
Adding an
Authorization Dimension
to Strong Type Checking

Scott N. Gerard
IBM CotToration

Rochester, M~N

INTRODUCTION

Strongly typed languages, like Modula2, ensure that memory locations are interpreted in a consist-
ent manner. I call this the structural dimension of the type system. I propose that an authorization
(or capability, or fights) dimension be added to control who can use those memory locations. The
structural dimension of a variable is the same for all procedures throughout a program, but different
procedures may be given different authority tbr the same variable. Authorizations are similar to the
in, o u t and i n o u t parameter modes of ADA (tm), but are more comprehensive and apply to all
identifiers.

Each identifier has a set of four authorizations:

TYPE
AUTII = SET OF (R, W, E, S);

R (Read) Authority to read the current contents of an identifier. All identifiers used on
the right-hand side of simple assignment statements must allow Read authorization.

W (Write) Authority to overwrite the contents of an identifier. All identifiers used on the
left-hand side of simple assignment statements must allow Write authorization.

E (Execute) Authority to execute an identifier. All procedures normally allow Execute
authorization, but there are interesting cases where this is not true.

S (Structure) Authority to examine the structure of an identifier. The internal structure
of a type is exported out of a module if, and only if, the type allows Structure authori-
zation. That is, types with Structure authorization are transparent on export; types
without Structure authorization are opaque on export. The only valid operations on
identifiers without Structure authorization are TSIZE, SIZE, and ADR.

COMPILER CHANGES

There is no run-time overhead involved in implementing authorizations. All checks take place at
compile time.

Each variable and type identifier declaration contains an optional AUTH set followed by the normal
(structural) type information. Authorizations may decrease or stay the same, but they may never
increase. Assume Type 1 is declared with authorization Auth I, Type2 is declared with authorization
Auth2 and Type 1, and Type3 is declared with authorization Auth3 and Type2. Then the compiler
must check that Auth2 is a proper or improper subset of Auth 1, and Auth3 is a proper or improper

subset of Auth2.

All built-in Modula2 types are implicitly defined with maximum authorization.

TYPE
INTEGER = AUTH{R,W,S] WORD;
CARDINAL = AUTH{R,W,S} WORD;

(* compiler defined types *)

145 SIGPLAN Notices, Vol. 23, No. 6

http://crossmark.crossref.org/dialog/?doi=10.1145%2F44546.44561&domain=pdf&date_stamp=1988-06-01

The compiler also must check that the authorization required by each formal parameter is a proper
or improper subset of the authorizations available on the corresponding actual parameter. All
Modula2 built-in operators become implicitly declared as pseudo-procedures. Special authorization
checking code is not sprinlded throughout the compiler. For example, binary addition, pointer
dereferencing and assignment are defined as:

PROCEDURE + (a,b: AUIXd{R,
PROCEDURE -> (ptr: AUTH{R,
PROCEDURE := (VAR lhs: AIFifH{W}

S} N um er i cT ype) : AUTH{R,S} Numer icType ;
S} P o i n t e r T y p e) : T a r g e t T y p e ;

Type; rh s : AUTH{R} Type) ;

Function procedures have an authorization (usually AUTH { R, E, S }) which is differem from the
authorization of their returned value. The procedure's authorization controls whether it can be
assigned to procedure variables, and whether it can be executed. Orfly after a procedure is deter-
mined to be executable does the returned value's authorization come into play.

There is one exception to the rule of never-increasing authority: the authorization for parameters
of type MyMod. MyType are never checked on procedure calls which transfer control from outside
module MyMod to a procedure inside MyMod. This allows MyMod to limit the authority given to
client modules, yet still allows procedure MyMod. MyProc to manipulate them. However, the au-
thorization in a procedure heading limits what can be done reside the procedure's body.

EXAMPLE

Let's examine a module for stacks of INTEGERs using authorizations.

DEFINITION MODULE StackA_DT;
EXPORT QUALIFIED Stack, Push, Pop, Empty, Init;
TYPE Stack: AUTH{ } RECORD (* a completely opaque type *)

Top: [0..i00];
Elements: ARRAY [I.. i00] OF INTEGER;
END;

PROCEDURE Push (VAR S: AUTH{R,W,S} Stack;
elem: AUTH{R,S} INTEGER);

PROCEDURE Pop (VAR S: AUTH{R,W,S} Stack): AUTH{R,S} INTEGER;
PROCEDURE Empty (S: AUTH{R,S] Stack): AUTH[R,S] BOOLEAN;
PROCEDURE Init (VAR S: AUTH{W,S} Stack);

END StackADT.

MODULE Program;
FROM StackADT IMPORT Stack,
VAR Si,$2: Stack;

i,j: INTEGER;
BEGIN

Init(Sl); (*
IF Empty(Sl) THEN (*

Push(Sl,i) (*
ELSE

j := Pop(Sl); (*
END;

S2 := SI; (*
Si. Top := 0; (*
END Program.

