s,  Data Allocation in Distributed
we  Database Svstems

WA A WA W W v] wf SN IS

PETER M. G. APERS
Vrije Universiteit

The problem of allocating the data of a database to the sites of a communication network is
investigated. This problem deviates from the well-known file allocation problem in several aspects.
First, the objects to be allocated are not known a priori; second, these objects are accessed by schedules
that contain transmissions between objects to produce the result. A model that makes it possible to
compare the cost of allocations is presented; the cost can be computed for different cost functions
and for processing schedules produced by arbitrary query processing algorithms.

For minimizing the total transmission cost, a method is proposed to determine the fragments to
be allocated from the relations in the conceptual schema and the queries and updates executed by
the users.

For the same cost function, the complexity of the data allocation problem is investigated. Methods
for obtaining optimal and heuristic solutions under various ways of computing the cost of an allocation
ara nenaantad and anmnarad
are presented and compared.

Two different approaches to the allocation management problem are presented and their merits
are discussed.

Categories and Subject Descriptions: C.2.4 {Computer Communication Networksj: Distributed
Systems]; D.2.8 [Software Engineering): Metrics; H.2.2 [Database Management]: Physical
Design; H.2.4 [Database Management}: Systems

General Terms: Algorithms, Design, Measurements, Theory

Additional Key Words and Phrases: Allocation, complexity analysis, database, greedy method,
partitioning

1. INTRODUCTION

The demand for more and more information both by industry and government
leads to databases that will exceed the physical limitations of centralized systems
and to the integration of already existing databases, which may be geographically
dispersed. Advances in the areas of both computer networks and databases make
it possible to build these distributed databases. Computers can easily be connected
to form a network, making it possible for them to communicate with each other.
On top of such a network a distributed database management system can be built
in such a way that the distribution of logical and physical components of the

databases is kept hidden from the users.

Author’s address: Computer Science Department, University of Twente, P.O. Box 217, 7500 AE
Enschede, The Netherlands.

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.

© 1988 ACM 0362-5915/88/0900-0263 $01.50

ACM Transactions on Database Systems, Vol. 13, No. 3, September 1988, Pages 263-304.


http://crossmark.crossref.org/dialog/?doi=10.1145%2F44498.45063&domain=pdf&date_stamp=1988-09-01

264 . Peter M. G. Apers

The advantages of a distributed database compared with a centralized one are
increased availability, decreased access time, easy expansion, and possible inte-
gration of existing databases [1, 37). The acceptance and widespread usage of
distributed databases will highly depend on their efficiency. Therefore, it is
important to supply a database management system with tools to efficiently
process queries and to determine allocations of the data such that the availability
is increased, the access time is decreased, and/or the overall usage of resources
is minimized.

The problem of allocating files in a computer network has been extensively
studied. However, the results obtained cannot be straightforwardly applied to
distributed databases. One deviation from the file allocation problem is the unit
of allocation. Tuples occur in the same relation because they contain data from
the same set of domains to describe the same entity or relationship. However,
one group of tuples may be mainly used in New York and another group in
Amsterdam. Obviously, splitting the relation into fragments and locating one
fragment on one side of the ocean and the other on the other side will tremen-
dously decrease intercontinental traffic.

Another deviation from the file allocation problem is the way the relations are
accessed. From current research on distributed query processing we know it is
common that more than one relation is accessed in a query and that complex
processing schedules, which include transmissions between relations stored at
different sites, are used.

In this paper we will present a model that makes it possible to compare the
cost of possibly not yet completely specified allocations for schedules produced
by arbitrary query processing algorithms. The model is general enough to be used
in both branch-and-bound and heuristic algorithms for minimizing various cost
functions. For minimizing the total transmission cost, a method is proposed to
determine the fragments to be allocated from the relations in the conceptual
schema and the queries and updates executed by the users. Under restrictive
conditions it can be shown that these fragments are the smallest ones that have
to be considered. For the same cost function, it is shown that the problem of
determining a nonredundant data allocation to minimize total transmission cost
is NP-hard. Methods for obtaining optimal and heuristic solutions under various
ways of computing the cost of an allocation are presented and compared. Cen-
tralized and decentralized approaches to the problem of managing data allocations
are presented and their merits are discussed.

This paper is organized as follows. In Section 2 an overview is given of previous
work in the area of file and data allocation. The differences between the well-
known file allocation problem and the data allocation problem in distributed
databases are discussed in Section 3. Section 4 contains the introduction of a
model to compute the cost of allocations, the way updates are treated, and a way
of determining the fragments to be allocated. In Sections 5 and 6 the problem of
computing optimal and heuristic data allocations when using a static approach
to compute the cost of an allocation are investigated. In Section 7 the same is
done for a dynamic approach. Static or dynamic refers to adjusting or not
adjusting the query processing schedules when computing the costs of various
allocations in the process of determining a final allocation. Section 8 discusses

ACM Transactions on Database Systems, Vol. 13, No. 3, September 1988.



Data Allocation in Distributed Database Systems -« 265

the problem of managing data allocations by one or several database administra-
tors. We end with a summary of the results obtained.

2. OVERVIEW OF PREVIOUS RESEARCH ON THE FILE
AND DATA ALLOCATION PROBLEM

The file allocation problem has many disguises. In this section we will not
attempt to cover all the related research; only the main line of research will be
discussed. For a more complete discussion of the file allocation problem we refer
to [24].

Before distributed database management systems were investigated, networks
already existed for many years The problem of where to allocate a file and its
bUplt:b, g,lvcu a known set of retrievals and upuawb and their execution Lrequenaes
such that a cost function is minimized, is known as the file allocation problem.

Chu was probably the first to work on the file allocation problem. In [17, 18]
he presented a simple model that only allows for a nonredundant allocation of
the files. The optimization goal is to minimize total transmission cost subject to
available secondary storage at each site and a given maximum on the expected
retrieval time. The result is a zero-one programming problem subject to nonlinear
constraints, which can be solved with standard linear integer programming
ueCumques

The model proposed by Casey [12] allows for multiple copies. To do so, a
distinction must be made between queries and updates, because an update must
access all copies and a query needs to access only one. The optimization goal is
to minimize the cost in dollars of the transmissions plus the storage cost of the
files. In [21] it was shown that the file allocation problem modeled this way is
NP-complete [4, 19, 22].

In [28, 29] both the allocation of the application programs that access the files
and the allocation of files themselves were discussed. Data can be stored r Lcluuvm_y
easily at different sites or transmitted from one site to another. However,
programs, because of the programming language in which they are written, are
not as portable as one might wish. A second important aspect discussed by Levin
and Morgan is the change in the access pattern over time.

Another approach to the file allocation problem is to allow for changes in the
hardware as well as in the allocation of the files. In [30] the capacity of the
communication channels may be determined besides the allocation of the files.
The resulting model is a nonlinear integer programming problem for which a
heuristic approach is used to reach a solution.

In [36] an attempt is made to consider the file allocation in the environment
of a distributed database. Although queries that access more than one relation
are allowed, the underlying assumption—that the query is processed at the result
site without transmissions between the sites where the relations are located—
reduces the whole problem again to the file allocation problem.

In [5, 6, 8] we considered the integration of query processing and data

allocation. A heuristic algorithm was developed to handle both the nonredundant

and redundant case. Determining the unit of allocation was discussed and
different ways of managing data allocations were compared in [7, 8].

ACM Transactions on Database Systems, Vol. 13, No. 3, September 1988.



266 . Peter M. G. Apers

Later, in [13, 14], a similar goal was pursued in the context of a general
distributed database design methodology. In [14], only predefined schedules
consisting of a number of basic operations on relations were considered.

In [38], limited processing and network capacities are assumed; transmission
of the result of a query to the result site is not considered; only transmissions
between fragments are considered, rendering the problem into a cluster analysis
problem.

In [41] the file allocation problem is discussed for a local area network with
broadcasting facilities. It turns out that some of the NP-hard problems can be
solved in polynomial time for such an environment.

3. ALLOCATION PROBLEM IN DISTRIBUTED DATABASES

In this section we will discuss and elaborate on the reasons why the file allocation
problem does not adequately describe the allocation problem in distributed
databases and state the data and operation allocation problem.

A distributed file system differs greatly from a distributed database. The
solutions for the file allocation problem do not characterize solutions to the
allocation problem in a distributed database for the following reasons:

—The objects to be allocated are not known prior to allocation. Relations, which
describe logical relationships between data, are not suited as units of allocation
because users at different sites might be interested in different fragments of a
relation.

—The way the data are accessed is far more complex. In the file allocation
problem the only transmissions required to combine data from different files
are transmissions from sites containing files to the result site, where the result
is computed. In current research on distributed query processing we observe
that to process a query, data transmissions between sites where fragments are
allocated are also needed. This means that the fragments cannot be allocated
independently.

To capture these aspects, the file allocation problem is generalized into the data
and operation allocation problem:

Given the queries and updates, the frequencies of their usage, and the sites
where the results have to be sent, determine (1) the fragments to be allocated,
and (2) allocate these fragments, possibly redundant, and the operations on
them to the sites of the computer network such that a certain cost function is
minimized.

For short, we will often use the term data allocation when we mean data and
operation allocation.

Before going on we will elaborate on the above-mentioned deviations from the
file allocation problem.

3.1 Data Allocation

The various ways of splitting a relation into fragments and the terminology for
the different allocations will be discussed in this section.

Grouping together complete tuples is called horizontal splitting, and grouping
together attribute values of all tuples is called vertical splitting. If the relations

ACM Transactions on Database Systems, Vol. 13, No. 3, September 1988.



Data Allocation in Distributed Database Systems . 267

are split horizontally and/or vertically and the resulting fragments are placed at
different locations, the database is called partitioned. If copies of relations or
fragments are placed at several locations, the database is called replicated.

Example 1. Figure 1(a) shows the relation WINE with attributes YEAR,
NAME, PRODUCER, AREA, and COUNTRY. Each tuple represents a wine for
which the grapes were grown in a certain area, picked in a certain year, and
bottled by a certain producer.

Figure 1(b) shows the relation WEATHER, containing the attributes YEAR,
AREA, COUNTRY, SUN, and RAIN. SUN stands for the hours of sun and
RAIN for the number of millimeters of rain in a particular area in a particular
year. The two relations will be used in the examples to come.

One way to partition the relation WINE is to split it based on countries that
produce wines, assurmning those are France, Italy, and the USA:

WINE_F = WINE{COUNTRY = France}
WINE_I = WINE{COUNTRY = Italy}
WINE_U = WINE{COUNTRY = USA].

Locating WINE_F in Paris, WINE_I in Rome, and WINE_U in San Fran-
cisco is an example of a partitioned allocation.
An example of a vertical split is

WEATHER_R = WEATHER[YEAR, AREA, COUNTRY, RAIN]
WEATHER_S = WEATHER|YEAR, AREA, COUNTRY, SUN].

Locating WEATHER_R in Oslo, WEATHER_S in Rome, and WEATHER in
New York is an example of a partitioned and replicated allocation.

Note that the primary key of relation WEATHER, which is YEAR, AREA,
and COUNTRY, is part of both fragments WEATHER_R and WEATHER_S;
this is necessary to be able to update both fragments.

3.2 Query Processing

To get an idea of the problems involved in distributed query processing, we will
discuss some of the problems involved. Assume we want to process the query:

Give the name and the year of wines and the hours of sun of areas where the
grapes were picked and where more than 1,700 mm. of rain fell

stated by a user in Amsterdam.

Some of the distributed query processing algorithms require that the database
management system supplies a materialization of the fragments. This means that
for each fragment a single copy has to be selected such that together with other
copies a consistent view of the database is given. Here we assume that the
materialization looks like: fragment (WEATHER{RAIN > 1,700})[ YEAR, SUN,
AREA] at the site in New York and the fragments WINE_F, WINE_I, and
WINE_U in Paris, Rome, and San Francisco, respectively.

The query may have many processing schedules for executing it, of which we
will discuss only two.

ACM Transactions on Database Systems, Vol. 13, No. 3, September 1988.



268 . Peter M. G. Apers

WINE
YEAR NAME PRODUCER AREA COUNTRY
1970 Margaux Chateau Margaux Bordeaux France
1972 Beaune Louis Latour Bourgogne France
1978 Chianti Classico Villa Antinori Toscana Italy
1976 Cabernet Sauvignon Christian Brothers Napa Valley USA
(a)
WEATHER
YEAR AREA COUNTRY SUN RAIN
1970 Ardennes Belgium 1551 1105
1976 Napa Valley USA 3022 601
1970 Bordeaux France 2008 900

(b)
Fig. 1. (a) relation WINE and (b) relation WEATHER.

