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1. INTRODUCTION TO THE INTEL 432 

The Intel 432 was conceived in 1975 with several goals in mind. The primary 
objective was to produce a system that would improve the software programming 
environment, thereby lowering system life cycle cost. To achieve this goal, the 
432 incorporates architectural run-time support for both data abstraction (pro- 
gramming with abstract data types) and domain-based operating systems. The 
principal insight of the 432 architecture is that both objectives can be supported 
by a common semantic model, known as the abject model [22, 271. 

Another goal, finding a design approach that would yield a range of performance 
from a single implementation, led to the concept of transparent multiprocessing. 
By using the object model the 432 system is able to run with a variable number 
of physical processors without recompiling the software. Supporting so many 
different concepts for the first time in a new machine inevitably led to a complex 
architecture. Moreover, initial measurements of the 432’s performance. were quite 
discouraging. Subsequent architectural enhancements improved execution speed, 
but not enough to satisfy either its champions or its critics. It is therefore 
appropriate to examine the design of the 432 and to investigate the factors that 
underlie its performance. 

1 .l System Architecture 

The Intel 432 is notable as an “object-oriented” or “object-based”l architecture. 
Just as the Smalltalk language [12] encapsulates all data into objects that can be 
manipulated in carefully constrained ways, the 432 imposes similar restrictions 
on all online storage: 

-All information is encapsulated into protected sets called objects (instruction 
segments, data structures, processes, messages). 

-Every memory reference, whether an instruction fetch or operand access, is 
checked for read/write privilege and base/bounds validity. 

-Pointers to objects are protected. These pointers are not directly manipulated 
by the user program, but only by trusted hardware and microcode on behalf of 
the user. 

The Intel 432 is also a shared-memory multiprocessor [l, 2, 17,18, 191. Figure 1 
shows a simplified block-diagram configuration. (More elaborate 432 system 
architectures can readily be constructed for improved reliability or availability 
WI.) 

The GDPs in Figure 1 perform essentially the same role as do the CPUs in 
more conventional systems. The main differences are that the GDPs perform no 
I/O (the IPs do that) and the GDPs are self-dispatching via routines provided in 
their on-chip microcode. 

The 432 instruction set is notable for several reasons. 

-Its instruction set is bit-aligned and encoded so that programs will be as 
compact as possible. 

’ The designers of the 432 referred to their system as “object-oriented,” hut more recently the term 
“object-oriented” has become understood to mean that a language or system supports inheritance 

1341. 
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Fig. 1. Generic 432 system multiprocessor architecture. 

-Its instruction set is very complex.2 It has over 200 instructions ranging from 
branch to Send (an interprocess communication primitive). 

--Each instruction can make 0, 1, 2, or 3 explicit data references, any of which 
can be to a scalar, record item, static array element, dynamic array element, 
or stack, and each can be direct or indirect. 

-Neither instruction stream literals nor general data registers are included. 
-The instruction set is complete, orthogonal, and symmetric, fully supporting 

each primitive data type with its own operations. 

The ramifications of the bit-alignment scheme will be discussed further in 
Section 5.3, and the performance effects of the lack of registers and literals in 
Sections 5.2 and 5.4. 

1.2 Functional Migration in the 432 

There are several types of functional migration present in the 432 architecture. 
The first type could be classified as “object” related; for example, the base/length 
registers that serve as a cache in order to avoid repeated full traversals (lookups 
of addressing information, described in Section 3) of the 432 addressing path. 
One could also view the microcode that directly manipulates the object headers 
and performs the automatic rights checks (read/write access) as a migration of 
function, since what few checks are performed in operating systems such as 
UNIX” are implemented in software. 

The second type of function is intended to support high-level languages. The 
432 instruction set can directly express in a single machine instruction high-level 
operations such as 

A[i] := B[k] * C[j]; 

and 

Structure.element := A[i] * D; 

‘The complexity of the 432’s instruction set is evident mainly in the implementation resources 
required to realize it (the Instruction Decode Unit occupies an entire chip). Conceptually, it is not 
complex because of the instruction set’s completeness and orthogonality. 
m UNIX’” is a trademark of AT&T Technologies. 

ACM Transactions on Computer Systems, Vol. 6, No. 3, August 1966. 



Performance Effects of Architectural Complexity in the Intel 432 299 

This was expected to yield more compact and faster-executing code. For every 
supported operation in the instruction set, all machine-defined data types are 
supported (char, integer, short integer, ordinal, short ordinal, real, short real, 
temporary real) in the expectation that this simplifies the compiler writer’s task. 
Machines such as the VAX and the S-l have traditionally offered the same 
justification for having complete and symmetric instruction sets, but substantial 
doubt exists as to the overall importance of this design principle in light of the 
current predominance of high-level language usage over assembly language [7, 
391 and the prospects for automatic generation of compilers [24]. Since the HLL 
users never see the machine’s native instruction set, one of the important 
motivations for completeness is removed. 

