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An editing by example system is an automatic program synthesis facility embedded in a text editor 
that can be used to solve repetitive text editing problems. The user provides the editor with a few 
examples of a text transformation. The system analyzes the examples and generalizes them into a 
program that can perform the transformation to the rest of the user’s text. This paper presents an 
overview of the design, analysis, and implementation of a practical editing by example system. It 
studies the problem of synthesizing a text processing program that generalizes the transformation 
implicitly described by a small number of input/output examples. A class of text processing programs 
called gap programs is defined and the problems associated with synthesizing them from examples 
are examined, leading to an efficient heuristic that provably synthesizes a gap program from examples 
of its input/output behavior. The editing by example system derived from this analysis has been 
embedded in a production text editor. By developing an editing by example system that solves a 
useful class of text processing problems, this work demonstrates that program synthesis is feasible in 
the domain of text editing. 
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1. INTRODUCTION 

An editing by example (EBE) system is an automatic program synthesis facility 
embedded in a text editor that can be used to solve repetitive text editing 
problems. The user provides the editor with a few examples of a text transfor- 
mation. The EBE system analyzes the examples and generalizes them into a 
program that can perform the transformation to the rest of the user’s text. 
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Recent research is said to have traced the earliest known use 
of @[O.K.] to the @(Boston Morning Post] of 23 March 1839. It 
was not until nearly a hundred years later that, greatly helped 
by radio and television, it won its present popularity in England. 
It is made to serve as an adjective (@[That’s O.K.]) and 
occasionally attributive (@(Advertising is in these days a 
socially O.K. profession]); it supersedes the old formulas of assent 
@[Very well], @[All right], and @[Right oh], . . . It has bred 
a jocular variant @i[Okidokey]. 

Fig. 1. A document formatted using Scribe. 

Recent research is said to have traced the earliest known use 
of (\sl O.K.) to the ]\sl Boston Morning Post) of 23 March 1839. It 
was not until nearly a hundred years later that, greatly helped 
by radio and television, it won its present popularity in England. 
It is made to serve as an adjective ({\sl That's O.K.)) and 
occasionally attributive ((\sl Advertising is in these days a 
socially O.K. profession}); it supersedes the old formulas of assent 
(\sl Very well], ]\sl All right], and [\sl Right oh], . . . It has bred 
a jocular variant [\sl OkidokeyJ. 

Fig. 2. The document when changed to TEX. 

This paper reports on a theory, a design, and an implementation of an EBE 
system that has been implemented within U [22], a production text editor. To 
demonstrate the system, suppose that a user of U wants to change a paper which 
has been formatted using the Scribe document formatting language [25], a 
fragment of which is shown in Figure 1, to use the TEX document formatting 
language [15], as shown in Figure 2. This text transformation has many steps, 
but for the sake of an example we will concentrate on the problem of changing 
all uses of Scribe’s italic notation, @i [ 0. K . I, to TEX’s slanted font notation, 
( \ sl 0. K . ) . To use U’s editing by example facility to make this change, the 
user enters U and begins the EBE session by selecting, or marking, the first 
example: 

@i [O.K.] 

The user then issues a command to the editor that tells it that the selected 
text is an example of the sort of thing that should be changed; that is, this text 
is the sort of input that the transformation should affect. The user then manually 
transforms the text to TEX format, using the editor commands normally used 
to make the change on a single instance of the text: 

[\sl O.K.) 

Once the line has been changed, the user selects it and issues another command 
that informs the editor that the selected text is the output. That is, this line of 
text is the sort of thing the user would like the editing by example system to 
produce when it finds some text resembling the input. At this point, the system 
synthesizes a program that generalizes the transformation expressed by the 
example. The system’s generalization of a single example is a trivial program 
that transforms all instances of the literal input text of the example to the literal 
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output text. Since the other occurrences that the user wants to change are not 
simply repetitions of @i [O _ K. ] another example is given by selecting and 
transforming@ [Boston Morning Post] inasimilar way. Theeditingcom- 
mands that are used when concocting this second example are not required to be 
the same as, or even similar to, the commands given when concocting the first 
example. 

After analyzing the second example, the editor shows the user the synthesized 
program in a specialized notation for string search and transformation: 

@i[-I-]*(\slu-2-J 

This notation defines a simple program called a gap program. Gap programs have 
two parts: the part preceding the +, which is called the gap pattern, and the part 
following the +, which is called the gap replacement. The gap pattern is a string 
matching pattern composed of constants and variables that describes the format 
of the fragments of text that the user wants to change. The constants in the 
expression above are the characters in the typewriter font, like @i [ and [ \ s lu, 
which match their literal text (we use “u” as a visible space character). The 
variables in the input pattern are signified by the numbers between hyphens. A 
variable (also called a gap) matches any sequence of characters up to the constant 
string that follows the variable in the pattern. In this pattern, the variable -l- 
matches the characters between an occurrence of @i [ and the first ] that follows. 

Each of the elements of the output replacement is a constant string or a 
variable from the input pattern. Programs in this language execute by searching 
for some part of the user’s text that matches the input pattern. When matching 
text is found, it is replaced with a concatenation of the constants of the 
output pattern together with those parts of the text that are matched by 
variables contained in the output pattern. For example, when the input pattern 
@i [-I- ] is matched against the text fragment . . . as an adjective 
(@[That’s O.K.] ) and occasionally . . ., it matches the text 
@[That’s O.K.] andbindsthevariable-l-tothetextThat’s O.K. The 
matched text is then deleted and the fragments { \ s lu, That ’ s 0. K . , and ] 
are inserted in its place. The searching process is continued after the point of 
replacement, and the program stops when no matching text is found. The gap 
program synthesized by the EBE system will finish off this step of the Scribe/ 
TEX conversion process, and the user can perform the rest of the steps either 
by using the editor or by starting a new session with the EBE system. 