Schedule 1. Transmit (WEATHER{RAIN > 1,700})[YEAR, SUN, AREA]
from New York to Paris, Rome, and San Francisco, and compute the joins based
on YEAR and AREA at the respective locations. After that, the results are
transmitted to Amsterdam. If the size of the selected and projected relation
WEATHER is 18,000 and the sizes of the results are 400, 800, and 200 bytes,
respectively, the total number of bytes transmitted is 3 X 18,000 + 400 + 800 +
200 = 55,400.

Schedule 2. Transmit the fragments WINE_F, WINE_I, and WINE_U to
New York, where they are united and the join based on YEAR and AREA is
computed between this union and WEATHER. If the sizes of the three fragments
of the relation WINE are 12,000, 15,000, and 20,000, respectively, and the size of
the result is 1,400 bytes, the total number of bytes transmitted is 12,000 + 15,000
+ 20,000 + 1,400 = 48,400.

Clearly, the first schedule is more expensive in terms of the number of bytes
transmitted; however, most of the transmissions and computations are done in
parallel, resulting in a smaller response time.

The purpose of query processing algorithms is to determine processing sched-
ules for queries such that a certain cost function is minimized. There are different
ways of measuring the cost of a schedule. The cost function may include the cost
to transmit data and/or the cost to execute a certain operation. Here we will
confine ourselves to the total transmission cost. This cost function just adds up
the costs of all the data transmitted in the schedule. As far as the model
introduced in the following sections is concerned, this confinement is merely for
presentational reasons, because the model does not depend on it. The methods,
however, are especially designed for minimizing the total amount of data
transmitted.

To correctly represent processing schedules we also need to know something
about executing them. The processing schedules contain data transmissions from
one site to another and local processing at the different sites. To let the individual
operations and transmissions cooperate in the way described in the schedule we

ACM Transactions on Database Systems, Vol. 13, No. 3, September 1988.



Data Allocation in Distributed Database Systems . 269

require synchronization and forking processes before and after every operation
and transmission. A synchronization process lets an operation wait until its
input(s) are completely or partly available. For example, the union of the
fragments WINE_F, WINE_I, and WINE_U in Schedule 2 may start its
execution if its operands are only partially locally available. A forking process
allows the result of an operation or transmission to be the input of one or more
other operations or transmissions. For example, the forking process after the
selection and projection on the relation WEATHER creates copies of the result
and gives them to the synchronization processes of the transmissions for trans-
mission to different sites.

For a more detailed discussion on distributed query processing we refer to the
current research on this topic [9-11, 20, 23, 26, 32, 34, 39, 40, 42-44].

4. UNIT, REPRESENTATION, AND COST OF DATA ALLOCATIONS

In Subsections 4.1 and 4.2, notions are introduced to represent allocations and
to compute their costs. In Subsection 4.3 the cost of updating several copies is
discussed. A way of determining the unit of allocation is proposed in Sub-
section 4.4.

4.1 Representation of Data Allocations

In this section we introduce some notions to describe a model to represent data
allocations. We assume that the unit of allocation is a fragment.

To allocate the fragments we have to know the processing schedules of all the
queries and updates that access these fragments. However, these schedules
depend on the allocation of the fragments that we want to determine. One way
of solving this circular problem is to do an exhaustive search to find an optimal
allocation. For a large number of fragments this is not feasible. Therefore, the
representation model should be general enough to allow for both heuristic and
branch-and-bound approaches. Both approaches have in common that allocations
in which only part of the data is allocated can occur. To represent these
allocations and compare their costs we introduce some notions.

A nucleus-site is a pair (F\S, OS), where FS is a set of fragments and OS is a
set of operations. An gperation is a triple (i, f, x), where x is the execution time
of the operation and f the frequency with which the ith transaction of which the
operation is part is executed. A transaction consists of a set of operations. There
are two types of nucleus-sites, namely physical sites (PhS) and virtual sites (VS).
A physical site represents a site in the computer network and a virtual site
represents a fictitious site, the purpose of which will be explained in a moment.
Both types of nucleus-sites are used to represent allocations.

Putting fragment F in the set of fragments of PhS corresponds to allocating F
to the site in the computer network corresponding to PhS. If part of the allocation
looks like VS = ({Fy, F.}, { }), it represents that fragments F, and F, are to be
allocated to the same site in the computer network but that which site is not
specified. Below we will introduce two operations on allocations and discuss their
differences.

A physical site may have assigned to it a set of virtual sites; this set will be
called the assigned set. A virtual site can be assigned to at most one physical site,
which means that it is placed in the assigned set of that physical site.

ACM Transactions on Database Systems, Vol. 13, No. 3, September 1988,



270 . Peter M. G. Apers

The union of two nucleus-sites is a nucleus-site whose set of fragments is the
union of the sets of fragments of the two nucleus-sites, whose set of operations
is the union of the sets of operations, and whose assigned set is the union of the

assigned sets. The result of a union of two virtual sites is again a virtual site, and
+thao 11minn nf a virtiial cita and a nhvuaical cite ic that nhyainal cita Nata that +tha

the union of a virtual site and a physical site is that physical site. Note that the
union between two physical sites is not defined.

The difference between an assignment and a union is that applying the union
to an aliocation means changing it permanently. The assignment, however, allows
for changing the allocation back and forth. To make the assignment look like a
temporary union, the cost of an allocation, which will be defined later, should
not be different whether a virtual site is assigned to or united with a physical
site. These two operations make it possible to search through the space of possible

allanndinma haanmakh_and haiind +anhnioviiag aon A honiniatio aloarithm

allvvauvliulld Uy vialivili-aiiu-~ UUUIIU bUblllll\iuUD allu llcullbbl\a QISUILULALLID

A completely specified allocation is an allocation in which all fragments and
operations are in sets of physical sites. A partially specified allocation is one where
some of the fragments or operations are still in the corresponding sets of virtual
sites.

4.2 The Cost of a Data Allocation
In this subsection we will introduce tools to compute the cost of a completely

and part uauy Spemucu allocation.
The computation of the cost of an allocation is done by means of a processing-

schedules graph. Such a multigraph consists of

(1) PhS-nodes, for the physical sites,
(2) VS-nodes, for the virtual sites, and
(3) edges, for the data transmission between two nodes, PhS- or VS-nodes.

The edges, which are directed, are labeled with a triple (i, f, d), where d stands
for the amount of data transmitted between the sites that correspond to the
nodes in the processing-schedules graph for processing the ith transaction, and f
stands for the frequency with which this transaction is executed. Because most
of the time we are interested in the processing-schedules graph and not merely
in the allocation itself, we will talk about the nodes in the processing-schedules

granhk ag if thawv warna tha nhoasinal Ar vintiial aitag thamanlvaa

piapil ad L LLITY WUIT LULIT pluydival vl vil uuax S1tes UcCiseives.

First, we show how to construct a processing-schedules graph and how it is
graphically represented, and then we show how this construction is used to
compute the cost of an allocation. The basic idea is that given an allocation we
can construct a processing-schedules graph by (1) creating PhS- and VS-nodes
for the physical and virtual sites, respectively; (2) creating edges that represent
the transmissions of the processing schedules, which are computed by an arbitrary
query processing algorithm based on the allocation; and (3) adding the operations

aof tho nraocecaing schadiilas ta tha oneratinn-gata of the nhvaical and virtiial qaitag
O i€ Processing sCneGuies U0 Uie OPperatitn-sets 01 Lie pnaysifal ana virtuai siwcs,

The processing schedules of the queries and updates are computed based on
the allocation of the fragments distributed over a hypothetical network. This
hypothetical network has a site for every physical and virtual site, and they are
connected with each other by communication channels of the same bandwidth;
however, if VS is assigned to PhS we assume that sending data between VS and

ACM Transactions on Database Systems, Vol. 13, No. 3, September 1988.



Data Allocation in Distributed Database Systems - 27N

PhS

JFAN
S LN
|
|

IS

F— —— SR

Fig. 2. Graphical representation of a physical site with virtual sites.

PhS does not cost anything. It is just as if the data of VS and PhS were stored
at the same site.

The node of a nucleus-site in the yu’)CGSSAI’ig schedules Exapu is gr uyrubuu_y
represented by a box; in this box there is a black dot representing the nucleus-
site itself. The boxes that represent the elements of the assigned set are placed
on the edges of the box such that they do not overlap with each other. Figure 2
shows part of a processing-schedules graph with one physical site, PhS;, and two
virtual sites, VS; and VS,, of which VS, is assigned to PhS;.

Example 2. Figure 3 shows a processing-schedules graph of a partially specified
allocation for three transactions. There are two physical sites, PhS, and PhS.,
and three virtual sites, VS|, VS,, and VS;, of which VS, is assigned to PhsS.,.
Transaction 1, which is executed ten times per unit of time, computes a join
between F;, allocated to VS,, and F;, allocated to VS;. A distributed query
processing algorithm can determine that sending data between VS, and PhS,
does not cost anything. Its processing schedule consists of the selections O; and
O,, which are elements of the sets of operations of VS; and VS,, respectively.
The result of O,, whose size is 200 bytes, is transmitted to VS;, where the join
(O3) with the result of O, is computed. Finally, this result, 800 bytes in size, is
sent to the physical site PhS;.

Transaction 2, which is executed six times per unit of time, represents updates
(0,) by a user at PhS, of fragment F,, which is allocated to VS,. The edge from
PhS; to VS, represents the transmission of the actual changes supplied by the
user.

Transaction 3 retrieves {JU;) data from Fs, allocated to VSs;. It is executed
20 times per unit of time.

To compute the cost nf a completely (nnrhn”\/\ specified allocation we start

VA1 COSO Coel QUi

by constructing the processing- schedules graph based on the allocation and
the processing schedules. This processing-schedules graph contains all the

ACM Transactions on Database Systems, Vol. 13, No. 3, September 1988.



272 . Peter M. G. Apers

PhS Phs,

v (2,6,800)

(3,20,1000)
Vs,
(1,10,200)

»

vs, Vs,

Vs, =({F.}{0,.04)
VSZ = ({Fz}.{02.03})
VS, = ({Fa}.{o_f,})

Fig. 3. An example of a processing-schedules graph.

information necessary to check constraints, such as bandwidth, CPU-utilization,
availability, etc., and to determine the cost of the individual queries and updates.

For example, for each communication channel and each CPU, all transmissions
and operations are known. Based on that, the expected waiting times for the
channels can be computed. For each physical site the expected waiting time of
its operations is determined as if all the sets of operations of the virtual sites
that are assigned to it were united. The expected waiting time of the operations
of a virtual site VS that is assigned to a physical site PhS is computed as if the
set of operations of only VS and PhS were united. Note that although more than
one virtual site may be assigned to a physical site, the expected waiting times of
their operations are computed for each virtual site independently.

Possible costs of an allocation could be the sum of the total transmission costs
of queries and updates weighted by their execution frequencies, the average
response time of queries and updates, etc., possibly subject to one of the con-
straints mentioned above. If a constraint is violated the cost of the corresponding
allocation is infinite.

In this paper we will confine ourselves to the total transmission cost of an
allocation defined as the sum of the total transmission costs of queries and
updates weighted by their execution frequencies. We will show how this can be
computed. For each transaction i we extract from the processing-schedules graph
the transmissions labeled with the identification number i that are not connecting
a physical site with one of its assigned virtual sites. This value is multiplied by
the execution frequency of transaction ; and summed up by the total cost. Note
the algorithmic way the cost of the allocation is computed.

Example 3. From the processing-schedules graph of the partially specified
allocation discussed in Example 2, we will construct the processing schedules of

ACM Transactions on Database Systems, Vol. 13, No. 3, September 1988.



Data Allocation in Distributed Database Systems . 273

the three transactions, taking into account the assignment of VS, to PhS,.
Because VS; and VS; are not assigned to any physical site the adjacent edges
will be part of the schedules of the queries and updates. For simplicity, we confine
ourselves to the transmissions in the processing schedules.

Transaction 1.

F, = result site
total transmission cost = 200

Transaction 2.

result site = F
total transmission cost = 800

Transaction 3.

Fy = result site
total transmission cost = 1,000

This results in a total transmission cost of the allocation of 10 X 200 + 6 X
800 + 20 X 1,000 = 26,800.

In this subsection the costs of completely and partially specified allocations
were computed by means of a processing-schedules graph. This graph was
constructed by giving the allocation to a query-processing algorithm that returns
a processing schedule for each query. The transmissions and operations in such
a schedule are incorporated in the processing-schedules graph and the physical
and virtual sites.