A third type of function migrated in the 432 deals with applications. The 432 
GDP implements the IEEE standard 754 for both single- and double-precision 
floating-point formats. 

A fourth type of migrated function comes from operating systems. The 432 
subsumes operations such as interprocess communications, process scheduling, 
processor dispatching, virtual memory management, and I/O into its architecture. 
Except for I/O, other machines almost always perform these operations in 
software. The 432’s Interface Processor transacts all I/O, allowing the GDPs to 
exist in an environment where there are only objects. To do this the IP performs 
whatever conversions are necessary between that environment and the real world 
of bytes, disks, and networks. 

The 432 hardware, microcode, and OS software together implement a distrib- 
uted fault handler that handles faults arising from any source, hardware faults, 
applications code run-time errors, explicit exceptions raised at the source code 
level, or memory management faults. Such a unified fault model contrasts sharply 
with the ad hoc, localized approaches found on machines such as the VAX, where 
run-time errors may be caught by the run-time system, the hardware, the memory 
management unit, or the operating system, each handling the fault in its own 
way. Microcode devoted to fault handling constitutes another kind of functional 
migration. 

2. THE EXPERIMENTS 

2.1 Performance as a System Metric 

Since the primary goal of the 432 system was to improve software productivity 
and thereby lower life-cycle cost, it would seem logical to attempt to evaluate the 
432’s functional migrations according to how well the system met those goals. 
Unfortunately, the 432 was not a commercial success, and not enough large-scale 
programming development efforts exist for such an evaluation. 

This paper concentrates on the performance effects of those functional migra- 
tions, leaving questions about the cost-effectiveness of object-based systems 
design for future research. It is important to note the scope of this investigation 
into performance. We do not assume here that any and all aspects of system 
architecture or implementation are fair candidates for alteration or disposal as 
long as overall system throughput on the benchmarks appears to be higher. Here 
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we pursue the question of how large an inherent overhead object orienta- 
tion appears to be, and how effectively functional migrations can be used to 
combat that overhead. Consequently we seek the highest performance subject 
to certain run-time constraints that are intrinsic to the 432 class of object-based 
systems. 

The reader should note that this paper is not about object-based systems per 
se; we do not pursue any of the myriad ways in which a real follow-up to the 432 
might break radically with the 432 to achieve much higher performance (we 
suggested some in [lo]). We view the 432 as an expensive experiment, the results 
of which have been badly misinterpreted. In order to draw supportable conclu- 
sions from this experiment, only incremental performance enhancements to the 
432 could be investigated in this work. These enhancements were considered 
with the aid of the 432’s silicon architects to insure feasibility. (These incremental 
enhancements, together with remedies for some basic errors built into the 432, 
suffice to improve performance to the realm of commercial viability. This 
conclusion is a key result of this work; we will return to it in Section 6.) 

The performance of the 432 was evaluated using a set of benchmarks to drive 
Intel’s Release 3.0 432 microsimulator, which was written in Simula and runs on 
a DEC KLlO at Intel in Aloha, Oregon. The simulator accepts 432 object code 
files and can output a cycle-by-cycle listing of the GDP’s operations, including 
instruction fetches, memory accesses, and internal operations. This simulator 
created cycle-by-cycle log files, which were then analyzed via a suite of C programs 
created specifically for this purpose. Proposed architectural changes to the 432 
were modeled with these programs or manually, using the number of cycles per 
instruction in the log files as a guide. 

2.2 Benchmarking 

Measurements of a real computer system must be made under some processing 
load. The art of benchmarking has evolved to provide programs that, taken as a 
whole, are thought to be representative of the processing load seen by the machine 
in actual use. Benchmarking is still an art, however. Little agreement exists on 
how to even characterize typical processing loads, much less to create benchmarks 
that accurately represent these loads. Even representative small-scale processes 
do not capture or duplicate such important systems-level conditions as process 
swap overhead and I/O interrupts. For systems with caches, small benchmarks 
may fit entirely within the cache, exaggerating the performance benefits of such 
caches [35]. 

Another issue in measuring system performance concerns the load represented 
by operating system code. Since there is wide variability in the use of OS 
functions, it can be very difficult to characterize that load, but it is often estimated 
that a substantial number (greater than 50 perecent) of the processor cycles are 
typically dedicated to the operating system. Processing loads of that magnitude 
cannot be ignored. 

Despite the problems associated with using benchmarks, their use can be 
of great value in architectural design. If the benchmarks are constrained 
to be implemented in a single language, and for a single architecture that is 
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incrementally changed in various ways, then it is possible to draw unambiguous 
conclusions about the effects of those architectural changes. 