2. A PRACTICAL EBE SYSTEM 

This paper proposes a practical design for an editing by example system. A 
practical EBE system is one that a user would turn to out of choice when faced 
with a text processing problem whose solution demands either programming or 
drudgery. A practical EBE system must satisfy several criteria: It must be 
powerful enough to write programs that can solve the text processing problems 
that the user encounters. It must be easy and natural to use, something that will 
be determined both by the engineering details of the user interface and by the 
requirements for information imposed by the system. And it must be efficient, 
both in computational terms and in the amount of information that it requires 
of the user. 
ACM Transactions on Programming Languages and Systems, Vol. 7, No. 4, October 1985. 
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Perhaps the simplest systems that possess some of these properties are the 
program transcription facilities, or keystroke macros, that are present in many 
text editors such as EMACS and Z [18, 29, 311. A keystroke macro is a record of 
the sequence of editor commands given when solving a single instance of an 
editing problem; the stored sequence of commands may be reexecuted when the 
user is faced with the next instance of the problem. Keystroke macros are an 
effective tool, and there have been several experiments with applying the key- 
stroke macro style of “programming by example” to other domains: Smith’s 
Pygmalion system [28], Curry’s PAD system for programming by abstract dem- 
onstration [5], Lieberman and Hewitt’s Tinker system [16], and Halbert’s work 
on a programming by example facility for the user interface of the Xerox Star 
[lo]. However, we did not take the program transcription approach to building 
an EBE system. While we felt that a generalized program transcription system 
would be a useful text processing facility, we were interested in building an EBE 
system that tried to perform more ambitious generalizations of the behavior 
shown it. 

Given this desire to perform ambitious generalizations, there are still an 
enormous number of different ways to design and build an EBE system. Our first 
stab at reducing the scope of the problem was to form a simple and not too 
restrictive model of the process carried out by an editing by example system. In 
our model, the goal of the EBE system is to find a target program that will solve 
the user’s text processing problems. Toward this end, the EBE system collects 
sample data that describes the desired behavior of the target program and uses a 
synthesis procedure to map from the sample data to a runnable program. If the 
user is completely satisfied with the synthesized program, it can be run over and 
over again until through with the editing task. On the other hand, if the program 
is not satisfactory, the user can cause the system to create a better program by 
supplying more data to the synthesis procedure and beginning the process anew. 

This view of editing by example raises several questions: What sort of programs 
does the EBE system synthesize? What sort of information does the user provide 
the EBE system? How does the system synthesize the programs from the 
information? What sort of interface does the user see? The answers to these four 
questions are closely interrelated, but we will attempt to treat them one at a 
time. We begin by discussing the kind of program that we will synthesize, and 
we then decide on the information upon which we base the synthesis. These two 
decisions greatly determine the structure of the system, and within that frame- 
work we then describe the development of an algorithm for text program synthe- 
sis. We close with a brief sketch of the user interface and a conclusion. 

The decisions that we made in the design of the EBE system were motivated 
by a complexity-theoretic analysis of the difficulty of the problems encountered; 
however, length constraints force us to state these theoretical results without 
proof. The interested reader may find the proofs in the author’s doctoral disser- 
tation [22]. 

3. WHAT SORT OF PROGRAMS? 

The goal of an EBE system is to synthesize programs that help a user transform 
the text in some regular manner. Text is an ubiquitous data structure that can 
be used in a natural way to represent almost anything, so it is possible that these 
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programs could be called on to perform arbitrary computation. However, in order 
to build an effective and practical EBE system, we restrict our attention to 
solving some of the typical problems encountered while editing text. 

Many problems come to mind. The user might be performing a pattern directed 
scan and edit as was shown in the opening example. The user might be performing 
some knowledge-based function on his text, such as renumbering a list or 
changing digits like 9 to names of months like September. The user might be 
performing a specialized procedure on his text: sorting some lines, adding up 
columns of numbers, filling and justifying paragraphs, or performing the join of 
a database relation. Or the user might be manipulating the text as if it represented 
a more complicated data structure such as a program parse tree. 

Although many problems come to mind, we wanted to make progress on a 
practical EBE system, and so we had to choose to concentrate on one class of 
them. We chose to concentrate on synthesizing programs that scan and edit text, 
as in the introductory example. 

While scanning and editing problems can be solved using general purpose 
programs, research into automatic programming has not yet yielded a practical 
method for reliably, robustly, and efficiently synthesizing general purpose pro- 
grams from example information. Thus the approach of adapting a general 
purpose program synthesis strategy to synthesize programs that just happen to 
be scanning text would probably not yield a practical system. The approach that 
we took instead was to consider synthesizing programs of limited power that are 
specialized to string scanning. 

String scanning programs are often specified using a grammatical pattern 
matching notation. The study of grammatical inference is concerned with the 
problem of synthesizing patterns from examples; some surveys of grammatical 
inference include those of Biermann and Feldman [4], FU and Booth [8], and 
Angluin and Smith [3]. Perhaps the two best known formalisms for describing 
the syntactic structure of text are regular expressions and context free grammars. 
Unfortunately, although many algorithms have been developed for synthesizing 
regular expressions, context free grammars, and their subclasses from examples 
(see Angluin and Smith’s survey [3]), none of these algorithms performs well 
enough in terms of running time, amount of data required, and quality of 
hypotheses proposed to be used as the pattern synthesis component of a useful 
EBE system. 

However, pattern matching formalisms less powerful than regular expressions 
have been shown to be quite useful in text processing applications (cf. POPLAR 
[19] ). Guided by these systems, and by our own experience with building and 
using text processing tools [6, 71, we decided to build the EBE system around a 
text processing language of limited power whose programs could be effectively 
synthesized from examples. The programs in the limited language are called gap 
programs. 

