation 
WEATHER is located to PhS, and the fragment W” is located to Ph&. Because 
this fragment is updated infrequently two copies can be maintained, one at PhS, 
and one at Ph&. 

In the above example we see that at some points we have to choose which pair 
of virtual sites to unite if the LINK-values are the same. Taking a different 
choice may lead to different completely specified allocations. We will not discuss 
obvious improvements to deal with this because it would prohibit obtaining 
optimality results regarding the solutions, which will be discussed in the next 
section. 

6.2 Optimality Results Concerning Algorithm total-data-allocation 

As was mentioned before, the algorithm total-data-allocation is greedy and does 
not necessarily obtain a completely specified allocation with the absolute 
minimum total transmission cost. However, it is important to know how well 
the algorithm performs. We will do so by showing that for a special class of 
processing-schedules graphs, the algorithm computes minimum total transmis- 
sion cost allocations and by discussing simulation results in the next section. But 
before doing so, we introduce some notions. 

The set of virtual sites can be divided into clusters. Two virtual sites, VSi and 
VS;, belong to the same cluster if there is a path VSi = V&, V&, . . . , VS, = 
VSi such that VSk and VSk+l are adjacent to each other. Two virtual sites are 
adjacent to each other in a processing-schedules graph if there is an edge between 
the two virtual sites, or if they occur in the same forking graph. 

A cluster is called a simple cluster if for every pair of virtual sites, VSi and VSj, 
in the cluster the following holds: Removal of all the edges that are adjacent to 
both VSi and VSj and the removal of the forking graph of which both VSi and 
VSj are part causes VSi and VSj to no longer be in the same cluster. 

A simple processing-schedules graph is defined as a processing-schedules graph 
for which the clusters are simple and all physical sites are connected by edges 
with only one virtual site per cluster, or are part of only one forking graph per 
cluster. 

Intuitively, in simple processing-schedules graphs the net change in the total 
transmission cost if two virtual sites are united is simply based on the trans- 
missions between these two virtual sites and between them and the physical 
sites. 

Example 8. Figure 13(a) shows a simple processing-schedules graph. There are 
two clusters, C1 and C2; C1 consists of VSI , VS2, VS3, and V& and Ca of VS,. 
Note that V& and VS, are connected through the forking graph of which they 
both are part. The processing-schedules graph in Figure 13(b) is nonsimple. Two 
edges have been added: between VS1 and VS, and between Ph& and VS2. The 
first one causes C1 to no longer be simple. After removal of the forking graph of 
which VS2 and V& are part, there is still path between them via VS, . The second 
one connects PhS, to two virtual sites of the same cluster C, . 
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(b) 
13. (a) Simple processing-schedules graph; and (b) a nonsimple processing-schedules graph. 
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THEOREM 5. The completely specified allocation obtained by algorithm total.- 
data-allocation for simple processing-schedules graphs using static schedules min- 
imizes total transmission cost. 

PROOF. Assume that a completely specified allocation obtained by algorithm 
total-data-allocation does not have minimum total transmission cost. We will 
show that we can change the optimal allocation into the allocation obtained by 
our algorithm without losing its optimality. 

The optimal solution imposes a partition on the set of virtual sites; the subsets 
of this partition contain the virtual sites belonging to the different physical sites. 
Changing the optimal solution means changing the partition. 

We will go through the steps of the algorithm. If the algorithm decides to unite 
two virtual sites that occur in the same subset then there is no problem. The 
processing-schedules graph will be changed such that the two virtual sites will 
form only one nucleus-site, and in the subset of the optimal partition they will 
be replaced by one new element with the same name as the corresponding 
V&node. 

Similarly, there will be no problem if the algorithm decides not to unite two 
virtual sites that occur in different subsets. 

In the two remaining cases we have to change the optimal partition. Assume 
this is the first time that the algorithm either decides to unite two virtual sites 
that occur in different subsets or it decides not to unite two virtual sites that 
occur in the same subset, and that the involved virtual sites are VSi and VS;. 
This means that LINKij is the largest of all pairs of virtual sites that are not 
united. 