2.3 Programming Environments: Large vs. Small 

Benchmarks such as those used in the RISC work at Berkeley [7] and those used 
in the Military Computer Family study [9] can be described as “low-level”: They 
attempt to exercise the primitive instructions in the machine, and are generally 
argued to be representative and meaningful because those operations constitute 
the bulk of a processor’s instruction executions. 

The 432 was designed to support large programming development environ- 
ments, hence the ultimate verdict on whether it meets its design goals should be 
based on measurements indicative of such large-scale systems, and not on low- 
level benchmarks. Nevertheless, much can be learned from low-level performance 
studies. The reasons are as follows. 

Even if the high-level functions of the 432 (interprocess communication, 
procedure calls) were free, executing in zero time, the performance of the 432 as 
reported in [ 13 ] would still be slow relative to other current systems. Establishing 
the reasons for this poor low-level performance can yield important insights 
about the design of object-based architectures, and complicated architectures in 
general. 

Although only a few “programming in the large” systems exist for the 432, two 
of them are available for static module connectivity measurements (the 432 
UNIX study at the University of California at Santa Barbara, and a large Ada 
development on the 432 done at Hughes Aircraft). In addition to these, the 
Carnegie-Mellon Mercury Mail System was written in Ada and is available 
for this study. These results will be compared to the Dhrystone benchmark 
(Version 1.1) developed by R. Weicker [35]. Dhrystone is a synthetic benchmark 
based on a set of language and OS studies. Taken together, these large-scale 
systems data will be used where architectural features have not been sufficiently 
exercised by the low-level benchmarks. Weicker argues that the Dhrystone is 
quite representative of loads in general, not just those imposed by operating 
systems. This paper will rely heavily on a combination of the low-level bench- 
marks and the Dhrystone in driving the 432 simulator. 

3. ADDRESS TRANSLATION IN THE 432 

The 432 has been called “one of the most sophisticated architectures in existence” 
[25]. Figure 2 supports this contention: It shows the full addressing path of this 
machine. Understanding this addressing mechanism is the key to understanding 
much of the implementation of the 432. This section will discuss the motivations 
for this kind of addressing mechanism. It is important to realize that the objects 
(for example, the Object Table Directory, the Object Tables, and the Context 
Object) depicted in Figure 2 all reside in physical memory, and on-chip caches 
are provided to ameliorate the potentially debilitating effect on performance of 
this chain of indirections. How well these caches work for low-level benchmarks 
is a major topic of this paper. 
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Fig. 2. The 432’s full addressing path. 

3.1 Protected Pointers 

The arcs in Figure 2 represent protected pointers. The concept of a protected 
pointer is intrinsic to an object-based computer architectum3 A pointer is 
“protected” in that the user program cannot manipulate it directly (as one could 
in the C language; e.g., int *ptr; ptr++. The underlying architecture, often 
microcode, manipulates these pointers on behalf of the user program according 
to a set of rigid constraints, By structuring object accesses around this system- 
controlled pointer mechanism, it becomes possible to perform rights checks, 
operation type checks, and other system functions at the time when they are 
needed and only on those objects that are immediately affected. 

Object-based machines must take special care that these pointers cannot be 
forged, for the object addressing mechanism will be relied upon completely and 
implicitly in ensuring system integrity. The 432, for example, does not even have 
a machine instruction for creating a protected pointer; this operation is performed 
by microcode. This is in sharp distinction to conventional architectures, where 
user programs perform both address and data calculations on the same hardware 
(registers and ALU). Barring microcode bugs in the 432 GDP, an errant user 
program can crash itself but cannot bring down the 432’s operating system. 

3 As opposed to an object-based kznguuge, in which the integrity of pointers is assured by the compiler. 
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Various means have been explored for protecting these pointers. Systems such 
as the Burroughs 6500 [37] use tagged memory locations in order to distinguish 
the pointers from data. Other systems, including the IBM Sys/38 and the Intel 
432, permit these pointers (called “capabilities” in these systems) to reside in the 
same address space as the data. They are distinguished from data via additional 
information contained in object headers. A capability is a protected pointer that 
has associated with it information on the range of operations that capability 
possesses for the object being referenced. 

The use of capabilities as the basic addressing mechanism has some important 
ramifications on the design of the underlying structure of the architecture. A 
conventional architecture usually associates access rights with physical pages of 
memory (for example, placing the object code for system utilities into pages 
marked as “execute-only”). Capabilities provide a means to separate program- 
level concerns, such as modules and data structures, from irrelevant details such 
as physical memory sizes, paging characteristics, and disk structures. Advocates 
of the object-based programming style cite this separation of concerns as essential 
to improving the match between the programmer’s desired abstractions and the 
machine on which his or her program must execute. However, the cost of memory 
accesses has a first-order effect on performance in conventional machines, and 
the additional manipulations implied by object orientation will only make it 
worse. Consequently, it is very important that we establish what the object 
overhead is, and to what extent that overhead can be removed by architectural 
support and other means. 