3.1 Gap Programs 

Gap programs are the class of pattern + replacement programs introduced in the 
opening example; the pattern is a gap pattern, and the replacement is a gap 
replacement. Gap patterns bear a resemblance to Angluin’s regular pattern 
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languages [2] and Shinohara’s extended regular pattern languages [26,27]. A gap 
pattern G over an alphabet L: is a sequence of alternating strings and gaps, 
sog1w!2s2 * * * g,,sn. The strings si are drawn from Z+ (although so may be the null 
string, except when n = 0), the gaps gi are distinct symbols drawn from a gap 
alphabet Zc that is disjoint from Z, and the number of gaps n is greater than or 
equal to 0. The constant subsequence of a gap pattern, denoted c(G), is the string 
S@slS2 . . . s,. Similarly, the gap subsequence of a gap pattern, denoted g(G), is the 
string glg2 . . . g,. 

Our first sample gap pattern is made up from a single constant string: 

@[O.K.] 

This gap pattern matches the constant string @i [ 0. K . I . The second sample 
gap pattern contains a gap: 

@i [ -l- ] 

The characters -I- together make up a single gap symbol. This pattern will match 
strings that begin with @i [ and end in ] , with the gap spanning the characters 
in between. The next gap pattern, which does not have a leading constant string: 

-I- I 

will match strings ending in I. Another example, 

Dearu-l-,eol 
Congratulationsu -2- !uYouuhaveubeenuselected 

denotes a gap pattern that uses two gaps to match the first few lines of a form 
letter. The special constant eol matches the end of the line. Each gap symbol 
must be distinct; for example, the symbol -l- must occur only once in the gap 
pattern. This gap pattern matches a phone number: 

( -l- )U -2- - -3-. 

This text, 

( -I- )U -2- - -3- 

is not a gap pattern because gap patterns must be end in a constant string. This 
is also not a gap pattern, 

( -I- )U -2- -3-. 

because the gap symbols -2- and -3- must be separated in the pattern by some 
constant string. 

When a gap pattern is matched against a piece of text, each of the gap symbols 
in the pattern is bound to the substring of the text that is matched by the gap. 
This substring is defined so that the matching process is deterministic; a gap 
symbol gi that is followed in the gap pattern by a constant string si will match 
text only so long as it does not include si. Formally, define the set of legal 
substitutes for a gap gi that is followed by the string si to be the set of all strings 
(Y E Z* in which the leftmost occurrence of si as a substring in the string asi is 
at the end of asi. Then the language L(G) defined by a gap pattern G = 
sog1s1g2s2 . *. g,s, is the set of all strings of the form so~ls1~2s2 . . . (Y”s,, where 
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each ai is a legal substitute for gi. A string s is matched by a gap pattern G ifs E 
L(G); a set of strings S is matched by G if S C L(G). 

For example, when the gap pattern -l- abc is matched against xyzabc, the 
gap -I- matches xyz and the pattern matches the entire string. When the pattern 
matches the string abc, it binds the gap -I- to the null string. When it matches 
ababc, it binds -l- to ab. However, when the pattern is matched against the 
string abcxabc, it matches only the prefix abc and fails to match the entire 
string because the gap -l- is defined so as not to match a string that includes 
abc. Formally, define a purse of string s E L(G) relative to a gap pattern G = 
s0&?1s1g2s2 * - - g,,s, to be a sequence of n strings pl, p2, . . . , p,, such that s = 
soPlslP2s2 * * * p,,s,, and each pi is a legal substitute for the corresponding gi. 

The gap pattern of the gap program matches text and parses it into those 
pieces that match the constants and those pieces that match the gaps. Then the 
gap replacement expression is used to compute the new string that will replace 
the string matched. A gap replacement expression R for a gap pattern G over an 
alphabet 2 with gap symbols gl, g2, . . . , g,, is a string from (2 U (gl, g2, . . . , 
g,))*. Gap replacement expressions are not interesting objects in isolation; they 
are only of interest when they have been combined with a gap pattern G into a 
gap program. A gap program P is a pair consisting of a gap pattern G and a 
replacement expression R for G; the program is denoted G + R. Here is an 
example of a gap program that will change the phone number ( 20 3 ) 436 - 
0715. to203-436-0715.: 

(203) 436-0715. + 203-436-0715. 

This gap program generalizes the transformation to apply to all phone numbers 
of that form: 

( -I- )U -2- - -3- . * -I- - -2- - -3- . 

This gap program replaces an area code with the word Ca 11: 

( -l- )u -2- - -3- . * Callu -2- - -3- . 

This gap program will delete a phone number entirely: 

( -l- )U -2- - -3-. =+ 

This one will interchange the area code with the first three digits: 

( -l- )U -2- - -3- . * ( -2- )U -I- - -3- . 

And this last program performs another nonsensical transformation, duplicat- 
ing the digits of the number in a pleasant pattern: 

( -I- )U -2- - -3- . j -I- -2- -3- -3- -2- -l- 

The intuitive descriptions of the effects of these gap programs may be formal- 
ized as follows. If x and y are strings in Z* and P = G + R is a gap program, 
then P(x) = y if and only if G matches x yielding the parse pl, p2, . . . , p,, and if 
y is equal to R with pi substituted for each occurrence of gi. 
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Gap programs are a fairly weak text transformation language; some elementary 
properties of gap patterns and programs include: 

(1) Gap patterns parse strings uniquely into constants and gaps. 
(2) Gap patterns may be matched against text in linear time. 
(3) Gap patterns define languages that are a proper subclass of the regular 

languages. 
(4) The language generated by a gap pattern is either a singleton or infinite. 
(5) The set of languages defined by gap patterns is not closed under union, 

intersection, or complement. 
(6) Gap programs are not closed under composition; there are transformations 

computable by the composition of two gap programs that are not computable 
by a single gap program. 

(7) (Due to Dana Angluin.) Given an arbitrary finitely specified function, that 
is, a finite collection of arbitrary input/output pairs, there exist two gap 
programs that can be composed together to transform each of the given 
inputs to the corresponding output. 

4. SYNTHESIZING GAP PROGRAMS FROM I/O EXAMPLES 

The user must have some way to tell the EBE system what he or she wants the 
target program to do. There are two easily garnerable sources of information 
about the target program: one is the sequence of commands that the user 
employed while editing an example, and the other is the appearance of the 
example text before and after the edit. The sequence of commands is called a 
trace of the target program, and the change in appearance is called the program’s 
input/output behavior. 