I. VSi and VSj do not occur in the same subset of the optimal partition, while 
the algorithm wants to unite them. Consider the following cases: 

(1) Either VSi or VSj or both do not communicate with the physical site to 
which they are assigned. Without loss of generality, say VSi. The physical 
site to which VSi is assigned will be called PhS and its corresponding 
subset in the optimal partition, S. If none of the virtual sites of S 
communicates with PhS, all the virtual sites of S can be moved to the 
subset containing VSj without increasing the total transmission cost. 

Also, if there are virtual sites in S that send data to PhS, but occur in 
another cluster than VSi, all other virtual sites of S that are in the cluster 
containing VSi can be moved together with VSi to the subset containing 
VSj without increasing the transmission cost. Now, assume VSk commu- 
nicates with PhS and is in the same cluster as VSi. Then there is a 
sequence VSk, . . . , V&, VSi (see definition cluster). Because the cluster 
is simple we can split it by removing all edges and forking graphs 
containing VS, and VSi. All virtual sites of S that are in the cluster of 
VSi after the split are moved to the subset containing VSj. This introduces 
LINK,; data transmissions, which is less than or equal to LINKij, the 
amount of data transmitted that disappears because VSi and VSj are now 
in one subset. In this subset VSi and VSj are replaced by a new element 
with the same name as the corresponding VS-node in the processing- 
schedules graph that results from uniting VSi and VSj. 
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(2) Both VSi and VSj communicate with the physical site to which they are 
assigned. Because physical sites are connected with only one virtual site 
per cluster, or are part of only one forking graph per cluster, it follows 
that maxkLINKUk is either equal to maxkLINKik or maxkLINKjk, where 
VS, is the union of VSi and VSj. Hence we only have the following two 
cases: 

(a) maxkLINKik = maxkLINKuk and maxkLINKjk I maxkLINKUk. 
Assume VSj occurs in the subset belonging to physical site PhSl. 
Moving all the virtual sites of this subset to the subset of VSi decreases 
the total transmission cost with: 

LINKjl - LINKi, 5 maxkLINKjk - LINKij 
= maxkLINKik + maxkLINK$ 
- maxkLINKUk - LINKij 5 0 

(b) maxkLINKik I maxkLINKUk and maxkLINK& = maxkLINKUk. 
The same as under (a), only the elements of the subset of VSi are 
moved to the subset of VSj. 

VSi and VSj occur in the same subset of the optimal partition, while the 
algorithm does not want to unite them. 

Similarly, we can prove that separating VS; and VSj in the optimal solution 
will not lead to an allocation with higher total transmission cost. 

Finally, by changing the optimal partition every time the algorithm wants it 
to, the optimal partition is the same as the solution obtained by the algorithm. 
We have thus seen that under the conditions stated, the optimal solution can be 
changed step by step into the solution of the algorithm. Cl 

6.3 Comparison Between Optimal and Heuristic Allocations 
Using Static Schedules 

Now that we have seen that total-data-allocation computes data allocations that 
minimize the total transmission cost for processing-schedules graphs that belong 
to a special class, we are interested in how it works in “practice.” To get an idea, 
we compute the optimal allocation of randomly generated processing-schedules 
graphs and compare it with the cost of the allocations generated by total-data- 
allocation. We also compare the number of sites over which the data are distrib- 
uted per transaction. This means that for a transaction the number of sites are 
counted that contain fragments that are used in the transaction, except copies of 
fragments that are updated. Note that if the result site does not contain any 
fragments used in the transaction, it is not counted. 

The transactions are generated as follows. A processing schedule of a trans- 
action will have one of the basic forms shown in Figure 14, with its probability 
that it is generated below it; c is the complexity parameter, which indicates the 
probability that a particular branch (Rj -+ Ri, Rk + Ri, or Rl+ Rj) is included in 
a processing schedule. To complete a processing schedule a branch from Ri to 
the result site is included. So, for small c the simplest schedules are generated 
with a higher probability than the more complex ones. For larger c it is the other 
way around. 
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R; + result site Prob = c3 
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&I 

Fig. 14. Five different processing schedules with the 
probability that they are generated; c is the complexity 
parameter. 