4.3 Forking Processes and Forking Graphs

So far, we have discussed the way a processing-schedules graph can be constructed
given a partially specified allocation and how the cost of such an allocation can
be determined from it. Our goal is to obtain a completely specified allocation by
manipulating partially specified allocations such that a given cost function is
minimized. Changing an allocation may have an effect on the processing sched-
ules of the transactions.

The placement of forking processes in a schedule depends on the allocation.
Therefore, we will introduce a forking graph, which enables us to more efficiently
handle forking processes when changing partially specified allocations. The cases
in which forking processes are used are listed below. The first case is concerned
with the notification of the processing schedule of a query or update to all sites
involved; the second case concerns the notification of the tuples to be updated to
the copies of a fragment in an update transaction. A third case will be seen when
discussing the splitting of relations. All cases have in common that the forking
process is used to start a parallel computation. The representation of a forking
graph is shown in Figure 4. Such a forking graph will be a subgraph of a
processing-schedules graph and consists of a notification node and a set of
receiving nodes. All the nodes are VS-nodes. All edges in a forking graph are
labeled with the same triple, because to each receiving site the same amount of
data will be transmitted with the same frequency. Each receiving node is part of

ACM Transactions on Database Systems, Vol. 13, No. 3, September 1988.



274 . Peter M. G. Apers

l [ ¥ l notification node

receiving nodes
« e

a schedule for a query that references the fragment allocated to that receiving
node.

Imagine that this forking graph is part of an update schedule. After the tuples
that have to be changed are determined, the actual changes are sent to the copies
of the fragment. At the notification node the changes are computed and the
copies are located at the receiving nodes.

What kind of changes can occur in the allocation? Two copies that were located
at different virtual sites can be allocated to the same virtual site. This means
that the two virtual sites are united and two copies of the same fragment are put
in the fragment-set of the resulting virtual site. Having two identical copies at
one nucleus-site is, as far as efficiency is concerned, useless and, therefore, only
one is maintained. If in a forking-graph two receiving nodes are united, one of
the edges to these nodes disappears. Also, if one of the copies of the fragment is
allocated to the site corresponding to the notification node, there is no need to
transmit data to it. Therefore, if a receiving node is united with a notification
node, the edge between them is deleted.

Besides the removal of an edge representing a superfluous transmission,
operations directly involved with this transmission and operations that worked
on superfluous copies are also removed from the operation-sets.

4.4 Unit of Allocation and Processing Schedules

Having explained how a processing-schedules graph for a given allocation can be
constructed and how it is used to compute the cost of that allocation, we will
now discuss how to determine the unit of allocation. In [7] we gave a global
outline of the splitting algorithm. Later, in [15] a similar goal was pursued; in
[31] only vertical partitioning is considered.

Let us assume that we have a set of queries and updates and the frequencies

aof their nngaca As far sg tha ralational anerastiong are concermed aueries and
Oi UAGIT USsage. As iar as il réiaiitila: Oporations aré Conceerned, querics ana

updates are the same and therefore we only discuss queries. A query will use only
fragments of the relations in the global conceptual schema. These fragments are
characterized by selections and projections.

First, we take a look at just one relation, say E. A selection is a Boolean
expression of a number of simple clauses A 6 a, where A is an attribute, 6 is a

ACM Transactions on Database Systems, Vol. 13, No. 3, September 1988.



Data Allocation in Distributed Database Systems . 275

comparison operation, and a is a value from the domain of A. Each of these
Boolean expressions describes a subset of the tuples of the relation R. We are
interested in the intersections, caused by overlapping subsets, which can be
uniquely identified by saying in which selections they participate.

The partition caused by the overlapping subsets form the horizontal split of R.
If there are n selections there will, in general, be (2" — 1) fragments. The vertical
split of R is done based on the attributes. Each attribute together with the
primary key is put in a separate fragment. The reason for this will become clear
after Theorem 2. If there are m attributes of which k form the primary key, there
will be m — k + 1 fragments after vertical splitting. Combine the above results:
The number of fragments caused by horizontal and vertical splits equals
(2" — 1)(m — k + 1), where n is the number of selections, m is the number of
attributes, and & is the number of attributes in the primary key.

Example 4. Assume we have relation WEATHER with relational schema:
WEATHER(YEAR, AREA, SUN, RAIN).

Also the following queries are given:

Q. = WEATHER{AREA = Bordeaux AND SUN > 2,000}[ YEAR, AREA, SUN]
, = WEATHER{RAIN < 1000}[ YEAR, AREA, RAIN].

From the selections in these queries and the attributes in the schema we
determine the following fragments:

F, = WEATHER{AREA = Bordeaux AND SUN > 2,000
AND RAIN = 1,000}[YEAR, AREA]

F,= WEATHER{AREA = Bordeaux AND SUN > 2,000
AND RAIN = 1,000}[YEAR, AREA, SUN]

F; = WEATHER{AREA = Bordeaux AND SUN > 2,000
AND RAIN = 1,0004{ YEAR, AREA, RAIN}

F,= WEATHER{AREA = Bordeaux AND SUN > 2,000
AND RAIN < 1,000} YEAR, AREA)

s = WEATHER{AREA = Bordeaux AND SUN > 2,000
AND RAIN < 1,000}[ YEAR, AREA, SUN]
Fs= WEATHER{AREA = Bordeaux AND SUN > 2,000
AND RAIN < 1,000}[YEAR, AREA, RAIN])
F;, = WEATHER{(AREA # Bordeaux OR SUN = 2,000)
AND RAIN < 1,000}[YEAR, AREA]

Fy= WEATHER{(AREA # Bordeaux OR SUN = 2,000)
AND RAIN < 1,000}[YEAR, AREA, SUN]

Fy = WEATHER{(AREA # Bordeaux OR SUN < 2,000)
AND RAIN < 1,000}[YEAR, AREA, RAIN].

Note that simply applying this method might generate fragments that contain
only a few or even one tuple [16]. This is, of course, not desirable. Therefore this
method should be handled with care and some clustering may be done by the
database designer, for example, by only considering view definitions.

Before discussing whether further splitting is necessary as far as minimizing
the cost of data allocations is concerned, we show the extension for queries that
reference more than one relation. If a query contains a join, the fragments

ACM Transactions on Database Systems, Vol. 13, No. 3, September 1988.



276 . Peter M. G. Apers

required by the join can also be described by projections and selections. A selection
consists of the clauses that are applicable to the corresponding relation and may
also include clauses that are obtained by transitivity on clauses on the other
relation and the joining clauses.

Assume a set of qucucb were used to a"p‘ht the relations into fi'agulcxu,b and
that these fragments are distributed over a computer network. To investigate
whether further splitting is necessary, we discuss execution of queries by pro-
cessing schedules that use the relational algebra operations select, project, and
Jjoin in the way described below.

The result of a select is obtained by taking those fragments whose describing
clause is contained in the Boolean expression of the select. What is done with
these fragments depends on the next operation in the processing schedule. If
LIICIU lb llUl.lC, d.ll LIIUBU lldgluﬂllbb are DCIIL l./U bhc TGS‘th blbU

The result of a project is obtained by taking those fragments whose attributes
are part of the project. The result of a project is computed in several phases.
First, all fragments with the same set of primary keys are collected at one site,
and there local projects are computed (the same as a distributed project in [34]).
Then the results are collected at one site where again a project is computed.

Which fragments are involved in a join can be determined in the same way as
was done for a select and a project. There are many ways to compute a join. Here
we will assume that the result of a join is computed as follows. For one relation
all fragments with the same set of primary keys are collected at one site. So now
the relation is only horizontally split and distributed over several sites. All the
fragments of the other relation are sent to these sites and there the joins are
computed [20]. What is done with the resulting fragments of the join again

depends on the next operation. If there is none, all of them are sent to the result
site.

Example 5. The result of the select RAIN < 1,000 is obtained by taking
fragments F,, F;, Fg, F;, Fs, and Fy. The result of the project [YEAR, AREA,
SUN, RAIN] is obtained by taking the fragments F,, Fs, Fs, Fg, Fs, and F,.

Assume that all fragments are located at different sites in a computer network

The processing schedule of query €. of Example 4 may then look like:

(1) consider F,, Fs, Fs, F+, Fs, and Fs as input of the project,
(2) send Fs to Fs and F, to Fg and execute local projects.
(3) send the results to the result site and do again a project.

Note that because the primary key is among the attributes in the project, the
projects in steps 2 and 3 have no effect.

Now we will discuss whether further splitting the fragments obtained by
applying the selection predicates of the queries is necessary. To do so, we need
to introduce the notions static under splitting and weighted split and try to relate
them for horizontal and vertical splitting. We call a distributed query processing
algorithm static under splitting if a split of a fragment F into F' and F” will only
cause changes in a schedule concerning the incoming and outgoing edges of F in
such a way that an edge coming from F is now replaced by an edge coming from

ACM Transactions on Database Systems, Vol. 13, No. 3, September 1988,

0 Depte



Data Allocation in Distributed Database Systems . 277

Y,

B A B

Fig. 5. Changes in schedule caused by static splitting algorithm.

F’, or from F”, or from both. Furthermore, an edge going to F is now replaced
by an edge going to F’, or to F”, or to both.

Figure 5(a) shows part of a processing schedule involving the fragments A, B,
C, D, and F; Figure 5(b) shows the changes in the schedule caused by splitting F
into F’ and F”. The changes reflect the changes by a query processing algorithm
that is static under splitting.

A split of F into F’ and F” is called a weighted split if an outgoing edge of F
labeled with (i, f, d) is replaced by two edges labeled (i, f, d | F’|/| F|) and
(i, ,d | F"|/| F|)leaving F’ and F”, respectively. An incoming edge of F labeled
(J, &, e) is replaced by two edges both labeled (j, g, ¢) going to F’ and F”.

The value d stands for the estimated amount of data transmitted in trans-
action i from fragment F to another fragment. The estimation is done by a
query processing algorithm. What the definition of weighted split says is that the
data that come from F now come from both F’ and F” and the amount of data
is proportional to the sizes of F’ and F”. Now we will prove a theorem that
relates the notions static under splitting and weighted split for a horizontal split.
This is only possible when the split is done randomly. If the split is not random
and information about the split is used in query processing, this information
should be added to the set of queries on which the relations are split.

THEOREM 1. For minimizing total transmission cost, a horizontal split of F into
F’ and F” that is done randomly is a weighted split if the distributed query
processing algorithm is static under splitting.

PRrROOF. Assume that we split a fragment horizontally into F’ and F”. An
outgoing edge of F is the transmission of a result of an operation in which F
participated. Because the split is done randomly a tuple of F’ is equally likely
part of the result as a tuple of F”. The result can be obtained by applying the
operation to both ¥’ and F” and uniting the two results. Because of these two
reasons the estimated size of the result produced by F’ and F” is | F’ |/|{ F| and
| F”|/| F| times the estimated size of the result produced by F.

Because the split is done randomly no information is known about the tuples
in F’ and F” and, therefore, the incoming edges are both labeled with the label
of the original edge. Hence, the split is weighted. O

ACM Transactions on Database Systems, Vol. 13, No. 3, September 1988,



278 . Peter M. G. Apers

A similar result cannot be obtained for a vertical split. A vertical split is not
necessarily weighted because the change in the schedule may cause all the
incoming edges to go to F’ and none to F”. An example of this is the schedule
for a project. Assume that F and H are fragments obtained by a vertical split of
relation R. The schedule of a project on R will first compute local projects on F
and H and possibly send the result of the project on H to the site of F. If F is
split vertically into F’ and F”, the schedule will change drastically because F no
longer exists. A new schedule will first compute local projects on F’, F”, and H
and then send results of F” and H to F’. But then the split is not weighted.

Now we come to the main result of this section.

THEOREM 2. Further splitting the fragments obtained by horizontally splitting
the relations based on clauses of queries and vertically splitting them on (primary
key, attribute)-pairs will not decrease the total transmission cost, if the schedules
are static under splitting.

PRrROOF. Because the cost function is the total transmission cost, the labels
(i, f, d) are replaced by fd. The fragments obtained cannot be split vertically
because they contain only one attribute besides the primary key, which is
mandatory.

Let us consider a horizontal split of fragment F into F’ and F”. Let us assume
that F’ and F” are allocated to different physical sites in the optimal allocation.
We will show that allocating F’ and F” to the same physical site will not increase
the total transmission cost. Figure 6 shows part of the processing-schedules graph
in the split form; r’ stands for | F' |/| F| and r” for | F” |/| F'|. All virtual sites
have been united with physical sites except VS’ and VS”, which contain F’ and
F”, respectively. ty, t1, and t, stand for the total amount of data weighted by the
frequencies of their transactions from a fragment of PhS, to F, from F to a
fragment of PhS,, and from F to a fragment of PhS., respectively. In the
complete processing-schedules graph there may be more incoming edges for VS’
and VS”, but suppose that the one labeled with ¢, is the largest of them.