The information contained in the command trace can be made to include 
everything contained in the input/output samples, and more besides; so at first 
glance it seems obvious that an editing by example system should use traces as 
its principal source of information. However, there are some problems with using 
traces. The major problem is that traces are an unreliable source of information 
about the user’s intent. For example, string search and cursor movement com- 
mands can often play the same role in moving on to the next example, and the 
string search command will communicate much more about the user’s intent, but 
it is probably more likely that a cursor movement command will be used if the 
next example is visible on the screen. Another problem is that a system that uses 
traces might require the user to use similar commands in a similar order when 
given two examples, and such a requirement would run counter to the free-form 
nature of interactions in a well-designed editor. A final problem is that a system 
that generalizes from traces would have to be given some knowledge of the 
semantics of every editor command; requiring that this knowledge be embedded 
in the EBE system would inhibit the extensibility of the editor and would also 
probably reduce the portability of the EBE system design. 

The problems associated with using traces as the principal source of informa- 
tion in the EBE system led us to concentrate our efforts on algorithms that work 
from input/output examples. Although input/output examples contain less in- 
formation than traces, the information that is present in the input/output 
examples is not as susceptible to error. 
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Given that we are going to use input/output examples, how many is it 
reasonable to require that the user give in order to specify a program? While the 
amount of example data that a user can be imposed upon to provide is subject to 
many factors, such as the smoothness of the user interface, his knowledge of 
programming, and his mood, we suspect that people’s tolerances are small. We 
suspect that five is too many examples to have to provide, that four is too many, 
that three is probably too many, and that two may well be too many. A single 
input/output example would be ideal. Unfortunately, a single example cannot 
impart the pattern that describes the text that the user would like to transform, 
and there is also not much of a basis for deciding on a nontrivial transformation 
that maps the input string of the single example to the single output. It is 
unreasonable to expect synthesis from a single example to yield useful programs. 

The gap program synthesis algorithm that we have developed can usually 
converge to the target gap program after the user provides two or three examples 
of the target function’s input, and we describe a heuristic in Section 6 that results 
in a single output example being all that is usually required. 

An algorithm for gap program synthesis takes as input a certain number of 
input/output examples that describe the behavior of the text transformation that 
the EBE system user would like to perform. It analyzes these examples and 
proposes a gap program that can transform each of the inputs to the correspond- 
ing output. 

The algorithm succeeds if it proposes a gap program that performs the desired 
transformation to the rest of the user’s text. If the algorithm can identify an 
arbitrary gap program after being given adequate data, then we say that the 
algorithm identifies the class of gap programs in the limit. If the algorithm uses 
examples of what the target gap program does, then we say that it is working 
from positive data, whereas if it also uses examples of what it should not do, then 
we say that it is basing its synthesis on positive and negative data. These concepts 
were first introduced and studied by Gold [9], and they have since been explored 
by other researchers in inductive inference; Angluin and Smith give a good survey 
of work in inductive inference [3]. 

An algorithm that synthesizes gap programs in the limit from input/output 
examples could work by examining the set of samples given by the user and 
returning the “best” gap program that can perform the transformation shown. 
The best gap program can be defined so that as more and more examples are 
given to the system, the best program would be guaranteed eventually to be the 
program that the user had in mind. In an effort to understand the problems 
involved with building such a system, we investigated the complexity of various 
subproblems related to gap program synthesis. One of our findings was: 

THEOREM 1. The problem of deciding whether a set of input/output samples 
describes a transformation that can be effected by a gap program is an NP-complete 
problem. This problem remains NP-complete even when there are only three 
input/output pairs in the set. 

Thus an algorithm whose goal is to synthesize a gap program that can perform 
the transformation described by a set of input/output samples must solve an NP- 
hard problem. Moreover, this problem remains NP-hard even when there are 
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only three input/output pairs in the example set. This negative result coincided 
with our intuition that tackling the gap program synthesis problem monolithically 
was too hard. 

However, we still wanted to build an EBE system that could synthesize gap 
programs. Toward this end, we finessed the problem by dividing and conquering, 
and decomposed the problem of synthesizing a gap program into two steps. The 
first step is to find the “best” gap pattern that matches all of the input strings in 
the sample set. This gap pattern yields a parse of the input samples, and the 
second step of the algorithm is to attempt to find a replacement expression that 
can rearrange the parsed inputs to yield the output samples. 

This decomposed process differs from the process of finding a gap program as 
a whole in two respects. The first is that the decomposed process can be done 
more efficiently. We have found that although each of the two steps of the 
decomposed process is also NP-hard, they can be solved in time polynomial in 
the size of the input when the number of samples is bounded. We have developed 
efficient heuristics that the EBE system actually uses to perform each of the 
phases, and we have been able to prove that the heuristics still identify gap 
programs in the limit from positive data. 

The second way that the decomposed process differs is that the first step, that 
of finding a gap pattern, is performed independently of the second step of finding 
a gap replacement. It may be that the gap pattern found in the first step parses 
the input strings in such a way that it is impossible for any replacement expression 
to rearrange the parsed fields to form the output. In this case, the algorithm 
terminates with the answer “more data required”. We have been able to prove 
that the addition of new relevant data can make the decomposed process work, 
by making it find a gap pattern that parses the input so that a replacement 
expression can be found. The decomposed process gains efficiency over monolithic 
gap program synthesis by sometimes requiring the user to supply more data than 
a monolithic process would require; in practice, this penalty is rarely paid. 

The gap program synthesis algorithm that we describe below finds the best 
gap pattern that matches the input samples, and then finds a replacement 
expression that can map the inputs to the outputs. 