3.2 The lntrinsics of 432 Object Orientation 

The performance effects of the 432’s object orientation are manifested in three 
major ways. First, procedure calls and returns are slowed substantially by the 
increased amount of information that must be dealt with in an object-based 
environment. Some of this information describes the types and access rights of 
various objects, and some represents addressability information on those objects 
needed immediately by the called procedure. Second, addressable domains (e.g., 
objects and procedures) must be made accessible via explicit enter operations. 
This operation, or sequences of them, are needed when executing intermodule 
calls or when traversing pointer chains. Third, every memory reference is checked 
for read/write privileges on the object being accessed, and every reference is 
checked to ensure that it lies within the physical boundaries of the object. 

Conventional architectures assume that whatever bit pattern appears as the 
address of a datum or called procedure is correct unless the underlying memory 
management mechanism indicates otherwise. This approach minimizes run-time 
checks at the risk of yielding unauthorized or faulty access to routines or data by 
possibly malicious users. By contrast, the context in which a capability-based, 
object-oriented procedure executes is such that it is not even possible to access 
objects that have not been explicitly made available-a “need-to-know” arrange- 
ment. This strategy aims to contain system damage from faulty or malicious 
operations, and provides a closer semantic match to the programmer’s abstract 
model of the processor. Since the object-based approach requires that all entities 
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Fig. 3. A two-level addressing mechanism. 

that will be addressed first be “qualified,” or checked for validity (with a local- 
pointer/object-length pair established), this additional data manipulation appears 
as a degradation in the performance of object-based procedure calls and returns. 

For normal execution of applications programs, the 432 system architecture 
was configured so that a “working set” of objects would become qualified through 
appropriate execution of enters. After object qualification (and data-segment 
cache updating) the addressing overhead should be no higher than on conven- 
tional architectures (providing that memory reference checking is done in parallel 
with the reference, as it is on the 432). However, for executing inter-module calls, 
or for traversing a chain of pointers, enters may have to be executed repeatedly, 
especially if the compiler does not perform code flow analysis. 

Every memory reference made in the 432 is checked for access type violations 
(read/write) and displacement range violations (the object length is determined 
at object qualification time and stored on-chip). These checks are performed by 
hardware/microcode on the 432. (The equivalent cost of performing them in 
software is discussed in [5].) 

3.3 The Addressing Structure 

As in Hydra/C.mmp [40], STAROS[~~], and CAP [38], the 432 employs a two- 
level addressing scheme. Figure 3 depicts this mechanism at its most abstract 
level. 

The justification for two-level addressing is too subtle to be fully dealt with 
here; interested readers are referred to [8, 17, 25, 261. Basically, a two-level 
addressing scheme allows information such as the location, size, and type of an 
object to be stored and manipulated independently of the rights various programs 
have to those objects. Contrast this with the inflexible protection and sharing 
available on standard architectures, which base their access checks on page tables 
or other artifacts. 

The 432 implements two-level addressing as follows. Any memory reference 
begins with two pieces of information: an Access Descriptor (AD) selector, which 
refers to the object being accessed, and an offset into that object. (“AD” is the 
name that Intel uses for “capability.“) The AD selector consists of an environment 
selection (one of four available environments) and an index into the list of 
capabilities available within that environment. The capability, or AD, selected 
from that environment refers to some object, and the physical address of the 
base of that object is found by using the Directory and Segment fields of the AD 
as indices into two object tables. 
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There are several reasons for having two object tables (the Object Table 
Directory and the Object Table) “between” the AD selected and the data object. 
Since the Directory and Segment fields of an AD are 12 bits each, collapsing all 
Object Tables into one would require that the object table be potentially 224 
entries long. The 432 allows objects to be at most 64K bytes long, and could not 
easily implement such an object. Most important, the Object Table would not be 
swappable, and most of it would be of no use at any given time, since only those 
entries accessible by the current process need to be present. It would therefore 
waste a great deal of physical memory, causing more swapping of the other 
objects in the system. 

This explains why the Object Table Directory and Object Table 6 in Figure 2 
exist. Object Table 3 exists because the 432 treats all information in the system 
in the same way: as objects. As a consequence, the list of capabilities in the Entry 
Access Segment reside in an object, so that object must be accessed exactly as 
any other object would, through the conversion of an AD for the object into the 
associated OD (object descriptor) and then into physical addresses. 

3.4 Address Caches 

The 432 incorporates two associative address caches in order to minimize the 
amount of memory traffic required to perform a virtual-to-physical address 
translation. Figure 4 shows the locations and sizes of these caches. 

The 432 provides a set of 23 base/length register pairs, which together contain 
a great deal of information about the current state of the processing environment. 
Five of these register pairs form a data-segment cache, four register pairs form 
an object-table cache (the placement of these caches is shown in Figure 4), and 
the rest are dedicated to holding information on various system object segments. 
The caches are searched associatively and their contents managed according to 
a least-recently used replacement algorithm. 