Because the relations are used by different transactions they are split into 
fragments; we assume that they are split into three. When generating the 
processing schedule for a transaction, for each relation it is decided which 
fragments are in fact used. Each of the three fragments of a relation is accessed 
in a transaction with probability frag, with a minimum of one fragment. While 
processing an update, the tuples that have to be changed are computed. We 
assume here that they are computed at the result site and that that site notifies 
all fragments of the changes. Below we will display the average total transmission 
cost (TTC) and the average number of sites over which the data for one 
transaction is distributed (sites), both for the optimal allocation and the alloca- 
tion obtained by algorithm total-data-allocation. 

The parameters that will vary are: 

-The total number of transactions, queries, and updates is 4; the parameters Q 
and u indicate the number of queries and updates, respectively, which vary 
from 0 to 4. 

-The complexity parameter c, which varies from 0 to 1 with steps of 0.25. 
-The fragmentation parameter frag, which varies from 0 to 1 with steps of 0.25. 

When one of the parameters is varied, the others are kept fixed at the following 
values: 

u = 2 c = 0.5 frag = 0.5. 

Also, the number of queries 4 plus the number of updates u equals 4. The results 
are shown in Table I. The table is divided into three subtables, where the results 
are displayed for varying one of the parameters mentioned above. 

To still be able to compute the optimal allocations, the processing schedules 
and the parameters were chosen rather small. For the processing-schedules graphs 
generated it took about five times longer to compute the optimal allocations 
compared to the heuristic ones. This may not seem too bad; however, further 
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Table I. Comparison Results of Total Data Allocation and Optimal Solution 

Optimal Heuristic 

TTC Sites TTC Sites 

:: 0 1 0 1 
31 282.6 1.075 291.6 1.05 
22 1,093.5 1.225 1,133.5 1.25 
13 1,336.6 1.25 1,380.2 1.225 
04 1,708.8 1.275 1,763.6 1.325 

ii 162.6 1.05 162.6 1.05 
0.25 231.1 1.125 233.1 1.125 
0.5 1,093.5 1.225 1,133.4 1.25 
0.75 - - 1,249.g 1.175 
1 1,474.0 1.2 1,491.5 1.125 

frw 
0 667.5 1.025 706.8 1.1 
0.25 731.1 1.075 761.7 1.225 
0.5 1,093.5 1.225 1,133.4 1.25 
0.75 764.4 1.125 802.6 1.15 
1 990.8 1.275 990.8 1.275 

Overall 830.7 1.16 856.0 1.17 

increasing the size of the processing-schedules graph will rapidly increase the 
time required to compute the optimal allocations. 

Varying the number of update transactions, u, does not seem to influence the 
quality of the allocations obtained by total-data-allocation. For the whole range 
the total transmission costs are slightly more than 3 percent above the optimal 
values. 

If c equals 0, the way the queries are processed is the same as in the file 
allocation problem. The corresponding processing-schedules graph belongs to the 
special class for which the algorithm can compute the optimal solution. For c 
equal to 0.75, the algorithm for computing the optimal solution ran out of memory. 

For high values of frag, groups of virtual sites are tightly coupled, so it is easy 
for total-data-allocation to compute the optimal solution. For smaller values the 
structure of the processing-schedules graph becomes more important, increasing 
the chance that the processing-schedule graph falls outside the special class. 

We may conclude that for the small processing-schedule graphs investigated, 
total-data-allocation computes allocations that have, on the average, a 3 percent 
higher total transmission cost than the optimal one. So the simulation results 
support the theoretical results obtained in the previous section. Also, the number 
of sites over which the data are distributed per transaction is just a bit more than 
in the optimal solution. 