4.1 Descriptive Gap Pattern Synthesis 

Our definition of a “best” gap pattern that matches a set of strings S is that the 
best gap pattern is one that finds the greatest number of common distinctive 
features in the set. We call such a pattern descriptive; a gap pattern G is a 
descriptive gap pattern for a set of strings S if: 

(1) G matches all of the strings in S. 
(2) G has the greatest number of constant symbols of any gap pattern that 

matches S. 
(3) Of the patterns that satisfy the previous two constraints, G has the fewest 

number of gaps. 

The first two criteria form the core of the definition; we want gap patterns 
that find the largest number of common constants in the sample data. The third 
criterion is intended to remove from consideration those gap patterns that find 
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all of the common constants, but contain extraneous gaps. The name “descrip- 
tive” is justified by a result that shows that a descriptive gap pattern for a set of 
strings defines a minimal gap pattern language that contains the strings. The 
following results help to characterize the difficulty of the descriptive gap pattern 
synthesis problem: 

THEOREM 2. Finding a descriptive gap pattern for a given set of strings is 
NP-hard. 

THEOREM 3. There is an algorithm that can find a descriptive gap pattern for 
n strings of length at most 1 in time 0(13”+llog 1). 

The algorithm of Theorem 3 is of theoretical interest only, since its running 
time is not practical. We actually synthesize descriptive gap patterns using a 
combination of two heuristics: one that approximates the constant substring of 
the pattern, and one that tries to insert gaps into those constants to form a gap 
pattern. 

(1) Finding the Constants. The constants are approximated using an algo- 
rithm that approximates the longest common subsequence (LCS) of a set of 
strings. The LCS of a pair of strings can be found in polynomial time using a 
variety of dynamic programming algorithms [ll, 13,301, although Maier showed 
that the problem is NP-hard when the number of strings in the set is not bounded 
[17]. We approximate the LCS of a set of strings sl, s2 . . . , s, by first ordering 
the set from shortest string s1 to longest string s,, and then computing the 
iterative pairwise approximation LCS(s,, LCS(s,-1, . . . LCS(s2, ~1))). This heu- 
ristic seems to produce good results in practice. Our current implementation of 
the heuristic makes use of a pairwise LCS algorithm due to Hirschberg [ll], and 
runs in O(nl’) time and linear space. As an example of its output, when the 
system is set to analyzing the strings: 

@[Boston Morning Post] 
@[Well all right] 
@[Right oh] 

it finds the common constants: 

@i[ul 

In this case, these common constants are indeed a longest common subsequence 
of the samples. However, in this case there happen to be other common subse- 
quences of equal length, and in general the heuristic is not guaranteed to be an 
exact LCS when the set contains more than two samples. 

Our selection of the common constant “u” may seem a little too fortuitous, 
since the samples all contained common constants i, g, t, and o that could have 
been chosen just as easily. We describe a tokenization heuristic in Section 6 that 
relies less on making such fortuitous selections. 

(2) Inserting the Gaps. The next step of the descriptive gap pattern synthesis 
heuristic is to insert gaps into the constant string to make it into a gap pattern. 
We have not been able to classify the complexity of the gap insertion problem, 
although we suspect that the problem is NP-hard in general. However, we have 
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been able to find an algorithm that runs in polynomial time for a fixed number 
of strings: 

THEOREM 4. Given a constant string c and a set of n strings S, each of length 
bounded by 1, there is an algorithm with running time 0(13n+410g 1) that determines 
the minimal number of gaps that have to be inserted into c to make it match S. 

This algorithm is also solely of theoretical interest. In practice, we perform 
gap insertion using a simple heuristic that ,does a leftmost match of the constants 
against the sample strings and inserts gaps where they are required. For example, 
the first three characters of the common subsequence, @i [ , are matched against 
the first three characters of each sample. The samples do not all contain a u as 
the fourth character, so a gap is required before the u in the pattern, and a gap 
is also required before the ] . This heuristic runs in time O(nZ2) and results in 
the pattern: 

@i [ -l- u -2- ] 

The constant synthesis and gap insertion heuristics can be combined into a 
heuristic algorithm that solves the gap pattern synthesis problem. 

THEOREM 5. The descriptive gap pattern synthesis heuristics identify the gap 
pattern of a target program in the limit from the data given in the input examples. 

4.2 Replacement Expression Synthesis Algorithm 

Once a descriptive gap pattern is found that can describe the structure of the 
input strings, we must then find a way to produce the corresponding output 
strings using that structure. For example, if these three lines were our three input 
samples: 

@[Boston Morning Post] 
@[Well all right] 
@[Right oh] 

then the following descriptive gap pattern would be found: 

@i [ -1-u -2- ] 

The first gap in the pattern matches the string Boston in the first sample, We 11 
in the second, and Right in the third, and so on: 

-l- -2- 
Boston MorninguPost 
Well alluright 
Right oh 

This collection of input fragments is called the input sample parse. The replace- 
ment expression synthesis problem is that of taking the fragments of text matched 
by gaps from the input, and a collection of output samples, say: 

[\sl Boston Morning Post] 
{\sl Well all right] 
[\sl Right oh] 

and finding a replacement expression that will produce each of the outputs from 
the corresponding input parse. 
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This problem is equivalent to that of deciding whether the output samples can 
be tiled with the columns from the input parse and with new columns of constants 
chosen from the alphabet. While this example does not make the problem appear 
difficult, synthesizing a replacement expression from the given fragments is in 
general a difficult task: 

THEOREM 6. The problem of synthesizing a replacement expression that maps 
the parse of a given input sample set to a given set of outputs is NP-hard. 

However, our data does not seem to exercise the features that make the problem 
intractable, and in practice we solve this problem exactly, without recourse to 
heuristics or approximations. 

The algorithm for finding a replacement expression has two phases. The first 
phase constructs a finite automaton for each input/output example that describes 
all of the different replacement expressions that can rearrange the particular 
input example to yield the particular output example. The next phase of the 
algorithm finds a single replacement expression that can simultaneously produce 
all of the output strings by intersecting the automata derived in the first step. 
The classical finite state machine intersection algorithms can be used [12], and 
a replacement expression that simultaneously produces each of the outputs from 
the corresponding input can be recovered by finding a path from the start state 
of the intersected automaton to the accepting state. 