Cache size in standard computer systems is of critical importance in deter- 
mining overall performance [4, 321. The caches shown in Figure 4 contain 
base addresses of objects, however, not actual data values; hence it is the 
locality of reference to objects that determines how effective the 432’s address 
caches will be, rather than frequency of reference to particular data values. Sec- 
tion 5.6.1 will discuss the performance effects of the cache sizes incorporated in 
the 432. 

Two caches are conspicuously absent in Figure 4. The first is a data or 
instruction cache, which would normally contain hundreds or thousands of 
associative entries in order to have a usefully high hit ratio. The address caches 
we are concerned with on the 432 have fewer than ten, partly due to severe chip- 
space constraints. As a consequence, we will not consider on-chip data or 
instruction caches in this paper. The other “missing” cache is an AD cache, 
which would not be flushed at procedure call boundaries. This cache could save 
a great many memory references, which occur because the entered environments 
are invalidated at each procedure call, causing the data-segment cache to be 
flushed. If each procedure is accessing a global object (e.g., the Puzzle benchmark 
described in Section 4), the data-segment cache is considerably less effective 
than it might otherwise be. 
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Fig. 4. 432 on-chip address caches. 

3.5 Rights Checking 

Access Descriptors contain the information describing the rights a program 
accessing an object has to that object. For example, read, write, and delete fields 
convey those respective rights to the bearer of the AD. A “type-rights” field 
encodes more general rights, such as the “return” right a called procedure must 
have to its caller’s activation record (called a “context” in the 432). 

Object descriptors contain information about the objects themselves, such as 
physical location, size in bytes, type of object, and other object-management 
information. Many object types are predefined in the architecture, such as context 
objects, processor objects, and port objects. These objects are referenced auto- 
matically by the 432 microcode on behalf of a user program during normal 
execution. 

Tracing through an example will give an idea of the types of checks that are 
performed in the course of an instruction’s execution. Table I shows a segment 
of Ada source code (part of the Computer Family Architecture benchmark 8: 
Hash-table search). 

Function HashLook is called with three arguments, a record, and two integers. 
The integers are moved into the data part of the message (MSG) object, and an 
AD to the data object containing the record is placed in MSG’s access part. Since 
the Called Context already has an AD to the MSG object in its access list, the 
integers are directly accessible. 
ACM Transactions on Computer Systems, Vol. 6, No. 3, August 1966. 
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Table I. Righta Checking Example: 
Ada Source Code Segment from CFA8 

18 function HashLook (Table: in TableType; 
size: in integer; 
Kkey: in integer) 

19 return BigR.ec is 
20 check,1 :integer; 
21 Fulhboolean; 
22 
23 begin 
24 check := Kkey MOD size; 
25 Full := FALSE, 
26 FOR I in 1. .size/2 loop 
27 IF Table (check).key=Kkey OR Table(check).key=O 
28 THEN 
29 return (Table(check),false); 
30 end IF, 
31 check := (check+I) MOD size; 
32 end loop; 
33 Full := TRUE, 
34 return ((O,O),true); 
35 end HashLook; 

Table II. The Enter Environment Algorithm 

1. Clear the Data Segment Cache entries associated with the old environment 

2. If AD is “access valid” then 
a. remove delete rights from the AD before placing it into the current context 
b. open the new access segment to force possible faults early 
c. set the “copied” bit in the OD associated with this AD 
d. get the “level” from the associated OD 
e. if OD entry type is not “storage” then get level from the Base object rather than this refinement 

3. else, if AD is not valid, set “level” to its maximum value so that future attempts to store AD’s into 
this access segment will fault 

4. store level number into the Process Data Segment 

5. store the AD into the memory image of the current context 

The MSG is actually implemented as a refinement of the Calling Context. 
This saves time in setting up parameters to be passed. Unfortunately, this scheme 
forces the Called Context to traverse the refinement (reference the refinement’s 
object-table entry) when setting up the data-segment cache pointer to the MSG 
object, at a cost of approximately 77 clock cycles. The ramifications of this 
scheme will be discussed in Section 5.6. Since there is no AD for the Table record 
in the Called Context, it cannot yet be accessed. To make the Table record 
accessible an enter-enu operation must be performed. 