In this partial processing-schedules graph there are six possible assignments
such that VS’ and VS” are assigned to different physical sites. In all of them
either VS’ or VS” is assigned to PhS; or PhS,. Without loss of generality,
assume that VS’ is assigned to PhS,. This means that r't; = r’t,, which implies
r’t; = r”t;. Removing VS” from the site to which it was assigned and uniting
it with VS’ changes the total transmission cost as follows:

max(r”ts, to) — to — r’ty,

which is less than or equal to zero. Hence, the two fragments F’ and F” have
been brought together without increasing the total transmission cost. So that
further splitting the fragments horizontally is not required either. [

In practice, it may happen that distributed query processing algorithms are
not static under splitting, but we expect that changes in the processing schedules
caused by splitting a fragment can be modified back to the processing schedule
before the fragment was split, just as in the theorem, without increasing total
transmission cost. Therefore, the fragments F;; will be the objects to be allocated.

ACM Transactions on Database Systems, Vol. 13, No. 3, September 1988.



Data Allocation in Distributed Database Systems . 279

PhS PhS,

X~

NS/

Fig. 6. Partial processing-schedules graph.

When minimizing response time the problem of determining the objects to be
allocated is more complicated. A good heuristic to minimize the response time is
to allow for as much parallelism as possible. At first glance, it may seem a good
However, no information is known about the tuples in the obtained fragments,
and, hence, every query or update must access all the fragments, causing less
concurrency. Therefore the same approach is taken as for minimizing total
transmission cost. The relations are split into fragments based on the queries
stated by the users at the sites in the computer network. Further splitting the
obtained fragments vertically will not enhance more parallelism. Further splitting
it horizontally, on the other hand, is a good idea. Because the clauses of all
queries have already been used, this further splitting will be done randomly.
Owing to overhead it is better not to place every tuple at a different site. We
assume that threshold values regarding the minimum and maximum number of
tuples per fragment are given as system parameters. So the fragments obtained
for minimizing total transmission cost are horizontally split further based on the
threshold values.

The fragments constructed in the way described above are the objects to be
allocated. If two fragments that contain the same primary key end up in the
same fragment-set of a virtual or physical site, they together can be viewed as
one large fragment with only one primary key.

Knowledge about a completely specified allocation is put in a global data
tained in fragments, selections on the relations that define the fragments, number
of tuples in the fragments, selectivity of certain attributes, allocation of copies,
etc. Each of these items is of interest to different parts of the distributed database
management system. Probably each will be accessed by different sites with a

AOM Trangao tions on Natahase Svstams. Vgl 12 Ng. 2. Santemb.
ACUN SY VOi. 13, &, SEpLemoer

S
1 Tary 15 on i ING.




280 . Peter M. G. Apers

different access pattern. Therefore, an allocation of the global data dictionary can
be computed in exactly the same way as was done for the relations.

To summarize this subsection we may conclude that just looking at the logical
components of a database is not enough to determine the objects to be allocated.
Therefore, a way to split relations horizontally, based on the predicates of the

queries, and vertically based on the attributes, was proposed.

In this and the coming sections we assume that total transmission cost is to be
minimized. First, we will introduce the notion of static processing schedules.
Then, we will investigate the complexity of the data allocation problem using
static processing schedules and discuss computing optimal allocations.

5.1 Complexity of Data Allocation Problem Using Static Schedules

In Section 4 a way of computing the cost of an allocation was given. The idea
was to give the data allocation and the set of queries to a query processing
algorithm, determine the processing schedules, put these in a processing-sched-
ules graph, and compute the cost of the allocation based on this processing-
schedules graph. The labels (i, f, d) for the edges will now be replaced by fd,
because for computing the total transmission cost the identification of the
transaction is not required and the execution frequencies can be multiplied by
the individual data transmissions.

During any search for an optimal or efficient allocation the costs of many
different allocations have to be compared. To avoid recomputing the schedules
every time a different allocation is considered, we will use static processing
schedules. We will explain what we mean by that. An initial allocation is an
allocation where, for each query and update, a copy of a fragment is created and
placed in its own virtual site, and none of the virtual sites are assigned to a
physical site. For this initial allocation the processing schedules of the queries
and updates are computed and put in a processing-schedules graph. Also, virtual
sites containing different copies of the same fragments are interconnected by a
forking graph, if the fragment is updated. The processing-schedules graph of an
arbitrary allocation A is determined by applying unions and assignments to the
initial allocation and adjusting the processing-schedules graph until A is reached.
Adjusting a processing- schedules graph means that edges between two nucleus-
sites that are united are removed. Given this processing-schedules graph we can
compute the cost of allocation A4, as described in Section 4, by adding up the
labels of all edges except the ones between a physical site and its assigned virtual
sites. Note that because we start from the initial allocation, where each query
and update has its own copies of the fragments it accesses, we do not have to
consider the nonredundant and redundant case separately.

Although the computation of the cost of allocations using static allocations is

more efficient, ﬁndmg a nonredundant, minimum total transmission cost allo-
cation is still NP-complete [4, 19, 22].

THEOREM 3. The problem of whether there exists a completely specified non-
redundant allocation with total transmission cost less than or equal to a certain T

”olnn‘ ctatic nrocescing cochodiloe 1o Arp,nnmnlnfn
vy Ol T ULTouur g olirCleweco LUiigicuc.

ACM Transactions on Database Systems, Vol. 13, No. 3, September 1988.



Data Allocation in Distributed Database Systems . 281

PROOF. See Appendix. O

COROLLARY 1. The problem whether there exists a nonredundant data allocation
with total transmission cost less than or equal to T is NP-hard.

5.2 Computing Optimal Allocations Using Static Schedules

In this section we will use techniques such as branch-and-bound [27] or the
Heuristic Path Algorithm [33] to search the large solution space for determining
data allocations to minimize total transmission cost. In {35] it was shown that
Eﬂese tecnnlques are DaSlLdlly U.'le same.

These search techniques construct decision trees. A node in such a tree is
identified by the path from the root to that node. Each edge on this path
corresponds to a decision taken about the data allocation; an example decision is
to unite VS; with PhS;. During the search for an optimal data allocation the

decision tree nnneh‘nnfpd so far partitions the space of onmn]pfp]v qnpmﬁpd

allocations into subsets that belong to the leaves. We say that a completely
specified allocation satisfies a partially specified allocation if it is possible to
modify the partially specified allocation by uniting virtual sites with physicai
sites such that the result is the completely specified allocation. A subset belonging
to a leaf of a decision tree contains all completely specified allocations that satisfy
the partially specified allocations defined by the decisions taken to reach that
leaf. The cost of a subset is defined as the minimum cost among all solutions in
the subset. Ideally, this value is known for each subset; however, normally this
is not the case, and then it should be estimated.

For a partially specified allocation we define a cost-estimator as the sum of two
Components (1) I:ne cost causeu Dy Eﬂe QeClSlODS naKen to IEdLn Ene paruauy
specified allocation from the initial allocation, and (2) an estimate of the cost
that will be caused by decisions that still have to be taken to reach a completely
specified allocation with least cost that satisfies the partially specified allocation.
Depending on the latter, the cost-estimator may underestimate or overestimate
the cost of the solution. The cost caused by decisions will be discussed in more
detail later on.

The search proceeds as follows. At each iteration a leaf with the smallest cost-
estimator is expanded. Expanding a leaf means that for the corresponding
partially specified allocation the following decisions are considered: unite one of
the virtual sites with each of the physical sites. In the decision tree this is
represented by creating new edges under that leaf for every decision; this renders
the leaf into an internal node. For each of the leaves of the newly created edges
the cost-estimator of the corresponding subset is computed. Then the algorithm
goes through the next iteration, again expanding a leaf with the smallest cost-
estimator, until a leaf whose corresponding subset contains only one completely
SpeCumu allocation is expanucd, this allocation is chosen as the result.

The cost-estimator of a subset underestimates the cost of the subset; therefore,
the Heuristic Path Algorithm will eventually find the optimal completely speci-
fied allocation [33]. An estimator with this property is called admissible. Ob-
viously, if the cost-estimator only contains the cost caused by decisions taken to

reach the partially specified allocation from the initial allocation, the search
ACM Transactions on Database Systems, Vol. 13, No. 3, September 1988.



282 . Peter M. G. Apers

deteriorates into an exhaustive search. So the estimator is important: The closer
its values are to the real cost the sooner the search terminates.

Before we introduce some notions that are needed to explain the algorithm
that computes the cost-estimator of a partially specified allocation, we will take
a look at the basic ideas behind it.

If each virtual site in a partially specified allocation is directly or indirectly
connected with only one physical site, the cost-estimator could simply be deter-
mined based on the transmissions between physical sites. If this is not the case,
then we would like to remove certain transmissions such that it becomes true.
These transmissions will be searched for by considering paths between physical
sites. A path between physical sites can, intuitively, be considered as a chain of
nucleus-sites starting at one physical site and going via zero or more virtual sites
to the other physical site. To underestimate the cost that will be caused by
uniting these virtual sites with physical sites, the cost of the cheapest connection
is taken.

The cost-estimator of a partially specified allocation, obtained by uniting
virtual sites with physical sites, is computed as follows. A path from PhS; to PhS;
is a sequence of nucleus-sites NSy, NS;, ..., NS,,, where NS, is PhS; and NS,
is PhS;, NS,, NS,, ..., NS,,_; are virtual sites, and that fori=0,1,...,m -1
there is at least one edge in the processing-schedules graph between NS; and
NS, or that NS, and NS;,, are nodes in at least one forking graph. The length
of a path is the number of virtual sites on that path plus 1. The cost of a path of
length greater than 1 is the minimum of the total cost of the edges or forking
graphs between two successive nucleus-sites in the sequence defining the path.
Paths of length 1 form a special case. If the two physical sites on that path are
merely connected by an edge, the cost of that path is the cost of the edge. If the
two physical sites on the path are part of a forking graph, we have to consider
all the paths of length 1 concerning that forking graph at once. If k nodes of the
forking graph are physical sites, then the total cost of such paths is & — 1 times
the cost of the forking graph.

Removing a path means the removal of all the edges between the successive
nucleus-sites in the sequence defining the path and the complete removal of all
the forking graphs in which successive nucleus-sites are part of the processing-
schedules graph. The reason that all edges and forking graphs are removed is
that we do not know which edge or forking graph will appear in the processing-
schedules graph of the completely specified allocation. If all paths are removed
each virtual site is connected directly or indirectly with only one physical site.

To compute the cost-estimator of the partially specified allocation, the algo-
rithm psa_static_cost shown in Figure 7 is applied. It considers paths between
physical sites and sums up their cost. To ensure that the edges and the forking
graphs are not used in two different paths, they are removed. A forking graph is
replaced by an edge between the notification node and one of the receiving nodes;
the choice of receiving node is quite arbitrary. Therefore, it should be interpreted
that a forking graph may be used only once in a path.

Example 6. To show how psa_static_cost computes the cost-estimator of a
partially specified allocation, we will apply it to a simple allocation, shown in
Figure 8.

ACM Transactions on Database Systems, Vol. 13, No. 3, September 1988.



Data Allocation in Distributed Database Systems . 283

proc psa_static_cost = (schedules graph psg)real:
begin
real sum;
sum := the sum of the cost of all paths of length 1;
remove all paths of length 1;
replace all forking graphs by one edge from their notification no
while there exists a path between two physical sites, say P
do
sum := sum + cost of path P;
remove path P
od;
psa_static_cost := sum
end

Fig. 7. Algorithm psa_static_cost.

>l PhS, PhS,

Mo

-t
N

-t
‘<

Vs, Vs,
N 3
/‘(3 1 o\‘\
/! N
L 4 h
PhS, PhS,

Fig. 8. Processing-schedules graph.

First, paths of length 1 are considered. There is only one, namely between
PhS, and PhS,. Because it is part of a forking graph, the whole forking graph is

conaidarad o+ Mexs hovainal ait »t 3 3
COonsiaerea av once. 1 wo pnysiCai sités are parv of it and, thmefcrc, the cost is

(2 — 1) X 10 = 10. Then the forking graph is completely removed from the
processing-schedules graph.