7. DATA ALLOCATION USING DYNAMIC SCHEDULES 

The cost of an allocation computed using static schedules will, in general, be 
higher than the cost of an allocation as defined in Section 4. The latter requires 
recomputation of schedules; this will be called computing the cost using dynamic 

ACM Transactions on Database Systems, Vol. 13, No. 3, September 1988. 



296 l Peter M. G. Apers 

processing schedules. A consequence is that the allocations obtained using dy- 
namic schedules will have a lower cost than the ones obtained using static 
schedules. In this section we will, therefore, investigate ways of determining 
optimal and heuristic allocations. 

7.1 Optimal Data Allocations Using Dynamic Schedules 

Having considered static schedules, we now examine dynamic ones. The one 
advantage of using dynamic schedules is that the processing-schedules graph 
belonging to a completely specified allocation contains schedules that are iden- 
tical to the schedules produced by the distributed query processing algorithm, 
given the completely specified allocation. 

The other advantage is that, in general, given a completely specified allocation, 
the processing schedules produced by a distributed query processing algorithm 
have a lower cost than the ones obtained from the processing-schedules graph 
belonging to the initial allocation using static schedules. 

The main disadvantage is the computational effort required, compared to the 
usage of static schedules. Subsection 5.2 shows an estimator, which can easily be 
computed, for static schedules. This is not necessarily the case for dynamic 
schedules. 

For example, assume that in the decision tree of the Heuristic Path Algorithm 
decisions have been taken to unite VSi with PhS, and VSj with PhS,, and that 
about two other virtual sites, VSk and VSl, that are all accessed in one query, no 
decision has been taken so far. Without knowing anything about the final 
allocation of the fragments, the processing schedule of the query and its cost 
cannot be computed. To obtain an underestimate of its cost all possible alloca- 
tions have to be considered, and the one with the least cost could be used as 
heuristic estimator. 

So, in general, the computation of a cost-estimator of a partially specified 
allocation cannot be done in polynomial time. However, under the realistic 
assumption that each query only accesses a relatively small number of fragments, 
an estimator can be constructed that runs efficiently. This can be achieved by 
doing some initial processing. The estimator will be called psa-dynamic-cost. A 
one-query-allocation is a partially specified allocation of all fragments accessed 
in one query. A one-query-allocation satisfies a partially specified allocation 
if the fragments in the fragment-sets of the nucleus-sites in the one-query- 
allocation occur together in the same fragment-sets in the partially specified 
allocation. Before the search starts, all these one-query-allocations are given to 
the query processing algorithm used by the distributed database system to 
compute the corresponding schedules and their cost. Updates are treated exactly 
the same as queries. The cost of their schedules does not include transmissions 
to keep copies consistent. During the search, a lower bound on the cost of a 
partially specified allocation given by a path in the decision tree is computed as 
follows. For each query, we consider all the one-query-allocations that satisfy the 
partially specified allocation and take the one with the least cost. The sum of all 
these costs, plus the cost to keep copies consistent if more than one copy of a 
fragment is allocated, is the cost-estimator of the partially specified allocation. 

The procedural form of psu-dynamic-cost is shown in Figure 15. An example 
is given to show how it works. 
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proc psa-dynamic-cost = (allocation psa)real: 
begin 

real sum := 0; 
for each query Q 
do 

take the one-query-allocation of Q with the least cost that satisfies psa; 
sum := sum + cost of this one-query-allocation 

od; 
psa-dynnmic-cost := sum 

end 

Fig. 15. Algorithm psa-dynamic-cost. 

Example 9. Let us assume that we are given a query stated by a user at the 
site corresponding to PhS,. This query computes the join between the two 
relations WINE and WEATHER. There are five one-query-allocations (only the 
fragment sets are shown, because the operation sets are empty): 

(1) f’hs, = (i I) 
VS1 = ((WINE]) 
V& = ((WEATHER]), 

(2) I+& = ({ 1) 
V& = ((WINE, WEATHER]), 

(3) PhS, = ((WINE)) 
V& = ((WEATHER)), 

(4) PhS, = ((WEATHER]) 
VS1 = ((WINE]), 

(5) PhS, = ((WINE, WEATHER)). 