The enter-em instruction has the effect of copying the AD to the MSG object 
into the entered environment so that the ADS contained in the MSG become 
directly usable. Table II shows the sequence of operations involved in an 
enter-em (taken from [19] and [20]). (The “levels” referred to by the algorithm 
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Table III. Memorv Onerations in Executine Enter-Env 

Access Size Purpose 

1. Read ASLoad 
2. Read Word 
3. Write Byte 
4. Read EWord 
5. Read Word 
6. Read Word 
7. Read DByte 
8. Write DByte 
9. Write Word 

16 bits 
32 bits 

8 bits 
80 bits 
32 bits 
32 bits 
16 bits 
16 bits 
32 bits 

get constant for referring to new AD 
get AD specified by AS (just read above) 
set copied bit of OD 
get OD for refinement object 
get access part offset + length of refmt 
get OD for base object 
read the level from base object 
update level of EAS 1 in Process Object 
write AD image to mem copy of curr ctxt 

are the mechanism the 432 uses to solve the dangling-reference problem. They 
are discussed in detail in [ 301.) 

The enter-em instruction is part of the basic mechanism by which the 432 
controls object accessibility. In order for a program to access an object, it must 
first establish its right to that object by arranging for an AD to the object to be 
placed into one of the four access environments of the current context (the 
current context itself, of Env’s 1, 2, and 3). Thus the program must already have 
the appropriate AD. In the course of writing the AD into the current context, 
the 432 microcode writes the new access selector into the on-chip Data Segment 
Cache and invalidates any current entries for that environment. When a subse- 
quent instruction attempts to use that environment as part of its access, the 
Data Segment Cache will miss and the microcode will pause in the current 
instruction’s execution in order to refill the cache. 

In carrying out the execution of the enter-env instruction, a number of checking 
operations were performed. Before using any object, the 432 microcode and 
hardware test validity by comparing the object’s type, length, level, and other 
fields, as well as the AD and OD being used in the access. In this example, some 
of these checks were made at some earlier time (for instance, checking for process 
and context validity) and are therefore not repeated. Other tests are performed 
explicitly upon accessing an object for which the processor currently has no 
knowledge. 

In a typical case, an enter-em executes the algorithm given in Table II and 
makes the sequence of memory references given in Table III. The first access 
that the enter makes is to the local constants object. The constants object is 
required because 432 lacks instruction-stream literals (Section 5.4). Unless this 
object is currently qualified, the rights possessed by the referencing AD will be 
checked against the object-type information contained in the OD, just as for any 
other object. 

Once an object is qualified, subsequent accesses to that object are efficient, 
since the offset specified by the instruction stream is added to the object’s base 
address (contained in the DS-Cache). While that reference proceeds, the object 
length (also contained in the DS-Cache) is compared to the base + offset 
address to ensure that the reference does not lie outside the object. Since arrays 
are allocated to separate objects, this makes dynamic array-index checking 
automatic in the 432. 
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3.6 Procedure Calls 

Procedure calls and returns are potentially expensive operations in object-based 
systems like the 432, due to the large amount of state information associated 
with each context. On a conventional architecture, the graph structure of a 
program’s call patterns and data structure accesses is represented in the form of 
virtual addresses embedded in the object code. In object-based systems-at least 
for intermodule calls-this graph information is explicitly preserved in the form 
of capabilities for objects such as instruction segments, data structures, and 
messages. These capabilities must be manipulated by machine instructions. 

The 432’s procedure calls are quite costly. A typical procedure call requires 16 
read accesses to memory and 24 write accesses, and it consumes 982 machine 
cycles. In terms of machine cycles, this makes it about ten times as slow as a call 
on the MC68010 or VAX 11/780. The reasons for this complexity are discussed 
in [lo]; object orientation is shown to be only a minor factor. Space does not 
permit a recapitulation of the analysis here. 

4. RAW PERFORMANCE MEASUREMENTS ON THE 432 

A 1982 paper compared the performance of the 432 with other contemporary 
machines on a set of four low-level benchmarks [ 131. The benchmarks used were 
search, a string search routine; sieve, a prime-number program; puzzle, a binary 
bin-packing program; and acker, a short, highly recursive routine. Intel’s Release 
2.0 (4 MHz) 432 was reported to execute the benchmarks very slowly compared 
to the VAX 11/780, the 68000, and the 8086 (Table IV). At best (the search 
benchmark), the ~-MHZ 432 was 10 times slower than the VAX; at worst (aclzer), 
it was 26 times slower. Compared to the &MHz 8086 the ~-MHZ 432 ran between 
2 and 23 times more slowly. Its performance with respect to the 8 MHz 68000 
was similar. We ran these benchmarks on our Release 2.0 432 system at Carnegie- 
Mellon University, and our results corroborated the Berkeley numbers except for 
a constant speedup attributable to the &MHz clock in our system. 