After this, all remaining forking graphs are replaced by one edge from the
notification node to one of the receiving nodes. Here, we assume that this edge
connects VS, with PhSs. The only path left is PhS;, VS;, PhS;, with cost equal
to 3. Hence, the cost-estimator is 10 + 3 = 13. Note that if the edge between VS,
and VS, were put in the processing-schedules graph to replace the forking graph,

+h 14 ha atha hat
there would be no paths between physical sites, resulting in a value for the cost-

estimator of 10. As a rule, psa_static_cost should try to replace forking graphs
by edges between subgraphs containing physical sites.

The optimal completely specified ailocation that satisfies the partially specified
allocation is obtained by uniting VS, with PhS, and VS, with either PhS; or
PhS,; its cost is 3 + 3 + 10 = 16.

ACM Transactions on Database Systems, Vol. 13, No. 3, September 1988.



284 . Peter M. G. Apers

Now we will show that the result of psa_static_cost is always less than or equal
to the cost of all completely specified allocations satisfying the partially specified
allocation.

THEOREM 4. Algorithm psa_static_cost is an admissible estimator if static
schedules are used.

PRrROOF. Assume we are given a partially specified allocation PSA and its
processing-schedules graph. First consider the cost of paths of length 1. Every
completely specified allocation must satisfy PSA and, therefore, any path of
length 1 represents an edge in the processing-schedules graph, so it will be part
of the processing-schedules graphs of all completely specified allocations. Hence
algorithm psa_static _cost correctly includes the cost of these paths.

The replacement of the forking graphs by one edge cannot increase the cost of
the partially specified allocation.

Now paths of greater length are considered. Let us say NSy, NS,, ..., NS, is
such a path between PhS; and PhS;, m = 2. In a completely specified allocation
satisfying PSA there exists at least one pair (NS;, NS..;) such that NS; and
NS, are united with different physical sites. In that case the total cost of the
edges between NS; and NS,., is part of the cost of the completely specified
allocation. The total cost of these edges can be underestimated by taking the
minimum total cost of the edges on that path.

Hence algorithm psa_static_cost underestimates the cost of any completely
specified allocation that satisfies a partially specified allocation. [

COROLLARY 2. If the Heuristic Path Algorithm uses psa_static_cost, the com-
pletely specified allocations produced have minimum total transmission cost if static
schedules are used.

6. HEURISTIC DATA ALLOCATION USING STATIC SCHEDULES

A heuristic algorithm for determining data allocations when using static process-
ing schedules to compute the cost of allocations will be presented. Both theoretical
and experimental results will be discussed.

6.1 Algorithm total - data -allocation

A well-known heuristic technique to find an efficient solution is to start from an
initial solution and to locally optimize this until no improvements are possible.
When, during optimization, several improvements are possible, the one that
decreases the cost function most is chosen. Algorithms that use this technique
are called greedy [25].

The heuristic approach that we propose here is based on the following two
ideas:

—Virtual sites cannot be united with physical sites independently of each other.
Therefore, uniting virtual sites with each other before uniting them with
physical sites is considered.

—The label of an edge in the processing-schedules graph gives a measure of how
important it is that the adjacent nucleus-sites are united, when minimizing the
total transmission cost. The adjacent nodes of the edges with the largest labels
are therefore considered first for uniting.

ACM Transactions on Database Systems, Vol. 13, No. 3, September 1988.



Data Allocation in Distributed Database Systems . 285

Before introducing the algorithm we introduce some notions. The sum of the
labels of the edges that disappear if two nucleus-sites NS; and NS; are united, or
that one is assigned to the other, is called LINK;;(= LINK;). Remember that
although two virtual sites may be assigned to one physical site in a partially
specified allocation, the edges between the virtual sites still count when comput-
ing the total transmission cost as long as they are not united.

The input of algorithm total data allocation is the processing -schedules graph

rrrrrrrrrrrrrrrrrrrrrrrrrrrrr
fragments it accesses, placed in v1rtual s1tes of thelr own, and that none of these
virtual sites are assigned to a physical site. This total_data_allocation determines
a partially specified allocation by assigning every virtual site to the physical site
for which LINK;; is maximum. Gradually it works towards a completely specified
allocation by considering unions of virtual sites. This is done in decreasing order
of their LINK-values. Uniting two virtual sites consists of two actions. First, the
two virtual sites, VS; and VS;, are removed from the physical sites to which they

ara agal ad Thic will incrancs tha tatal traneamicginn
are assigneda. i1inls wiii increase tne total transmission cost ‘vV}uh

max LINK;, + max LINK,.
k k

The second action is to unite them and to assign the virtual site that results from
the union, VS, again to the physical site PhS, for which LINK,, is maximum.
This decreases the total transmission cost with

max LINKuk + LINK”

The net result is the difference of these two amounts. The algorithm decides to
unite the two virtual sites if the net result is nonpositive. Before VS, can be
assigned its LINK-values, other nucleus-sites have to first be determined.

At every iteration the algorithm takes the pair with the largest LINK;; that

L + ha sdarad +thao lagt Thig nti ntil
has not 3 yl:b been considered since the last union. This continues until uuxtxus

any pair of virtual sites will increase the total transmission cost. The rationale
behind the algorithm is to remove the heaviest transmissions first, if uniting the
adjacent nodes of these transmissions is cost effective (i.e., decrease the total
transmission cost).

In the resulting allocation no two virtual sites will be assigned to the same
physical sites. Let us assume that VS; and VS; are both assigned to PhS,. Then

LINK; + LINK;, — (LINK., + LINK;) =< 0,

where VS, is the union of VS; and VS;, which contradicts the termination
condition of the algorithm. Figure 9 shows the procedural form of algorithm
total_data_allocation, which minimizes total transmission cost. Note that because
total_dataallocation started from the initial allocation, it determines both how
many copies of a fragment are required and their allocation.

We will show by an example how the algorithm works.

Example 7. Consider again the relations WINE and WEATHER of Figure 1
and the following two queries and two updates:

@:: (WEATHER(YEAR = YEAR AND AREA = AREA)WINE)
iYEAR, AREA, NAME, PRODUCER, COUNTRY, SUN, RAIN]
ACM Transactions on Database Systems, Vol. 13, No. 3, September 1988.



286 . Peter M. G. Apers

proc total_data_allocation = (schedules graph PSG)allocation:
begin
set P;
boolean goon := true;
foriton
do assign VS; to PhS, with LINK;, is maximum od;
while goon
do
P := set of pairs of virtual sites that are not yet united;
goon := false;
while P # { } and not goon
do
take (VS;, VS;) from P such that LINK;; is maximum;
if max, LINK,k + max; LINK,k - (LINKJ + max,; LINKuk) =0
then
VS. := union of VS, and VS;;
remove VS; and VS; from processing-schedules graph PSG;
add VS, and recompute its LINK-values;
goon := true
fi
od
od;
unite virtual sites with their physical sites;
end

Fig. 9. Algorithm total_data_allocation.

Q.: (WEATHER(YEAR = YEAR)(WINE{AREA = Napa Valley}))
[YEAR, AREA, NAME, PRODUCER, COUNTRY, SUN, RAIN]

U,: add new wines to WINE from Napa Valley.
U,: add information about the weather.

Because relation WINE is accessed in two queries it will be split according to
the procedure of Subsection 4.4. Here it is split into two, W’ and W”, where

W’ = WINE{AREA = Napa Valley}
W” = WINE{AREA  Napa Valley}.

The relation WEATHER will not be split because both queries require all its
tuples.

For query @, the virtual sites VS;, VS,, and VS; are created, containing W',
W”, and WEATHER, respectively. The processing schedule of @, consists of the
following data transmissions: The relation WEATHER is sent to the two frag-
ments W’ and W”. The results of the joins are sent to PhS,. For query @, the
virtual sites VS; and VS; are created, containing WEATHER and W”, respec-
tively. The schedule for @, is: The relation WEATHER is sent to fragment W”
where the join is computed and the result is sent to PhS,. For the updates U,
and U, the virtual sites VSg and VS, are created, containing W” and WEATHER,
respectively. For each query and each update, copies of the fragments involved,
allocated to virtual sites, are interconnected in forking graphs. The resulting
processing-schedules graph is shown in Figure 10.

ACM Transactions on Database Systems, Vol. 13, No. 3, September 1988.



Data Allocation in Distributed Database Systems . 287

PhS, PhS,

A A

vs, S
vs, : A_)\ vs,

20 20 8

vs,

Ar 15

PhS;

Fig. 10. Processing-schedules graph of Example 7.

Total_data_allocation starts with computing the initial assignment, character-
ized by the assignment of each virtual site to a physical site for which the sum
of the amount transmitted to it plus the amount received from it is largest; VS,
and VS, are assigned to PhS;, VS,, VS; (arbitrarily), and VS to PhS,, and VS,
(arbitrarily) and VS, to PhS;.

Note that the virtual sites that are not directly connected to a physical site are
assigned to an arbitrary physical site. This situation is shown in Figure 11.

ACM Transactions on Database Systems, Vol. 13, No. 3, September 1988.



288 . Peter M. G. Apers

PhS

5
5 2

Vs, Vs,
20 15

20 N

[ Y

115

VS,

PhS,

3

12

Fig. 11. Processing-schedules graph after initial assignment.

| vs,

PhS

The set P contains all the pairs of the virtual sites that can be united. They

are listed below with their LINK-values:

(VS, VS;)  LINK,
(VSy, VS,) 20
(VS., VS,) 20
(VS,, VS;) 20
(VS,, VS,) 5
(VS,, VSs) 5
(VSs, VSs) 15
(VSs, VS.) 15
(VS,, VSs) 8
(VS,, VSs) 5
(VSs, VS.) 15

Because the pair (VS,;, VS;) has the largest LINK-value it is considered first
(among the pairs with LINK-value equal to 20 this choice is arbitrary). To unite
VS, and VS, they have to be first removed from their respective physical sites,
PhS, and PhS;. This increases the total transmission cost with:

5+ 0.

Uniting them and assigning the union, VS,:;, to PhS; decreases the total

transmission cost with
20 + 0.

The net result, the difference between the two changes, is nonpositive and,

therefore, they are united (see Figure 12).

ACM Transactions on Database Systems, Vol. 13, No. 3, September 1988.



Data Allocation in Distributed Database Systems . 289

PhS, VS, Phs,

5
» >
h 12

Vsu‘lz

VS,

Phs,

Fig. 12. Processing-schedules graph after the union of VS, and VS,.

The next pair to be considered is (VS,13, VS,), whose LINK-value is 20. The
net result of uniting them is

54+2—-(20+7) =-20=<0.

Again, the union, VS,s3, decreases the total transmission cost.
The next pair to be considered is (VS,123, VS7), whose LINK-value is 15. The
net result of uniting them is

7+ 15 — (15 + 15) = -8,

which is nonpositive; therefore, the two virtual sites, which contain copies of the
same relation WEATHER, are united, resulting in VS, ;,3;. This means that only
one copy will be maintained in the system.

Uniting VSs and VS,,,537 decreases the total transmission cost with:

0+ 15 — (15 + 15) = —15;

the result of the union is VS, 9357.
The LINK-value between the two virtual sites, VS, and VS, 2357, is 8; uniting
them increases the total transmission cost with:

12 + 15 — (8 + 15) = 4;

therefore, the allocation is not changed.

Finally, VS, and VS, are united because the total transmission cost decreases
by 5; the result of the union is VS, .

Note that at most one virtual site is assigned to a physical site, thus uniting
the virtual sites with their physical sites gives a completely specified allocation.
The partially specified allocation obtained so far consists of the assignment of
VSu12357 to Pth and of VSu4(; to PhS2.

ACM Transactions on Database Systems, Vol. 13, No. 3, September 1988.



290 . Peter M. G. Apers

The final allocation shows that all fragments and relations involved in @,
are located at one site, and that only the result has to be transmitted to PhS;.
The data involved in query €. are distributed over two sites: The relation
WEATHER is located to PhS; and the fragment W” is located to PhS,. Because
this fragment is updated infrequently two copies can be maintained, one at PhS,
and one at PhS,.

In the above example we see that at some points we have to choose which pair
of virtual sites to unite if the LINK-values are the same. Taking a different
choice may lead to different completely specified allocations. We will not discuss
obvious improvements to deal with this because it would prohibit obtaining
optimality results regarding the solutions, which will be discussed in the next
section.

6.2 Optimality Results Concerning Algorithm total —data —allocation

As was mentioned before, the algorithm total_data..allocation is greedy and does
not necessarily obtain a completely specified allocation with the absolute
minimum total transmission cost. However, it is important to know how well
the algorithm performs. We will do so by showing that for a special class of
processing-schedules graphs, the algorithm computes minimum total transmis-
sion cost allocations and by discussing simulation results in the next section. But
before doing so, we introduce some notions.