For each of these one-query-allocations, a processing schedule for the query and 
its cost can be computed. 

The cost of a partially specified allocation is underestimated bypsa-dynamic- 
cost as follows. Assume that a decision has already been taken to allocate fragment 
WINE to Ph&, and that no decision has been taken yet about WEATHER. 
The one-query-allocations that satisfy this partially specified allocation are 1, 
2, and 4. The one with the least cost is taken. 

THEOREM 6. The heuristic estimator psa-dynamic-cost is admissible. 

PROOF. The cost of one query is underestimated because all possible one- 
query-allocations are investigated. Also, the cost to keep copies consistent is 
underestimated because only transmissions between copies of fragments that are 
already allocated to physical sites are counted. 0 

COROLLARY 3. If the Heuristic Path Algorithm uses psa-dynamic-cost, then 
the completely specified allocations obtained have minimum total transmission 
cost. 

7.2 Heuristic Allocations Using Dynamic Schedules 

Incorporation of dynamic schedules in the heuristic algorithm total-data- 
allocation can be done in different ways. Remember that, in the algorithm, when 
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using static schedules the changes in the processing-schedules graph when two 
virtual sites were united were rather simple. The union of the virtual sites 
inherited all the incoming and outgoing edges of the virtual sites, and only the 
edges between them disappeared. 

A simple way of dealing with such changes using dynamic schedules is to 
recompute the schedules of all transactions that might be affected by the change 
in the allocation. This means that the decision to change the allocation is taken 
based on the cost of schedules corresponding to the current allocation; only after 
the change, the schedules corresponding to the new allocation are computed. 

This approach deals with the disadvantage of static schedules, that is, that the 
schedules in the final allocation might differ from the ones obtained from the 
query processing algorithm given this final allocation. However, there is one 
problem: The total transmission cost of an allocation by algorithm totcLdatu~ 
allocation using dynamic schedules is not necessarily less than when using static 
schedules. The reason is that virtual sites are united based on transmissions that 
also depend on the rest of the allocation. A change in the allocation of other 
virtual sites might completely change processing schedules, making a previously 
taken decision to unite two virtual sites obsolete. Therefore a different approach 
is taken. 

A processing-schedules graph is no longer the basis to decide about changes in 
the allocation; instead, a LINK-graph is used. The structure of such a graph is 
the same as a processing-schedules graph; it contains PhS- and VS-nodes and 
edges. The difference can be found in the edges and their labels. Between every 
pair of nodes there is an edge, and its label is the change in the cost function if 
the two adjacent nodes are united or if one is assigned to the other. To compute 
a label of an edge between two nucleus-sites, the query processing algorithm is 
applied twice: once when the two nucleus-sites are united and once when they 
are not. The difference between the two costs is the label. 

The way a completely specified allocation is computed is basically the same as 
by algorithm totaZ_dutu_aZlocation. First the virtual sites are individually assigned 
to physical sites such that the total transmission cost is minimized. Then pairs 
of virtual sites are considered for uniting in descending order of the labels of the 
edges between them. The cost of removing the two virtual sites from the physical 
sites to which they are assigned is the sum of the labels of the edges between the 
two virtual sites and the virtual sites that have already been assigned to the 
physical sites involved. Uniting them will decrease the cost function by an 
amount denoted by the label of the edge between the virtual sites. However, the 
decrease in the cost function when the union is assigned to a physical site is not 
yet known. Therefore, the schedules of the queries involved have to be recomputed 
and an assignment of the union to each physical site must be considered. 

If the difference between the increase and decrease of the change is nonpositive 
the two virtual sites are united. Taking the union of virtual sites is continued 
until no further improvement of the total transmission cost is possible. Finally, 
the remaining virtual sites are united with the physical sites to which they are 
assigned. 