For example, if the two sample input/output pairs were 

abxbay + ababa 
cddxddcy =9 addcdac 

then the descriptive gap pattern matching the two inputs would be -I- x -2- y. 
When this pattern is matched against the first input, it parses that input into 
two gaps, ab and ba. The algorithm then constructs the machine in Figure 3 
that represents all possible ways of writing the first output using those inputs 
and the constants a and b. The next step is to construct a similar machine to 
describe the second output, shown in Figure 4. 

In the second stage, the algorithm intersects these two machines, which results 
in a machine, shown in Figure 5, that encodes all possible ways that the 
constraints of both input/output pairs can be simultaneously satisfied. This 
particular machine generates only one string, the string a -2- -2-, which corre- 
sponds to the single replacement expression that can perform the transformation. 
The gap program that transforms the inputs to the outputs is then -1- x -2- y + 
a -2- -2-. 

The finite state machines of the first phase can be built in time proportional 
to the lengths of the output strings multiplied by the number of gaps in the input 
pattern. If 1 is a bound on the length of the output strings, then a particular gap 
from the input can occur at no more than 1 different points in the output. Thus 
the machines constructed in the first phase of the algorithm have no more than 
1 states and O( ] g(G) ] 1) transitions. The worst case running time of the second 
phase can be proportional to the product of the sizes of the machines constructed 
in the first phase, and so we have shown 
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Fig. 3. Finite state machine for the output sample ababa. 

Fig. 4. Finite state machine for the output sample addcddc. 

c Fig. 5. The intersection of the machines in 
Figures 3 and 4. 

THEOREM 7. A replacement expression that produces n output strings by 
mapping 1 g(G) 1 gap fragments taken from n input strings of length at most 1 can 
be constructed in time O( 1 g(G) 1 Y). 

This problem is NP-hard, which implies that we probably should not expect 
to improve on this worst case performance by very much; however, the finite 
state machine intersection algorithm seems to perform quite well in practice. In 
practice, the machines constructed in the first phase of the algorithm are long 
and skinny, because the string contained in a particular gap usually does not 
occur in the output in very many places. The intersection of two of these skinny 
machines Mj and Mk can be implemented to run in time roughly proportional to 
the size of the resulting machine Mj fl Mk, and the intersection is a machine that 
is usually skinnier than either Mj or Mk. So this algorithm performs well in 
practice, running in time closer to O(nZ) than O( 1 g(G) 1 Y”), and in fact this is 
exactly the replacement expression synthesis algorithm that is used by the EBE 
system. The following can be shown to be true: 

THEOREM 8. The replacement synthesis algorithm converges to the target 
replacement expression once the pattern synthesis heuristic has found the target 
pattern. 

THEOREM 9. The descriptive gap pattern synthesis heuristic and the replace- 
ment expression algorithm together make up a gap program synthesis heuristic 
that can identify gap programs in the limit from positive data. 
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5. DESCRIPTIVE GAP PROGRAM SYNTHESIS PERFORMANCE 

The gap program synthesis algorithm that we have sketched above can be shown 
to identify gap programs in the limit from positive data; however, it would be 
nice to have some assurance that it will do so within the limit of the user’s 
patience. Unfortunately, this assurance is impossible to come by, because the 
speed with which the system converges to a target gap program depends upon 
the quality of the sample data provided by the user. 

The identification of the gap pattern is the part of the EBE process that is 
most susceptible to variations in the quality of sample data, since the replacement 
synthesis algorithm computes the gap replacement exactly. In an attempt to gain 
a better understanding of how well the pattern synthesis algorithm performs on 
a small amount of data, say two or three examples, we studied the algorithm’s 
performance on several different sets of randomly generated test data. The trends 
found in the study may be simply summarized: fewer gaps, longer constants, and 
shorter gap substitutes make target gap patterns easier to identify; more gaps, 
shorter constants, and longer gap substitutes makes them harder. 

These studies were helpful in identifying a common aspect of sample data that 
slows the gap pattern synthesis procedure’s convergence to the target pattern. 
As an example, these two input samples might be given by the user in an effort 
to make the system synthesize the target pattern@ [ -l- I : 

@[Boston Morning Post] 
@[Well all right] 

The descriptive gap pattern for this sample set is @i [ -I- u -2- u -3- ] , 
and the system will not converge to the target program until the user sup- 
plies an example that does not contain a u. However, the system will still 
be able to synthesize a useful gap program, albeit a noisy one, because the pat- 
tern fragment -l- u -2- u -3- matched exactly the same text in this particular 
sample set as the gap -l- does in the target pattern. We say that patterns like 
@i [ -l- u -2- u -3- I are strongly compatible with patterns like @i [ -I- ] on a 
given set of samples. Patterns that are strongly compatible with the target are 
tolerable hypotheses, because the system will still be able to find a replacement 
expression that can produce the outputs, and it will thus be able to synthesize a 
useful gap program. 

When the system fails to find the target gap program, it usually manages to 
find one with a strongly compatible pattern; however, the system does occasion- 
ally fail in more serious ways. The most common of these is when it is unable to 
find any gap pattern at all to match the sample data; from experience, such 
failures usually occur because the user is asking the system to perform a task 
that cannot be handled by gap programs. Another, less common, manner of 
failure is for the system to find a gap pattern that is not strongly compatible 
with the target. Such patterns usually do not parse the input samples in a way 
that lets them be transformed to the output samples; so while the system has 
been able to generate a gap pattern, it will not be able to generate a replacement 
expression. Adding another input example will often allow the system to converge 
to the target gap pattern, or to one that is strongly compatible with the target. 
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6. DESCRIPTIVE GAP PROGRAM SYNTHESIS HEURISTICS 

The EBE system uses four heuristics to augment the basic gap program synthesis 
algorithm. The first two heuristics help to make strongly compatible gap patterns 
more like the target pattern, the third makes the synthesized gap patterns more 
“reasonable,” and the last reduces the number of output examples that are 
normally required to specify a replacement expression. 