Push, Pop, Empty, Init;

don't check authorization on SI here *)
don't check authorization on SI here *)
don't check authorization on Si here *)

don't check authorization on SI here *)

illegal, can't read SI, can't write $2 *)
illegal. Structure of SI is not visible *)

Parameter e lem of Push can be.read as an INTEGER by the procedure body, but the body is pre-
vented from writing it (or executing it as a procedure). Similarly, the returned value of Pop can

146

be read by the caller as an INTEGER, but cannot be written (or executed). Type S t a c k is declared
with an empty authorization set. So, even though its structure is given in the definition module,
all client modules are prevented fl'om reading, writing, executing, or examining variables of type
S tack . This is a strong form of opaque export. Variable S 1 does not have an AUTtt set specified
in its deciaration, so it gets AUTH{} from StackADT. S tack . Variables i and j get
AUTH{R,W,S} from INTEGER.

Each procedure should request the least amount of authority it needs to perform its function. This
makes the procedure as widely usable as possible, explicitly declares the developers intentions, and
ensures the procedure body does not violate those intentions.

The authorization of S1 is not checked on any procedure call in Program because control is
passing from outside module StackADT to a procedure inside StackADT. So its authorization
may increase or decrease. Empty's procedure body can examine, but not change, parameter S 1.

AUTHORIZATION INTERPRETATIONS

Many of the 16 authorization combinations are meaningful.

AUTH { R, W, E, S } normal procedure variables.

AUTH{R, E,S} normal procedure identifiers, and exported procedures variables which cannot
be changed.

AUTH{ W,E,S} write-only procedure variables. Example: a procedure which can be changed,
but no one can make a private copy.

AUTH { E, S } procedure values which cannot be changed or copied.

AUTtt{ R,W, S } normal variables.

AUTH [R, S } read-only variables.

AUTH{ W, S} write-only variables. Examples: I/O output ports, imported random number
seed variables, and variables which contain passwords (but see Enforcement
below).

AUTH[R,W } opaque variable export in Modula2 today. This is similar to ADA's "private"
export since assignment is allowed. (ADA also supports comparison on private
types).

AUTH{ R } opaque "constant".

AUTtt{ } complete opaque export. Client modules are only authorized to "hold" these
variables. All operations, including assignment, must go through procedures
of the exporting module. This is the same as ADA's "limited private" types.

Note that Modula2 constants and read-only variables are not the same. Constants have a value
which is known at compile time. Read-only variables may be" evaluated at run time. The system
clock is a good example of a read-only variable which is not a constant.

ENFORCEMENT

It is important to realize that authorizations only provide a reasonable level of protection. They
can be easily subverted. The classic untagged variant record will do the trick.

147

TYPE
Subversion = RECORD

CASE BOOLEAN OF
TRUE: (Opaque:
FALSE: (ReadWrite:
END

END;

AUTH[} INTEGER)
AUTH{R,W,S} INYEOER)

For the same reasons type (structure) transI?r functions were added to Modula2, authorization
transfer functions should be implemented for the rare occasions where it is justified.

In some implementations it may be possible to use the memory protection facilities of the under-
lying operating system to strictly enforce the read/write/execute authorizations. If so, the declared
authorizations provide the necessary information.

USER DEFINED AUTHORIZATION SETS

There are many syntactic variations for specifying authorizations. One possibility is to simplify
parameter declarations by making AUTH a real SET. Then developers can declare new authori-
zation sets in addition to any predeclared ones. This would make programs much more readable.

TYPE (* compiler defined type *)
AUTH = SET OF (ReadAuth, WriteAuth, ExecAuth, StructAuth);

CONST
In = AUTH{ ReadAuth, StructAuth};
Out = AUTH[WriteAuth, StructAuth};
In0ut = AUTH{ ReadAuth, WriteAuth, StructAuth};
Read0nly = AUTH{ ReadAuth, StructAuth};
Opaque = AUTH[ReadAuth, WriteAuth };
TotallyOpaque = AUTH{ };

VAR
Stack:
End0fFile:

Opaque RECORD
ReadOnly BOOLEAN;

END;

OTHER IMPLICATIONS

Authorizations cover many other, more specialized, suggestions for improving Modula2.

There have been many proposals about parameter transmission. Authorizations are a more general
concept than both pass-by-constant; and ADA's in, o u t and i n o u t modes.

The existing pass-by-var and pass-by-value modes could be eliminated -- although this is not re-
quired. Technically, pass-by-VAR is equivalent to pass-by-reference. But the developer usually
just means "I need to update the parameter." Pass-by-value/result would work as well; only the
compiler writer should worry about such distinctions.

Pass-by-value is the same as passing the actual parameter to an anonymous variable with
ReadAuth, and then using it to initialize a local variable. Pass-by-value is the one case of initialized
variables in Modula2.

Pass-by-reference could be used throughout the compiler whenever the actual and formal are
compatible, rather than just assigr~ment compatible.

Authorizations directly answer the question of whether assignment and equality testing are defined
on opaque types (a difference between Wirth2 vs. Wirth3, and ADA's private vs. limited private
types). It supports both (AUTH{R,W} vs. AUTH{ }). Authorizations allow the user to use opaque

148

export from local modules. This is not possible today because local modules do not come in
definition/implementation pairs.