The set of virtual sites can be divided into clusters. Two virtual sites, VS; and
VS;, belong to the same cluster if there is a path VS, = VS,, VS, ..., VS, =
VS; such that VS, and VS,., are adjacent to each other. Two virtual sites are
adjacent to each other in a processing-schedules graph if there is an edge between
the two virtual sites, or if they occur in the same forking graph.

A cluster is called a simple cluster if for every pair of virtual sites, VS; and VS,
in the cluster the following holds: Removal of all the edges that are adjacent to
both VS; and VS; and the removal of the forking graph of which both VS; and
VS, are part causes VS; and VS; to no longer be in the same cluster.

A simple processing-schedules graph is defined as a processing-schedules graph
for which the clusters are simple and all physical sites are connected by edges
with only one virtual site per cluster, or are part of only one forking graph per
cluster.

Intuitively, in simple processing-schedules graphs the net change in the total
transmission cost if two virtual sites are united is simply based on the trans-
missions between these two virtual sites and between them and the physical
sites.

Example 8. Figure 13(a) shows a simple processing-schedules graph. There are
two clusters, C, and C,; C,; consists of VS;, VS,, VS;, and VS; and C, of VS,.
Note that VS; and VS, are connected through the forking graph of which they
both are part. The processing-schedules graph in Figure 13(b) is nonsimple. Two
edges have been added: between VS, and VS; and between PhS; and VS,. The
first one causes C, to no longer be simple. After removal of the forking graph of
which VS, and VS; are part, there is still path between them via VS,. The second
one connects PhS, to two virtual sites of the same cluster C;.

ACM Transactions on Database Systems, Vol. 13, No. 3, September 1988.



PhS

Vs,

PhS

Vs,

Vs,

Vs,

Data Allocation in Distributed Database Systems - 2N

(a)

¢

(b)

Vs,

VS,

PhS,

Vs,

PhS,

PhsS,

Vs,

PhS,

Fig. 13. (a) Simple processing-schedules graph; and (b) a nonsimple processing-schedules graph.

ACM Transactions on Database Systems, Vol. 13, No. 3, September 1988.



292 . Peter M. G. Apers

THEOREM 5. The completely specified allocation obtained by algorithm total_
data_allocation for simple processing-schedules graphs using static schedules min-
imizes total transmission cost.

PROOF. Assume that a completely specified allocation obtained by algorithm
total _data_allocation does not have minimum total transmission cost. We will
show that we can change the optimal allocation into the allocation obtained by
our algorithm without losing its optimality.

The optimal solution imposes a partition on the set of virtual sites; the subsets
of this partition contain the virtual sites belonging to the different physical sites.
Changing the optimal solution means changing the partition.

We will go through the steps of the algorithm. If the algorithm decides to unite
two virtual sites that occur in the same subset then there is no problem. The
processing-schedules graph will be changed such that the two virtual sites will
form only one nucleus-site, and in the subset of the optimal partition they will
be replaced by one new element with the same name as the corresponding
VS-node.

Similarly, there will be no problem if the algorithm decides not to unite two
virtual sites that occur in different subsets.

In the two remaining cases we have to change the optimal partition. Assume
this is the first time that the algorithm either decides to unite two virtual sites
that occur in different subsets or it decides not to unite two virtual sites that
occur in the same subset, and that the involved virtual sites are VS; and VS;.
This means that LINK;; is the largest of all pairs of virtual sites that are not
united.

I. VS; and VS; do not occur in the same subset of the optimal partition, while
the algorithm wants to unite them. Consider the following cases:

(1) Either VS; or VS, or both do not communicate with the physical site to
which they are assigned. Without loss of generality, say VS;. The physical
site to which VS; is assigned will be called PhS and its corresponding
subset in the optimal partition, S. If none of the virtual sites of S
communicates with PhS, all the virtual sites of S can be moved to the
subset containing VS; without increasing the total transmission cost.

Also, if there are virtual sites in S that send data to PhS, but occur in
another cluster than VS;, all other virtual sites of S that are in the cluster
containing VS, can be moved together with VS; to the subset containing
VS; without increasing the transmission cost. Now, assume VS, commu-
nicates with PhS and is in the same cluster as VS;. Then there is a
sequence VS,, ..., VS,, VS; (see definition cluster). Because the cluster
is simple we can split it by removing all edges and forking graphs
containing VS, and VS,. All virtual sites of S that are in the cluster of
VS; after the split are moved to the subset containing VS,. This introduces
LINK,; data transmissions, which is less than or equal to LINK;;, the
amount of data transmitted that disappears because VS; and VS; are now
in one subset. In this subset VS; and VS; are replaced by a new element
with the same name as the corresponding VS-node in the processing-
schedules graph that results from uniting VS; and VS,.

ACM Transactions on Database Systems, Vol. 13, No. 3, September 1988.



Data Allocation in Distributed Database Systems . 293

(2) Both VS; and VS; communicate with the physical site to which they are
assigned. Because physical sites are connected with only one virtual site
per cluster, or are part of oniy one forking graph per cluster, it foliows
that max,LINK,, is either equal to max,LINK;, or max,LINK},, where
VS, is the union of VS, and VS;. Hence we only have the following two
cases:

(a) max,LINK;, = max,LINK,, and max,LINKj, < max,LINK,;.
Assume VS, occurs in the subset belonging to physical site PhaS,.
Moving all the virtual sites of this subset to the subset of VS; decreases
the total transmission cost with:

LINI{jl - LINK” = manLINI{,'k - LINKU
= makaINKik + manLINI{jk
— max,LINK,, — LINK;; = 0

(b) max,LINK;, < max,LINK,, and max;LINK;, = max,LINK,,.
The same as under (a), only the elements of the subset of VS, are
moved to the subset of VS,.
II. VS; and VS; occur in the same subset of the optimal partition, while the
algorithm does not want to unite them.
Similarly, we can prove that separating VS; and VS, in the optimal solution
will not lead to an allocation with higher total transmission cost.

Finally, by changing the optimal partition every time the algorithm wants it
to, the optimal partition is the same as the solution obtained by the algorithm.
We have thus seen that under the conditions stated, the optimal solution can be
changed step by step into the solution of the algorithm. [

6.3 Comparison Between Optimal and Heuristic Allocations
Using Static Schedules

Now that we have seen that total_data_allocation computes data allocations that
minimize the total transmission cost for processing-schedules graphs that belong
to a special class, we are interested in how it works in “practice.” To get an idea,
we compute the optimal allocation of randomly generated processing-schedules
graphs and compare it with the cost of the allocations generated by total_data_
allocation. We also compare the number of sites over which the data are distrib-
uted per transaction. This means that for a transaction the number of sites are
counted that contain fragments that are used in the transaction, except copies of
fragments that are updated. Note that if the result site does not contain any
fragments used in the transaction, it is not counted.

The transactions are generated as follows. A processing schedule of a trans-
action will have one of the basic forms shown in Figure 14, with its probability
that it is generated below it; ¢ is the complexity parameter, which indicates the
probability that a particular branch (R; — R;, R, — R;, or R, — R;) is included in
a processing schedule. To complete a processing schedule a branch from R; to
the result site is included. So, for small ¢ the simplest schedules are generated
with a higher probability than the more complex ones. For larger c it is the other
way around.

ACM Transactions on Database Systems, Vol. 13, No. 3, September 1988.



Peter M. G. Apers

R; — result site

R; — R; — result site

Prob = (1 — ¢)?

Prob =c(1 — ¢)(2 — ¢)

R;
N
R; — result site
2
R,

Prob = ¢*(1 — ¢)

R, — R; — R; — result site Prob = c*1 — ¢)

R[ - Rj
N
R; — result site Prob = ¢*
/
R,

Fig. 14. Five different processing schedules with the
probability that they are generated; ¢ is the complexity
parameter.

Because the relations are used by different transactions they are split into
fragments; we assume that they are split into three. When generating the
processing schedule for a transaction, for each relation it is decided which
fragments are in fact used. Each of the three fragments of a relation is accessed
in a transaction with probability frag, with a minimum of one fragment. While
processing an update, the tuples that have to be changed are computed. We
assume here that they are computed at the result site and that that site notifies
all fragments of the changes. Below we will display the average total transmission
cost (TTC) and the average number of sites over which the data for one
transaction is distributed (sites), both for the optimal allocation and the alloca-
tion obtained by algorithm total_data_allocation.

The parameters that will vary are:

—The total number of transactions, queries, and updates is 4; the parameters q
and u indicate the number of queries and updates, respectively, which vary
from O to 4.

—The complexity parameter ¢, which varies from 0 to 1 with steps of 0.25.

—The fragmentation parameter frag, which varies from 0 to 1 with steps of 0.25.

When one of the parameters is varied, the others are kept fixed at the following
values:

u=2 ¢=0.5 frag=0.5.

Also, the number of queries g plus the number of updates u equals 4. The results
are shown in Table I. The table is divided into three subtables, where the results
are displayed for varying one of the parameters mentioned above.

To still be able to compute the optimal allocations, the processing schedules
and the parameters were chosen rather small. For the processing-schedules graphs
generated it took about five times longer to compute the optimal allocations
compared to the heuristic ones. This may not seem too bad; however, further

ACM Transactions on Database Systems, Vol. 13, No. 3, September 1988.



Data Allocation in Distributed Database Systems . 295

Table I. Comparison Results of Total Data Allocation and Optimal Solution

Optimal Heuristic

TTC Sites TTC Sites
qu
40 0 1 0 1
31 282.6 1.075 291.6 1.05
22 1,093.5 1.225 1,133.5 1.25
13 1,336.6 1.25 1,380.2 1.225
04 1,708.8 1.275 1,763.6 1.325
c
0 162.6 1.05 162.6 1.05
0.25 231.1 1.125 233.1 1.125
0.5 1,093.5 1.225 1,133.4 1.25
0.75 —_ — 1,249.9 1.175
1 1,474.0 1.2 1,491.5 1.125
frag
0 667.5 1.025 706.8 1.1
0.25 731.1 1.075 761.7 1.225
0.5 1,093.5 1.225 1,133.4 1.25
0.75 764.4 1.125 802.6 1.15
1 990.8 1.275 990.8 1.275
Overall 830.7 1.16 856.0 1.17

increasing the size of the processing-schedules graph will rapidly increase the
time required to compute the optimal allocations.

Varying the number of update transactions, u, does not seem to influence the
quality of the allocations obtained by total_data—allocation. For the whole range
the total transmission costs are slightly more than 3 percent above the optimal
values.

If ¢ equals 0, the way the queries are processed is the same as in the file
allocation problem. The corresponding processing-schedules graph belongs to the
special class for which the algorithm can compute the optimal solution. For ¢
equal to 0.75, the algorithm for computing the optimal solution ran out of memory.

For high values of frag, groups of virtual sites are tightly coupled, so it is easy
for total_data_allocation to compute the optimal solution. For smaller values the
structure of the processing-schedules graph becomes more important, increasing
the chance that the processing-schedule graph falls outside the special class.

We may conclude that for the small processing-schedule graphs investigated,
total_data_allocation computes allocations that have, on the average, a 3 percent
higher total transmission cost than the optimal one. So the simulation results
support the theoretical results obtained in the previous section. Also, the number
of sites over which the data are distributed per transaction is just a bit more than
in the optimal solution.

7. DATA ALLOCATION USING DYNAMIC SCHEDULES

The cost of an allocation computed using static schedules will, in general, be
higher than the cost of an allocation as defined in Section 4. The latter requires
recomputation of schedules; this will be called computing the cost using dynamic

ACM Transactions on Database Systems, Vol. 13, No. 3, September 1988.



296 . Peter M. G. Apers

processing schedules. A consequence is that the allocations obtained using dy-
namic schedules will have a lower cost than the ones obtained using static
schedules. In this section we will, therefore, investigate ways of determining
optimal and heuristic allocations.

7.1 Optimal Data Allocations Using Dynamic Schedules

Having considered static schedules, we now examine dynamic ones. The one
advantage of using dynamic schedules is that the processing-schedules graph
belonging to a completely specified allocation contains schedules that are iden-
tical to the schedules produced by the distributed query processing algorithm,
given the completely specified allocation.

The other advantage is that, in general, given a completely specified allocation,
the processing schedules produced by a distributed query processing algorithm
have a lower cost than the ones obtalned from the processing-schedules graph
belonging to the initial allocation using static schedules.

The main disadvantage is the computational effort required, compared to the
usage of static schedules. Subsection 5.2 shows an estimator, which can easily be
computed, for static schedules. This is not necessarily the case for dynamic
schedules.