Tokenization. Tokenization is a heuristic whereby the system performs an a 
priori grouping of the characters of the samples so that it will not, for example, 
notice that two samples such as Boston Morning Post and Right oh, share 
the common characters i, g, and o. The tokenization heuristic that is currently 
in use forms tokens out of runs of alphabetic characters and runs of numeric 
characters and leaves other characters to form single character tokens; for 
example, the 19 characters in Bos tonuMorninguPos t are viewed as consisting 
of the five tokens: Boston, u, Morning, u, and Post. This particular tokeni- 
zation scheme is a completely arbitrary choice. If the system cannot find a 
transformation that works with respect to the tokenization, it reanalyzes the 
samples using a character-at-a-time tokenization. 

Pattern Reduction. Pattern reduction is a heuristic for making descriptive 
gap patterns less descriptive by trying to convert a strongly compatible pattern 
to the target pattern. The pattern reduction heuristic examines a gap program 
for blocks of constants and gaps that are copied en masse into the replace- 
ment expression and coalesces such blocks into a single gap as long as the 
resulting program will still transform the examples. For example, the gap program 
@i 1 -I- u -2- u -3- I + ( \ s lu -I- u -2- u -3- ) would be pattern reduced to 
@i [ -1- ] + { \slu -1- ) , so long as the new gap program can still parse and 
correctly transform the examples. The heuristic treats runs of gaps that do not 
occur in the replacement expression, that is, those whose text is being deleted, 
as though they belonged to contiguous blocks. 

Gap Bounding. Gap bounding limits the number of end-of-line boundaries 
that a gap is allowed to cross while matching the text of a file, in order to keep 
the program from running amok and matching a thousand lines when it matched 
only two lines in the examples. If a particular gap spans at most 1 end-of-line 
boundaries in any input sample, then the system restricts it to spanning no more 
than Ll.511 end-of-line boundaries when searching the text. 

Unmatched Input Samples. This heuristic reduces the number of output 
samples that are needed by removing the requirement that every input sample 
be matched with a corresponding output sample. Using this heuristic, the system 
analyzes all of the input samples and produces a descriptive gap pattern. It uses 
this pattern to parse those inputs that have a corresponding output, and then 
generates the class of replacement expressions that can produce the outputs from 
the parsed inputs. If there is more than one replacement expression in the set, 
then it chooses the shortest, which is usually the one with the largest number of 
gap symbols. This heuristic is important because the input examples are probably 
already present in the user’s text and can be provided to the EBE system simply 
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by selecting them and giving a single command, while the output examples are 
not already present and each one usually has to be created either from scratch 
or by modifying an input example. This heuristic thus significantly reduces the 
amount of effort involved in providing examples to the EBE system. 

7. DESCRIPTIVE GAP PROGRAM SYNTHESIS 

These four heuristics can be combined with the gap pattern and replacement 
synthesis procedures to form a practical gap program synthesis procedure. This 
procedure is invoked whenever the EBE system’s current program hypothesis 
fails to perform the function specified by a given input or output sample. The 
algorithm (Figure 6) can usually synthesize a target gap program based on the 
information contained in two or three input examples and one output example. 

We demonstrate the algorithm with an example; many more examples may be 
found in the full paper [20]. In this example, the user would like to take a 
program filled with LISP function definitions: 
(define (factorial n) 

(if (<= n 1) 1 (* n (factorial (- n 1))))) 

(define (halts f) 
. . . ) 

and insert a “comment template” before each function: 

;*** (factorial n) 
;*** _--________--._____-______________ 
;*** (perspicuous description here) 
. *** 
idefine (factorial n) 

(if (<= n 1) 1 (* n (factorial (- n 1))))) 

;*** (halts f) 
;*** ____.________._____-______________ 
;*** (perspicuous description here) 
; *** 
(define (halts f) 

. . . ) 

To specify this transformation to the EBE system, the user chooses to give the 
two (definelinesasinputexamplesandthecommenttemplateforfactorial 
as an output example. (The user could have chosen to give the full text of the 
function bodies as input examples; this would have worked, but the synthesized 
programs would have been noisier, e.g., because the function bodies both contain 
many right parentheses.) The system tokenizes the two input examples: 

bol( define u ( factorial u n ) eol 
bol( defineu ( haltsu f )eol 

finds the constants that they have in common: 

bol( define u (u ) eol 

and then inserts gaps to form a descriptive gap pattern G: 

bol (def ineu( -l- u -2- ) eol 

It tokenizes the single output example in the same way, parses the inputs using 
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Inputs: 
aset of input/outputpairsS = ((iI, or), (i2, 02), . . . , (i,, o,)]; 
a set of unpaired inputs 2 = (in+l, in+2, . . . , in+,); 
and a tokenization function T. 

output: 
a gap program P or an indication of failure (not shown). 

Tokenize the samples in S and Z using T; 
Approximate a descriptive gap pattern G common 

to ii,, is, . . . , i”, i,+1, in+% . . . , i,+ml; 
Use G to parse {z,, l2 f.. . t Ll; 
Synthesize the shortest replacement expression R that 

maps & to ok for k = 1,2, . . . , n; 
Perform pattern reduction on G and R; 
Bound the gaps of G; 
Return P = G + R; 

Fig. 6. The gap program synthesis algorithm. 

the gap pattern, and builds a finite automaton that describes all possible replace- 
ment expressions that can produce the single output from the first input. It 
chooses the shortest such replacement expression R (preferring ‘to use gaps in 
lieu of constants when there is a conflict: 

i ***u( -l-u-2- ) eol 
;***“~~.~~.-~~-~~~~~~-~~~~~~~~~-~~-~~~~~o~ 

;***u(perspicuousudescriptionuhere) eoZ 
;*** eol 
(def ineu ( -I- u -2- ) eol 

The pattern reduction heuristic merges the fragment -l- u -2- into a single gap 
-l- in both G and R, and the gap bounding heuristic limits this gap to matching 
characters within a single line, yielding the gap program: 

bol (defineu( -l- ) eol 

i***uT -I- ) eol 
:***u.--.~--.--~--.--~.--.--~.---------eol 
;***u(perspicuousudescriptionuhere) eel 
;*** eol 
(defineu( -I- ) eol 

This gap program will serve to insert comment templates in the rest of the 
user’s text. 