It is hard to draw architectural conclusions from these comparisons. The 432 
was programmed in Ada, while the other machines used Pascal or C, so differing 
language semantics and compilers are reflected in the measurements. The 432 
measurements used Release 2.0 of the operating system, which was the first 
version distributed by Intel. Release 3.0 incorporated several improvements, 
including preallocation of contexts to improve the speed of procedure calls. In 
addition the architectures being compared vary in implementation technology, 
memory speed, and bus systems. The most useful comparison is between the 
Release 2.0 432 and the &MHz 8086. Although the languages and compilers do 
differ, the implementation technology is the same, and the systems environment 
(bus and memory technology) for each is similar. Why does the 432 take over 
four times as long as the 8086 to run sieve? Why does acker(3, 6) take 21 times 
longer?4 Section 5 will investigate these questions. 

’ Our Release 2.0 432/670 system could not run o&er(3,6) to completion. The system hung after the 
72,461st procedure call. Calls were nested 752 deep at this point. We suspect that the system ran out 
of physical memory, which would hang the system, since virtual memory was not implemented in 
Release 2.0. The elapsed time reported for ocker(3, 6) is estimated, based on the simulated 
ocker(l,2). 
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Table IV. Berkeley 4 MHz Intel 432 Measurements 

Machine 

VAX 111780 

Language 

c 

Pascal (UNIX) 
Pascal (VMS) 

Word 
size 

32 
32 
32 

Time (in milliseconds) 

Search Sieve Puzzle A&r 

1.4 250 9400 4600 
1.6 220 11900 7800 
1.4 259 11530 9850 

68000 (8MHz) C 32 4.7 740 37100 7800 
Pascal 16 5.3 810 32470 11480 
Pascal 32 5.8 960 32520 12320 

68000 (16 MHz) Pascal 16 1.3 196 9180 2750 
Pascal 32 1.5 246 9200 3080 

8086 (5 MHz) Pascal 16 7.3 764 44000 11100 

432 (4 MHz) Ada (rel. 2) 16 35 3200 350000 260000 
Ada (rel. 3) 16 14.2 3200 165000 260000 
Ada (rel. 3) 32 16.1 3200 180000 260000 

Presented below are the “baseline measurements” of the Release 3.0 432. These 
results were obtained by analysis of the simulator log files, with no adjustments 
made for any of the architectural or implementation problems that will be 
discussed later. While these baseline results are not in themselves very helpful 
in analyzing the 432 system, they indicate the real performance that 432 users 
experienced. These results also provide the starting point against which archi- 
tectural modifications, compiler changes, and implementation decisions can be 
evaluated. 

Table V shows the number of instructions executed per benchmark. Table VI 
shows the total cycles required to execute each benchmark, from the first 
macroinstruction of the benchmark through the final return. I/O was not included 
in any of the benchmarks simulated here. The Dhrystone benchmark result 
reflects a source-level programming change that forces a particular array to be 
passed by reference. This change was necessary in order to make the simulation 
feasible, since it reduced the total number of cycles by an order of magnitude. 
The tendency of the 432’s Ada compiler to rely exclusively on “call-by-value/ 
result” parameter-passing will be discussed in detail in Section 5.1.4. 

The Intel 432/670 development system incorporated a slow, asynchronous 
memory/bus interconnection that added a significant (but unspecified) delay to 
every memory reference made by the GDPs, estimated at 6 waitstates (Konrad, 
Lai, private communication, June 1984). Since it is possible to create faster 
memory bus designs for the 432, all of the analyses in this paper were done for 
0, 3, 6, and 10 waitstates. Six waitstates will be the default for performance 
comparisons. 

5. MAJOR CYCLE SINKS IN THE 432 

To establish the low-level performance effects of the 432’s object orientation we 
must first account for other unusual aspects of its architecture and implemen- 
tation that influence its performance. This section presents measurements of 
several such aspects. Later, several small incremental enhancements will be 
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Table V. Baseline Instruction Stream Statistics 

Benchmark 

Acker 
Sieve 
CFA5 
CFA5R 
CFAlO 
Dhrystone 

Instructions 
executed 

150489 
1549095 

385005 
556006 
602003 

500 

Instructions Average 
executed instruction 
per fetch length in bits 

0.76 42.2 
0.69 46.2 
0.68 47.3 
0.73 44.1 
0.76 41.9 
0.82 39.1 

Table VI. Total Baseline Cycles Executed with Standard 432 and Compiler 

Total cycles executed 

Benchmark ows 

Acker 292355847 
Sieve 5076556 
CFA5 23857599 
CFABR 41972903 
CFAlO 33886612 
Dhrystone 49980 

3ws 6WS lows 

343503120 394650393 462846757 
6340021 7603486 9288106 

29387022 34916445 42289009 
51555398 61137893 73914553 
41345050 48803488 58748072 

59508 69036 81740 

proposed and their performance effects estimated. These enhancements include 
changes to the 432 system (architecture, implementation, or compiler), which 
could plausibly have been made to the original 432 assuming (at most) slightly 
better technology or different implementation decisions. The resulting system 
will be used to investigate the overhead of object orientation. 