For example, assume that in the decision tree of the Heuristic Path Algorithm
decisionsg have heen taken to unite VS; with PhS, and V.Q with Phq and that

LROUASIVIIS LQRVE VTR0 VRATIL VO LILAVT vwavil I (=3 8104 wWalid I wy Saalh LaAiLv

about two other virtual sites, VS, and VS,, that are all accessed in one query, no
decision has been taken so far. Without knowing anything about the final
aliocation of the fragments, the processing schedule of the query and its cost
cannot be computed. To obtain an underestimate of its cost all possible alloca-
tions have to be considered, and the one with the least cost could be used as
heuristic estimator.

So, in general, the computation of a cost-estimator of a partially specified
allocation cannot be done in polynomial time. However, under the realistic

QUOLALIRL LRIV VT WLAAD 21 Py NIOLAAGL LI, 220V W1AQCD UIIC I0alisuic

assumption that each query only accesses a relatively small number of fragments,
an estimator can be constructed that runs efficiently. This can be achieved by
doing some initial processing. The estimator wili be called psa_dynamic_cost. A
one-query-allocation is a partially specified allocation of all fragments accessed
in one query. A one-query-allocation satisfies a partially specified allocation
if the fragments in the fragment-sets of the nucleus-sites in the one-query-
allocation occur together in the same fragment-sets in the partially specified

allocation. Before the search starts, all these one-query-allocations are given to

the query processing algorithm used by the dlstnbuted database system to
compute the corresponding schedules and their cost. Updates are treated exactly
the same as queries. The cost of their schedules does not include transmissions
to keep copies consistent. During the search, a lower bound on the cost of a
partially specified allocation given by a path in the decision tree is computed as
follows. For each query, we consider all the one-query-allocations that satisfy the
partially specified allocation and take the one with the least cost. The sum of all
these costs, plus the cost to keep copies consistent if more than one copy of a
fragment is allocated, is the cost-estimator of the partially specified allocatlon.

The procedural form of psa_dynamic_cost is shown in Figure 15. An example
is given to show how it works.

ACM Transactions on Database Systems, Vol. 13, No. 3, September 1988.



Data Allocation in Distributed Database Systems . 297

proc psa_dynamic_cost = (allocation psa)real:
begin
real sum := 0;
for each query Q
do
take the one-query-allocation of Q with the least cost that satisfies psa;
sum := sum + cost of this one-query-allocation
od;
psa_dynamic_cost := sum
end

Fig. 15. Algorithm psa_dynamic_cost.

Example 9. Let us assume that we are given a query stated by a user at the
site corresponding to PhS,. This query computes the join between the two
relations WINE and WEATHER. There are five one-query-allocations (only the
fragment sets are shown, because the operation sets are empty):

(1) PhS, = ({})
VS, = ({WINE})
VS, = ({WEATHER)}),
(2) PhS, = ({ })
VS, = ({(WINE, WEATHER)}),
(3) PhS, = ({WINE})
VS, = ({WEATHERY})),
(4) PhS, = {WEATHER)})
VS, = ({WINE}),
(5) PhS, = ({WINE, WEATHER)}).

For each of these one-query-allocations, a processing schedule for the query and
its cost can be computed.

The cost of a partially specified allocation is underestimated by psa_dynamic_
cost as follows. Assume that a decision has already been taken to allocate fragment
WINE to PhS,, and that no decision has been taken yet about WEATHER.
The one-query-allocations that satisfy this partially specified allocation are 1,
2, and 4. The one with the least cost is taken.

THEOREM 6. The heuristic estimator psa_dynamic_cost is admissible.

PrOOF. The cost of one query is underestimated because all possible one-
query-allocations are investigated. Also, the cost to keep copies consistent is
underestimated because only transmissions between copies of fragments that are
already allocated to physical sites are counted. O

COROLLARY 3. If the Heuristic Path Algorithm uses psa_dynamic_cost, then
the completely specified allocations obtained have minimum total transmission
cost.

7.2 Heuristic Allocations Using Dynamic Schedules

Incorporation of dynamic schedules in the heuristic algorithm total_data_
allocation can be done in different ways. Remember that, in the algorithm, when

ACM Transactions on Database Systems, Vol. 13, No. 3, September 1988.



298 . Peter M. G. Apers

using static schedules the changes in the processing-schedules graph when two
virtual sites were united were rather simple. The union of the virtual sites
inherited all the incoming and outgoing edges of the virtual sites, and only the
edges between them disappeared.

A simple way of dealing with such changes using dynamic schedules is to
recompute the schedules of all transactions that might be affected by the change
in the allocation. This means that the decision to change the allocation is taken
based on the cost of schedules corresponding to the current allocation; only after
the change, the schedules corresponding to the new allocation are computed.

This approach deals with the disadvantage of static schedules, that is, that the
schedules in the final allocation might differ from the ones obtained from the
query processing algorithm given this final allocation. However, there is one
problem: The total transmission cost of an allocation by algorithm total_data_
allocation using dynamic schedules is not necessarily less than when using static
schedules. The reason is that virtual sites are united based on transmissions that
also depend on the rest of the allocation. A change in the allocation of other
virtual sites might completely change processing schedules, making a previously
taken decision to unite two virtual sites obsolete. Therefore a different approach
is taken.

A processing-schedules graph is no longer the basis to decide about changes in
the allocation; instead, a LINK-graph is used. The structure of such a graph is
the same as a processing-schedules graph; it contains PhS- and VS-nodes and
edges. The difference can be found in the edges and their labels. Between every
pair of nodes there is an edge, and its label is the change in the cost function if
the two adjacent nodes are united or if one is assigned to the other. To compute
a label of an edge between two nucleus-sites, the query processing algorithm is
applied twice: once when the two nucleus-sites are united and once when they
are not. The difference between the two costs is the label.

The way a completely specified allocation is computed is basically the same as
by algorithm total _data_allocation. First the virtual sites are individually assigned
to physical sites such that the total transmission cost is minimized. Then pairs
of virtual sites are considered for uniting in descending order of the labels of the
edges between them. The cost of removing the two virtual sites from the physical
sites to which they are assigned is the sum of the labels of the edges between the
two virtual sites and the virtual sites that have already been assigned to the
physical sites involved. Uniting them will decrease the cost function by an
amount denoted by the label of the edge between the virtual sites. However, the
decrease in the cost function when the union is assigned to a physical site is not
yet known. Therefore, the schedules of the queries involved have to be recomputed
and an assignment of the union to each physical site must be considered.

If the difference between the increase and decrease of the change is nonpositive
the two virtual sites are united. Taking the union of virtual sites is continued
until no further improvement of the total transmission cost is possible. Finally,
the remaining virtual sites are united with the physical sites to which they are
assigned.

The advantage of the dynamic versus the static approach is that in the process
of changing an allocation towards the final allocation, the processing schedules

ACM Transactions on Database Systems, Vol. 13, No. 3, September 1988.



Data Allocation in Distributed Database Systems . 299

of the transactions are adjusted to the new allocation and are therefore more
efficient. Because the interaction between the data allocation algorithm and the
query optimizer is very tight, the allocations obtained will be more efficient than
in the static approach. The main disadvantage is that recomputing all or part of
the processing schedules of the transactions may be prohibitively expensive.

8. ALLOCATION MANAGEMENT PROBLEM

In the previous sections a model and algorithms were introduced to determine
allocations. In this section we will provide a framework in which this model and
these algorithms can be used as tools by either one or a group of database
administrators.

8.1 Centralized Data Allocation

We speak of a centralized data allocation if the allocation of all the data is
considered at the same time and if either one database administrator or one
central database management system is allowed to change the existing allocation.

All queries and updates will be used to determine the fragments, as discussed
in Subsection 4.2, and to compute a completely specified allocation that minimizes
a particular cost function. Algorithms presented in Sections 5-7 can be used to
do so for minimizing total transmission cost. The allocation obtained will then
be implemented by the database administrator, who can dictate an allocation to
the local database management systems.

One may object that all queries and updates have to be known in advance to
compute the fragments and to compute their allocation. In case they are not
known, we may determine the fragments based on the global external views of
the users, which can be considered as queries themselves. The flow of data
between the fragments can no longer be computed with a query processing
algorithm and should be estimated with statistical information based on an
existing allocation. Changes in this flow owing to changes in the allocation should
be estimated, based on the queries and updates that are known.

Another problem is caused by changes in the access patterns of the users. This
would require a complete recomputation of an allocation based on the new queries
and updates and the already existing allocation. In general, determining and
actually implementing a new allocation is rather expensive; the former because
the allocation of all fragments have to be reconsidered again, and the latter
because of interaction between fragments many more of them may have to be
reallocated than accessed by the new queries.

8.2 Decentralized Data Allocation

Quite a different approach, called the decentralized data allocation, assumes that
the data is owned by different database administrators or that the distributed
database is a collection of databases owned by different parties. Both cases have
in common that there does not exist a central organization that can dictate the
allocation of the data. Therefore, the database management systems of the sites
should, in cooperation with each other, try to determine an optimal allocation of
the data required by the users of their own sites.

ACM Transactions on Database Systems, Vol. 13, No. 3, September 1988.



300 - Peter M. G. Apers

This approach assumes that an allocation already exists and cannot be changed;
for example, the already existing databases, which together form the distributed
database, will already have an allocation. This distributed database will either be
accessed by users of the already existing database or by other users in the

onmnittar natwarly
CoOmpuer néitwork.

Users at a site who share the same view of the distributed database can request
their local database management system to change the allocation such that a
certain cost function is minimized by introducing copies of the fragments of the
relations in which the group is interested. The goal is now to compute an
allocation of these copies. If a copy is allocated to a different site than its original,
it is a real copy; otherwise, it might vanish, depending on whether the group of
users wants to access periodically updated copies. Introducing and allocating
copies can be done for users having a different view or working at a different
site. Therefore, these copies will be called private copies.

One advantage of the decentralized approach is the natural partition of the
general data allocation problem into a number of smaller problems, which
probably can be solved more easily.

Another advantage is that the data allocation can change more or less contin-
uously through time. If a group of users starts using the database or changes its
access pattern their database administrator simply determines a new allocation
for them without ulangmg other users’ allocations.

Because a group may access only its own private copies, it may be possible to
periodically update these copies, depending on how up to date these copies have
to be. In reality, quite often a user is not interested in the latest version of the
database, especially when this is very costly. Many times, a user is happy with a
consistent, version of the database that may be a couple of hours or days out of
date. The group of users may themselves decide how up to date their copies
should be, and thereby decide the update cost [2, 3] Decreasing this cost will
make it more uKE'l_V that an allocation is chosen such that pr OCESSuig retrievals
becomes cheaper. In the centralized data allocation these periodically updated
copies are not possible because many users will make use of the same copies.
Therefore, these copies have to be kept up to date at all cost.

One disadvantage of the decentralized approach is that the overall cost of the
allocation might be higher compared to the centralized approach. The reason is
that in the centralized case the whole processing-schedules graph is considered,
and in the decentralized case a collection of smaller processing-schedules graphs.

SUMMARY

A maodel has hean intradiniced tao comniita the cast aof a caomnletaly ar nartially
A IMOoGe: nas oveéen 1ntroguced ¢ compute tne ¢ost o a compietely or partially

specified allocation for various cost functions. The model is suitable to be used
in both branch-and-bound and heuristic algorithms. For minimizing total trans-
mission cost, we have shown that the problem of determining a nonredundant
allocation is NP-hard. A method for determining the unit of allocation by means
of splitting a relation in the conceptual schema based on the queries and updates
is presented. Under restrictive conditions regarding the behavior of query pro-

cessing algorithms under splitting fragments, we have shown that the fragments
obtained bv thig method can be recarded as the unit of allocation. Roth ontimal

VIS UGRLIAUA Ry ULLAD JITULIVA LGl VT ATVRQRLIUTL QD VAU iy UL QuaUuvQuiUil. OV Upvaiiias

ACM Transactions on Database Systems, Vol. 13, No. 3, September 1988.



Data Allocation in Distributed Database Systems - 301

and heuristic algorithms for minimizing total transmission cost using static and
dynamic processing schedules for computing the cost of an allocation have been
investigated and compared. Finally, a framework was discussed for managing
allocations in a distributed database consisting of one database or consisting of
n onllantinem nf alwandse aviating datahaoana L hawving +tha Ao Adatahaoan

a LUILITULLIVILIL Ul allTauy UCaAaldullilg uadvauvasod, caCu Haviiig b‘.lcll Uyvil uauvauase

administrator.

o
problem is NP, because for a “guess” allocation we can, in polynomial time,
determine whether its total transmigsion cost is less than or equal to T

To show the NP-completeness of this problem we transform three dimensional
matching [22], a known NP-complete problem, to it.