8. IMPLEMENTATION 

The gap program synthesis algorithm that we have developed is embedded within 
the EBE subsystem of a screen editor called U [22]. U is a full function screen 
editor implemented within the T programming system [23, 241, a LISP-like 
programming environment. The principal implementation of U is on the Apollo 
Domain MC68000-based workstation, although implementations also exist for 
VAX/Unix and VAX/VMS. (Domain, MC68000, Unix, VAX, and VMS are 
trademarks of Apollo Computer, Motorola, AT&T Bell Laboratories, DEC, and 
DEC, respectively.) The user interface of the U editor is similar to that of Wood’s 
Z [31], which in turn was inspired by the work of Irons [14]. Perhaps the most 
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important feature of U is its general purpose undo command, which enables 
fearless use of the EBE subsystem. 

The U user interacts with the EBE subsystem using live U commands: 

(1) a command that initializes an EBE session, which creates an EBE session 
window or clears the existing one of any previously given samples; 

(2) a command that specifies that a selected piece of text is an input sample; 
(3) a similar command that specifies that some text is an output sample, which 

will usually be paired with the last input sample supplied, 
(4) a command that runs the current gap program hypothesis, either by single- 

stepping it or by applying its transformation to a selected context; 
(5) and a command that allows the user to modify the state of the EBE 

subsystem: fixing or deleting examples, specifying gap programs by hand, 
etc. 

The EBE subsystem commands are implemented in the style of the rest of the 
editor commands. As one example, the standard editor selection mechanism is 
used to specify examples. Another example is that the user interface of the 
command for running the gap program closely resembles that of the editor’s 
querying global-replace command. 

The EBE subsystem invokes the gap program synthesis procedure every time 
the state of the example set changes, that is, every time an input or output 
example is given. The synthesized program is immediately displayed in a window, 
so the user gets immediate feedback about whether adequate samples have been 
given. This arrangement is feasible because the gap program synthesis procedure 
is quite efficient: it usually takes a second or two of elapsed time to produce a 
program (in an untuned implementation). If the gap program synthesis operation 
were more costly, it would probably have been better to have the user invoke it 
explicitly with a separate command. 

9. CONCLUSION 

The general form of the EBE system sketched in this paper was determined by 
a sequence of design decisions; these decisions, in order of importance, were 

- to try to develop a useful and practical system for automating repetitive text 
processing tasks; 

- to automate the tasks through a program synthesis system, rather than through 
a novel user interface to a program transcription system; 

- to take a formal approach to solving this problem, rather than, for instance, a 
knowledge-based approach; 

- to concentrate on automating the solution to problems solvable by simple text 
scanning and replacement programs; 

- to develop a system that would base its hypotheses on positive data, rather 
than taking advantage of negative data as well; 

- to base the system’s analyses on the input/output behavior of the target 
function, rather than on traces or other sources of information; 

- to require more than one example of the target function’s behavior in order to 
form interesting generalizations, rather than trying to intuit interesting gen- 
eralizations from a single example; 

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 4, October 1985. 



Editing by Example l 619 

- to use formal language style patterns in the text scanning programs, rather 
than using control-structure oriented pattern matching as in SNOBOL; 

- to use gap patterns to describe the structure of the text to transform; 
- to use gap replacement expressions to describe how to perform the transfor- 

mation; 
- and to use a heuristic gap program synthesis procedure, rather than one that 

always guarantees to find a gap program concomitant with the demonstrated 
behavior. 

The primary contribution of this work lies in demonstrating the feasibility of 
program synthesis in the domain of text editing. We developed, analyzed, and 
implemented an editing by example system and embedded it in a production text 
editor. The system seems to be an effective aid in automating the solution of a 
useful class of text processing problems. 

Most of the credit for this success should go to the choice of the domain. Text 
editing is an interactive activity that is oriented around the incremental and 
(usually) unstructured manipulation of a large collection of data. Small-scale text 
processing problems constantly crop up during the course of these manipulations, 
and many of these problems can be solved by simple, syntactically oriented text 
processing programs. A few examples suffice to specify a good fraction of these 
programs, and the text editing environment makes these examples easy to 
produce and provide. The text editing domain is ideal for programming by 
example research. 

Another contribution of this work is in providing an application for the 
techniques of inductive inference, an area of reseach that has seen a great deal 
of theoretical development but heretofore has had very few applications. This 
application, and the others that hopefully will follow, may help to focus inductive 
inference research on addressing problems of practical importance. 

This work indicates a direction for program synthesis research: to find and 
develop applications for the programs that lie within the range of the program 
synthesis techniques that have been developed. If such research proves fruitful, 
it may spur further development in this area, which may help the field to evolve 
toward the eventual goal of automating the programming process. 

The greatest weakness of this work is that the EBE system has not been used 
by a large community because the U editor did not become generally usable until 
this project was nearly complete (it is quite usable now). The design and 
evaluation of the system is based on the author’s personal experience with 
building, using, and supporting text processing tools; while this experience is not 
inconsequential, it still represents only one man’s view. It would have been better 
to have had more feedback on the system, both from knowledgeable programmers 
and from naive word-processors. 

Another weakness is that gap programs are not powerful enough to express 
the solution of many text processing problems. The author’s doctoral dissertation 
considers some extensions to gap programs [20], but while these extensions 
increase the capabilities of the system, it is clear that much more sophisticated 
programs cannot be derived from a few input/output examples. Different ap- 
proaches must be taken. The future of this research lies in studying other ways 
in which the power of programming can be brought smoothly out into the user 
interface. 
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