The advantage of the dynamic versus the static approach is that in the process 
of changing an allocation towards the final allocation, the processing schedules 
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of the transactions are adjusted to the new allocation and are therefore more 
efficient. Because the interaction between the data allocation algorithm and the 
query optimizer is very tight, the allocations obtained will be more efficient than 
in the static approach. The main disadvantage is that recomputing all or part of 
the processing schedules of the transactions may be prohibitively expensive. 

8. ALLOCATION MANAGEMENT PROBLEM 

In the previous sections a model and algorithms were introduced to determine 
allocations. In this section we will provide a framework in which this model and 
these algorithms can be used as tools by either one or a group of database 
administrators. 

8.1 Centralized Data Allocation 

We speak of a centralized data allocation if the allocation of all the data is 
considered at the same time and if either one database administrator or one 
central database management system is allowed to change the existing allocation. 

All queries and updates will be used to determine the fragments, as discussed 
in Subsection 4.2, and to compute a completely specified allocation that minimizes 
a particular cost function. Algorithms presented in Sections 5-7 can,be used to 
do so for minimizing total transmission cost. The allocation obtained will then 
be implemented by the database administrator, who can dictate an allocation to 
the local database management systems. 

One may object that all queries and updates have to be known in advance to 
compute the fragments and to compute their allocation. In case they are not 
known, we may determine the fragments based on the global external views of 
the users, which can be considered as queries themselves. The flow of data 
between the fragments can no longer be computed with a query processing 
algorithm and should be estimated with statistical information based on an 
existing allocation. Changes in this flow owing to changes in the allocation should 
be estimated, based on the queries and updates that are known. 

Another problem is caused by changes in the access patterns of the users. This 
would require a complete recomputation of an allocation based on the new queries 
and updates and the already existing allocation. In general, determining and 
actually implementing a new allocation is rather expensive; the former because 
the allocation of all fragments have to be reconsidered again, and the latter 
because of interaction between fragments many more of them may have to be 
reallocated than accessed by the new queries. 

8.2 Decentralized Data Allocation 

Quite a different approach, called the decentralized data allocation, assumes that 
the data is owned by different database administrators or that the distributed 
database is a collection of databases owned by different parties. Both cases have 
in common that there does not exist a central organization that can dictate the 
allocation of the data. Therefore, the database management systems of the sites 
should, in cooperation with each other, try to determine an optimal allocation of 
the data required by the users of their own sites. 
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This approach assumes that an allocation already exists and cannot be changed; 
for example, the already existing databases, which together form the distributed 
database, will already have an allocation. This distributed database will either be 
accessed by users of the already existing database or by other users in the 
computer network. 

Users at a site who share the same view of the distributed database can request 
their local database management system to change the allocation such that a 
certain cost function is minimized by introducing copies of the fragments of the 
relations in which the group is interested. The goal is now to compute an 
allocation of these copies. If a copy is allocated to a different site than its original, 
it is a real copy; otherwise, it might vanish, depending on whether the group of 
users wants to access periodically updated copies. Introducing and allocating 
copies can be done for users having a different view or working at a different 
site. Therefore, these copies will be called private copies. 

One advantage of the decentralized approach is the natural partition of the 
general data allocation problem into a number of smaller problems, which 
probably can be solved more easily. 

Another advantage is that the data allocation can change more or less contin- 
uously through time. If a group of users starts using the database or changes its 
access pattern, their database administrator simply determines a new allocation 
for them without changing other users’ allocations. 

Because a group may access only its own private copies, it may be possible to 
periodically update these copies, depending on how up to date these copies have 
to be. In reality, quite often a user is not interested in the latest version of the 
database, especially when this is very costly. Many times, a user is happy with a 
consistent version of the database that may be a couple of hours or days out of 
date. The group of users may themselves decide how up to date their copies 
should be, and thereby decide the update cost [2, 31. Decreasing this cost will 
make it more likely that an allocation is chosen such that processing retrievals 
becomes cheaper. In the centralized data allocation these periodically updated 
copies are not possible because many users will make use of the same copies. 
Therefore, these copies have to be kept up to date at all cost. 