Three-dimensional matching. Set M C W X X X Y, where W, X, and Y are
disjoint sets having the same finite number q of elements. Does M contain a
hino 1o a citheot A/ — A ciich +hat | Af/ | — 1 and nn twn cn]nvlr\el o nf AL/

atn
111uvv111115, 1Ty & DSUMDUU I¥Z = U¥VI Sulll uu.uu | 4v2 — { auu uv TWO ciemnehnts 01 i

agree in any coordinate?

The construction of a processing-sch

I1SLIUCLION HLioLC 1 ACUUIES 1

matching problem is done as follows:

—The elements of the sets W, X, and Y are the virtual sites.

—For every triple (w, x, y) € M, create a physical site and connect the virtual
sites corresponding to w, x, and y to this physical site; label these edges with

a1t AL

menumoera—zuvu + 1.

—Create an edge between the virtual sites corresponding to w and x if there
exists a triple (w, x, y) € M. Do the same for the pairs (x, v); label all these
edges with the number 1. Count the number of edges with label 1, say this is
equaltol (=2 |M|).

The question of whether there exists a matching M’ is transformed to: Does
there exist an allocation with total transmission cost less than or equal to

3(IM| = g)d + (I — 2q).

Now we have to prove that this is a polynomial transformation. Obviously, it is
polynomial. The rest of the proof is an outline.

Assume there exists an allocation with total transmission cost less than or
equal to 3(| M| — q)d + (I — 2q). We can show that in this allocation each
virtual site is united with a physical site with which it is connected by an edge
in the processing-schedules graph. Hence, the number of virtual sites united with
the same physical site is less than or equal to three. Also, a physical site will not
be united with less than three virtual sites.

So either there are no virtual sites united with a physical site or there are
exactly three. It can also be shown that the three virtual sites united with the
same physical site are interconnected by two edges. Thus the three virtual sites,
united with the same physical site, correspond to a triple in a matching M’. (All
virtual sites are used exactly once.)

Assume we have a matching M’ C M and assume that there is no allocation
with a total transmission cost less than 3(| M| — g)d + (I — 2q). Construct the

ACM Transactions on Database Systems, Vol. 13, No. 3, September 1988.



302 . Peter M. G. Apers

corresponding processing-schedules graph as was done above and unite the virtual
sites corresponding with the triples of M’ to the site to which they triple-wise
are connected. The total transmission cost of this allocation is computed as
follows. In this allocation there are 3(| M | — ¢) edges with label d; 2q edges with
label 1 disappear because three virtual sites corresponding to a triple of M’ are
united with the same site. Thus the total transmission cost is

3(IM| — q)d + (I — 2q). O

ACKNOWLEDGMENTS

I would like to thank Reind van de Riet, who not only made this research possible
but who also put a lot of effort in reading the many drafts of my thesis. I am
much indebted to him. To Patricia G. Selinger I owe many thanks for her
comments on my research and its presentation. Furthermore, I would like to
thank the referees for their comments, which improved the quality of this paper.

REFERENCES

1. ApiBa, M., CHUPIN, J. C., DEMOLOMBE, R., GARDARIN, G., AND BIHAN, J. L. Issues in
distributed data base management systems: A technical overview. In Proceedings of the 4th
International Conference on Very Large Data Bases (West Berlin, Sept. 1978), pp. 89-110.

2. ADIBA, M. E., AND LINDSAY, B. G. Database snapshots. In Proceedings of Conference on Very
Large Data Bases (Montreal, Oct. 1980). pp. 86-91.

3. Aniea, M. E. Derived relations: A unified mechanism for views, snapshots and distributed data.
In Proceedings of 7th International Conference on Very Large Data Bases (Cannes, Sept. 1981).
pp. 293-305.

4. AHO, A. V., HOPCROFT, J. E., AND ULLMAN, J. D. The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading, Mass., 1974.

5. APERS, P. M. G. Data allocation and distributed query processing. In Proceedings of ACM
Pacific ’80 (San Francisco, Nov. 1980). ACM, New York, 1980, pp. 48-54.

6. APERS, P. M. G. Redundant allocation of relations in a communication network. In Proceedings
of 5th Berkeley Workshop on Distributed Data Management and Computer Networks (San
Francisco, Feb. 1981). pp. 245-258.

7. APERS, P. M. G. Centralized or decentralized data allocation. In Proceedings of 2nd Seminar
on Distributed Data Sharing Systems (Amsterdam, June 1981). R. P. van de Riet and W. Litwin
Eds. North-Holland, Amsterdam, 1981, pp. 101-116.

8. APERS, P. M. G. Query processing and data allocation in distributed database systems. Ph.D.
dissertation, Computer Science Dept., Vrije Univ., Amsterdam, Sept. 1982,

9. APERS, P. M. G., HEVNER, A. R., AND Yao0, S. B. Optimization algorithms for distributed
queries. IEEE Trans. Softw. Eng. SE-9, 1 (Jan. 1983), 57-68.

10. BALDISSERA, C., BRACCHI, G., AND CERI, S. A query processing strategy for distributed data
bases. In Proceedings of the European Conference on Applied Information Technology, EURO-
IFIP 1979 (London, Sept. 1979). North-Holland, Amsterdam, 1979, pp. 667-677.

11. BERNSTEIN, P. A., GOODMAN, N., WoNgG, E., REEVE, C. L., AND ROTHNIE, J. B. Query
processing in a system for distributed databases (SDD-1). ACM Trans. Database Syst. 6, 4 (Dec.
1981), 602-625.

12. CASEY, R. G. Allocation of copies of files in an information network. In Proceedings of AFIPS
1972 SJCC, vol. 40. AFIPS Press, 1972, pp. 617-625.

13. CERI, S., MARTELLA, G., AND PELAGATTI, G. Optimal file allocation for a distributed database
on a network of minicomputers. In Proceedings of International Conference on Databases (Aber-
deen, July 1980). Deen and Hammerlsey, Eds., Hayden, 1980.

14. CERI, S., NAVATHE, S., AND WIEDERHOLD, G. Distribution design of logical database schemas.
IEEE Trans. Softw. Eng. SE-9, 4 (July 1983), 487-563.

ACM Transactions on Database Systems, Vol. 13, No. 3, September 1988.



15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Data Allocation in Distributed Database Systems . 303

CERI, S., NEGRI, M., AND PELAGATTI, G. Horizontal data partitioning in database design. In
Proceedings of ACM-SIGMOD Conference (Orlando, Fla., June 1982). ACM, New York, 1982.
CERI, S., AND PELAGATTI, G. Distributed Database—Principles and Systems. McGraw-Hill, New
York, 1984.

CHU, W. W. Optimal file allocation in a multiple-computer information system. IEEE Trans.
Comput. C-18 (1969), 885-889.

CHU, W. W. Optimal file allocation in a computer network. In Computer-Communication
Networks. N. Abramson and F. F. Kuo, Eds. Prentice-Hall, Englewood Cliffs, N.J., 1973,
pp. 83-94.

CoOOK, S. A. The complexity of theorem-proving procedures. In Proceedings of 3rd Annual ACM
Symposium on Theory of Computing. ACM, New York, 1971, pp. 151-158.

EPSTEIN, R., STONEBRAKER, M. R., AND WONG, E. Distributed query processing in a relational
data base system. In Proceedings of ACM-SIGMOD (Boston, May 1979). ACM, New York, 1979,
pp. 169-180.

EswaARAN, K. P. Placement of records in a file and file allocation in a computer network. In
Proceedings of the IFIP Congress on Information Processing 1974. North-Holland, Amsterdam,
1974, pp. 304-307.

GAREY, M. R, AND JOHNSON, D. S. Computers and Intractibility: A Guide to the Theory of NP-
Completeness. Freeman, San Francisco, 1979.

HEVNER, A. R, AND YAO, S. B. Query processing in distributed database systems. IEEE Trans.
Softw. Eng. SE-5, 3 (May 1979), 177-187.

HEVNER, A. R. Data allocation and retrieval in distributed systems. In Advances in Data
Management, vol. II. Wiley, New York, 1983.

Horowitz, E., AND SAHNI, S. Fundamentals of Computer Algorithms. Computer Science Press,
Rockville, Md., 1978.

IN-SupP PAIK, AND DELOBEL, C. A strategy for optimizing the distributed query processing. In
Proceedings of First International Conference on Distributed Computing Systems (Huntsville,
Ala., Oct. 1979). IEEE, New York, 1979, pp. 686-698.

Lawler, E. L., and Wood, D. E. Branch-and-bound methods: A survey. Oper. Res. 14, 4 (July
1966), 699-719.

LEVIN, K. D. Organizing distributed data bases in computer networks. Ph.D. dissertation, The
Wharton School, Univ. of Pennsylvania, Philadelphia, Sept. 1974.

LEVIN, K. D., AND MORGAN, H. L. Optimizing distributed databases—A framework for research.
In Proceedings of 1975 AFIPS NCC, vol. 44. AFIPS Press, 1975, pp. 473-478.

MAHMOUD, S., AND RIORDON, J. S. Optimal allocation of resources in distributed information
networks. ACM Trans. Database Syst. 1, 1 (March 1976), 66-78.

NAVATHE, S., CERI, S., WIEDERHOLD, G., AND DouU, J. Vertical partitioning algorithms for
database design. ACM Trans. Database Syst. 9, 4 (Dec. 1984), 680-710.

NGUYEN, GiA ToAN. Decentralized dynamic query decomposition for distributed database
systems. In Proceedings of ACM Pacific '80 (San Francisco, Nov. 1980). ACM, New York, 1980,
pp. 55-60.

NiLssoN, N. J. Problem-Solving Methods in Artificial Intelligence. McGraw-Hill, New York,
1971.

PELAGATTI, G., AND SCHREIBER, F. A. A model of an access strategy in a distributed database.
In Proceedings of the Working Conference on Data Base Architecture, IFIP-TC2, Data Base
Architecture (Venice, June 1979). Bracchi and Nijssen, Eds., North-Holland, Amsterdam, 1979.
PoHL, 1. Is heuristic search really branch-and-bound? In Proceedings of 6th Princeton IEEE
Symposium on Information Sciences and Systems (March 1972), pp. 370-373.

RAMAMOORTHY, C. V., AND WaAH, B. W. The placement of relations on a distributed relational
database. In Proceedings of the 1st International Conference on Distributed Computing Systems
(Huntsville, Ala., Oct. 1979). IEEE, New York, 1979, pp. 642-650.

ROTHNIE, J. B.,, AND GOODMAN, N. A survey of research and development in distributed
database management. In Proceedings of 3rd International Conference on Very Large Data Bases
(Tokyo, Oct. 1977). pp. 48-62.

Sacca, D., AND WIEDERHOLD, G. Database partitioning in a cluster of processors. ACM Trans.
Database Syst. 10, 1 (March 1985), 29-56.

ACM Transactions on Database Systems, Vol. 13, No. 3, September 1988.



304 . Peter M. G. Apers

39.

40.

41.

42.

43.

44.

SELINGER, P. G., AND ADIBA, M. E. Access path selections in distributed data base manage-
ment systems. In Proceedings of International Conference on Databases (Aberdeen, July 1980),
pp. 204-215.

ToTtH, K. C., MAHMOUD, S. A., AND RIORDON, J. S. Query processing strategies in a distributed
database architecture. In Proceedings of 2nd Seminar on Distributed Data Sharing Systems
(Amsterdam, June 1981). R. P. van de Riet and W. Litwin, Eds. North-Holland, Amsterdam,
1981.

WAH, B. W, AND LIEN, Y.-N. Design of distributed databases on local computer systems with
a multiaccess network. IEEE Trans. Softw. Eng. SE-11, 7 (July 1985), 606-619.

WONG, E. Retrieving dispersed data from SDD-1: A system for distributed data bases. In
Proceedings of 2nd Berkeley Workshop on Distributed Data Management and Computer Networks
(San Francisco, May 1977), pp. 217-235.

Yu, C. T.,, aANp CHANG, C. C. Distributed query processing. ACM Comput. Surv. 16, 4
(Dec. 1984), 399-433.

Yu, C. T,, LaMm, K., CHANG, C. C., AND CHANG, S. K. A promising approach to distributed
query processing. In Proceedings of Berkeley Conference on Distributed Data Bases (San Francisco,
Feb. 1982), pp. 363-390.

Received April 1983; revised April 1984, September 1987; accepted October 1987

ACM Transactions on Database Systems, Vol. 13, No. 3, September 1988.