Modula2 does not support structured constants. This can be done with read-only variables. And
module initialization sections can compute "constants" which are exported read-only variables.

Today, functions must never appear on the left-hand side of an assignment statement. This is to
catch errors like

F(x) : = 12;

But it also prevents expressions like

FPtr(x)-> := 12;

With the definition of the assignment and dereferencing pseudo- procedures given above, assign-
ments to F (x) are still illegal, but assignments to F P t r (x) -> are valid.

Authorizations allow the developer to declare opaque types in a definition module with a TSIZE
different than TSIZE(pointer). Although this is not recommended in general, it can be very useful
in those rare situations where the type can never change.

LEFT-HANDED FUNCTION PROCEDURES

I have always been bothered by the asymmetry of the certain pairs of operations like: stack
Push/Pop, queue Enque/Deque, file Read /Wr i t e , S t o r e / R e t r i e v e (e.g. routines to store and
retrieve elements from a triangular matrix). Pop can be nicely written as a function with one stack
parameter which returns one element. But Push must be written as a procedure with two param-
eters: the stack and the element to be pushed. But making Push a "left-handed" function solves
the problem nicely.

e l e m e n t := P o p (S t a c k)
P u s h (S t a c k) : = e l e m e n t ;

A left-handed function is similar to a normal (right-handed) function but it appears on the left-hand
side of assignment statements. The value from the fight-hand side of the assigmnent is passed into
the function body.

The difference between Push as left-handed function and as a no-handed procedure is purely syn-
tactical; it provides no new capability. But then, neither do right-handed functions. I feel both
dramatically increase the readability of the code because they show the programmer's intent so
clearly.

Push, like Pop, now has an extra "anonymous" parameter. Pop RETURNs the value for this pa-
rameter; Push RETRIEVEs the value from this parameter. Authorizations naturally describe the
difference. The anonymous parameter for fight-handed functions has ReadAuth but not
W r i t e A u t h ; for left-handed functions it has W r i t e A u t h but not ReadAuth. An anonymous
parameter with both ReadAuth and W r i t e A u t h is invalid.

149

IMPLEMENTATION MODULE StackADT;

PROCEDURE Pop (VAR S: AUTII{R,W,S} S t a c k):
VAR e l e m e n t : INTEGER;
BEGIN

element : = Stack. Elements[Stack. Top] ;
DEC(Stack° Top);
RETURN element;
END Pop;

AUTH{R,S} INTEGER;

PROCEDURE Push (VAR S:
VAR element: INTEGER;
BEGIN

INC(Stack. Top);
RETRIEVE element;
Stack. Elements[Stack. Top]
END Pop;

AUTH{R,W,S} S t a c k): AUTH{W,S} INTEGER;

(* retrieve the anonymous parm *)
:= element;

END StackAOT.

Matching actual parameters to formal parameters can also be looked at as a kind of assignment
statement. It then makes sense to pass a "left-handed expression" to a formal which has
WriteAuth but not ReadAuth.

PROCEDURE Proc (x: AUTH{R, S} XType ;
y: AUTH{R,W,S} YType ;
z: AUTH{ W,S} ZType);

PROCEDURE Right (a,b,c: INTEGER): AUTH[R,S} XType;
PROCEDURE Left (d,e,f: INTEGER): AUTH{W,S} ZType;

Proc(Right(a,b,c), y, Left(d,e,f));

is evaluated as:

xtemp : = Right(a,b,c);
Proc(xtemp, y, ztemp);
Left(d,e,f) := ztemp;

Temporary variables are used for all formal parameters which have ReadAuth or W r i t e A u t h ,
but not both (formals which have both ReadAuth and W r i t e A u t h can only be satisfied by
Modula2 variables). All ReadAuth parameters are evaluated to temporaries before the invocation,
and all W r i t e A u t h expression are evaluated afterwards.

The normal authorization checking between actual and formal parameters exactly describes which
actual parameters can be left-handed functions, which can be right-handed functions, and which
must be variables.

ACKNOWLEDGEMENTS

I would like to thank Paul Gunsch and Dick Orgass for their assistance on earlier drafts of this
paper. I would also like to thank Gunsch for many interesting discussions about Modula2.

150

REFERENCES

1. N. Wirth, "Programming in Modula-2," 2nd edition, Spfinger-Vertag, 1983.
2. G. Fort and R. Wiener, "Modula-2: A Software Development Approach," John Wiley &

Sons, Inc., 1985.
3. W. Waite and G. Goos, "Compiler Construction," Springer-Verlag, 1984.
4. B. Gaither, correspondence from the members, SIGPLAN Notices, March 1982.
5. A. Mayer, correspondence from the members, SIGPLAN Notices, March 1982.
6. M. Wilkes, "Empiric: A Sketch of a Programming Language Designed to Facilitate a Fine

Grain of Protection," SIGPLAN Notices, August 1986.

151