One disadvantage of the decentralized approach is that the overall cost of the 
allocation might be higher compared to the centralized approach. The reason is 
that in the centralized case the whole processing-schedules graph is considered, 
and in the decentralized case a collection of smaller processing-schedules graphs. 

SUMMARY 

A model has been introduced to compute the cost of a completely or partially 
specified allocation for various cost functions. The model is suitable to be used 
in both branch-and-bound and heuristic algorithms. For minimizing total trans- 
mission cost, we have shown that the problem of determining a nonredundant 
allocation is NP-hard. A method for determining the unit of allocation by means 
of splitting a relation in the conceptual schema based on the queries and updates 
is presented. Under restrictive conditions regarding the behavior of query pro- 
cessing algorithms under splitting fragments, we have shown that the fragments 
obtained by this method can be regarded as the unit of allocation. Both optimal 
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and heuristic algorithms for minimizing total transmission cost using static and 
dynamic processing schedules for computing the cost of an allocation have been 
investigated and compared. Finally, a framework was discussed for managing 
allocations in a distributed database consisting of one database or consisting of 
a collection of already existing databases, each having their own database 
administrator. 

APPENDIX: Proof of Theorem 3 

The problem is NP, because for a “guess” allocation we can, in polynomial time, 
determine whether its total transmission cost is less than or equal to T. 

To show the NP-completeness of this problem we transform three-dimensional 
matching [22], a known NP-complete problem, to it. 

Three-dimensional matching. Set M C W X X x Y, where W, X, and Y are 
disjoint sets having the same finite number Q of elements. Does M contain a 
matching, i.e., a subset M’ C M such that 1 M’ 1 = q and no two elements of M’ 
agree in any coordinate? 

The construction of a processing-schedules graph from a three-dimensional 
matching problem is done as follows: 

-The elements of the sets W, X, and Y are the virtual sites. 
-For every triple (w, 3t, y) E M, create a physical site and connect the virtual 

sites corresponding to w, x, and y to this physical site; label these edges with 
thenumberd=2lMl +l. 

-Create an edge between the virtual sites corresponding to w and x if there 
exists a triple (w, x, y) E M. Do the same for the pairs (x, y); label all these 
edges with the number 1. Count the number of edges with label 1, say this is 
equaltoZ(Z52 IM(). 

The question of whether there exists a matching M’ is transformed to: Does 
there exist an allocation with total transmission cost less than or equal to 

3( I MI - q)d + (1 - 2q). 
Now we have to prove that this is a polynomial transformation. Obviously, it is 
polynomial. The rest of the proof is an outline. 

Assume there exists an allocation with total transmission cost less than or 
equal to 3( 1 M 1 - q)d + (I - 2q). We can show that in this allocation each 
virtual site is united with a physical site with which it is connected by an edge 
in the processing-schedules graph. Hence, the number of virtual sites united with 
the same physical site is less than or equal to three. Also, a physical site will not 
be united with less than three virtual sites. 

So either there are no virtual sites united with a physical site or there are 
exactly three. It can also be shown that the three virtual sites united with the 
same physical site are interconnected by two edges. Thus the three virtual sites, 
united with the same physical site, correspond to a triple in a matching M’. (All 
virtual sites are used exactly once.) 

Assume we have a matching M’ C M and assume that there is no allocation 
with a total transmission cost less than 3( 1 M 1 - q)d + (1 - 2q). Construct the 
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corresponding processing-schedules graph as was done above and unite the virtual 
sites corresponding with the triples of M’ to the site to which they triple-wise 
are connected. The total transmission cost of this allocation is computed as 
follows. In this allocation there are 3( 1 M 1 - q) edges with label d; 2q edges with 
label 1 disappear because three virtual sites corresponding to a triple of M’ are 
united with the same site. Thus the total transmission cost is 

3CIMI -q)d+U-2q). cl 
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