After running benchmarks on the 432, we performed some architectural anal- 
yses to find out where the performance losses were in the 432. Our evaluation of 
the 432 yielded the following list of possible problems: 

-The PInstruction Bus between the Instruction Decoder chip and the Execution 
Unit chip is only 16 bits wide and must carry both control and microinstruction 
data. 

-The Execution Unit chip has only a single multiplexed 16-bit bus with which 
to transfer data, address, and control information to and from memory (the 
“ACD” bus). 

-There are no user-programmable registers on chip that the compiler could use 
for temporary storage or intermediate results. 

-The entered-environment “levels” are not on chip, so whenever levels must be 
checked, memory references are generated. 

-There are only three entered-environments. 

-The garbage collector cannot be turned off-each copy-AD instruction must 
mark the gray bit at a cost of 9 clock cycles. 

-The instructions are bit-aligned, so decoding is complex. 

-There are no literals or embedded data. 
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-Only the top 16 bits of the stack are on-chip, so stack references such as “Push 
an integer” cause memory operations. 

-The Ada compiler has some problems: 

(1) It does no common subexpression analysis, so many redundant array 
address calculations are performed. 

(2) It does no code flow analysis, so it takes the brute force approach to 
handling the entered-environments: at each access to an object, it re-enters 
the environment. 

(3) It uses “call by value/result” parameter-passing reference semantics, even 
*where Ada would allow call-by-reference. This necessitates moving every 
in out parameter before and after every procedure call. 

(4) Only protected procedure calls and returns are used, even though the 
instruction set contains a brunch-and-link mechanism that could be used 
on nonrecursive intramodule calls. 

-The caches have these limitations: 

(1) The data-segment cache is only five entries deep, and is flushed upon 
procedure calls, returns, and enters. 

(2) The object-table cache is only four entries deep. 

(3) There is no cache of ADS that survives protected procedure calls, which 
would allow the Data Segment cache to be more quickly refilled. 

The microsimulator was used to explore the effects of each of the above problems 
on the 432’s low-level performance. 

5.1 The 432 Ada Compiler 

Compilers for the Ada programming language are notoriously difficult to write 
[31]. Language features such as up-level addressing, rendezvous, multitasking, 
packages, and separate compilation facilities are complex to implement. Perhaps 
these difficulties diverted the 432’s compiler writers from object-code perform- 
ance issues, since the 432 Ada compiler generates very inefficient code. Even on 
the low-level benchmarks used in this paper, which avoid the complex features 
of the Ada language, a large fraction of the generated instructions are unneces- 
sary. On the Release 2.0 measurements reported in [13], for example, unnecessary 
instructions waste over 50 percent of the execution time for the Puzzle bench- 
mark. The Ada compiler for Release 3.0 432 is considerably better, but still 
profligate in its management of the architecture. We now turn our attention to 
the performance effects of some specific problems with the compiler. 

51.1 Mismanaging the Entered-Environments. Probably the worst charac- 
teristic of the 432’s Ada compiler is its management of entered-environments. As 
discussed in Section 3.5, enter instructions are executed in order to make some 
new capability list directly accessible. For instance, data values passed as param- 
eters of a procedure call are immediately available to the called procedure, since 
an AD to the Message object in which they are held is pretreated in the called 
context. But when structures, arrays, and other objects are passed, an AD for 
them must be placed in the access portion of the Message object, and an 
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Table VII. Percentage of Total Benchmark Cycles Spent on enter-enus 
and the Resulting DSXache Misses 

Benchmark 

Acker 
Sieve 
CFA5 
CFABR 
CFAlO 
Dhrystone 

% Total cycles 
executing 

enters 

0.0 
0.0 

14.1 
7.7 

17.0 
14.6 

% Total cycles % Total 
refilling enters + 

DS-Cache DS-Cache 

0.0 0.0 
0.0 0.0 
4.9 19.0 
2.6 10.3 
5.8 22.8 
3.6 18.2 

enter-em instruction must then be executed in order to use the Message 
object’s ADS to access the passed objects. 

Managing the entered-environments is, from a compiler’s point of view, 
essentially equivalent to the classic general data-register allocation problem. In 
both cases, the compiler must schedule usage of a finite set of resources to 
optimize performance. The low-level benchmarks reveal that the 432 Ada com- 
piler does a very poor job of managing these entered environments. It is clear 
that no flow analysis is being performed, and even some obvious heuristics that 
could improve performance are not employed. 

Table VII shows the percentage of clock cycles attributable directly to the 
execution of enter-ems, and also shows the additional cycles lost due to related 
Data Segment (DS) cache misses. The “combined” column shows how large 
a percentage of all cycles executed in the benchmark went to performing an 
enter-enu or re-filling the DS-cache entries for an environment. That column 
can therefore be regarded as an upper bound on the system speedup attainable 
by better environment management. 

The CFA5R benchmark illustrates how poor management of entered environ- 
ments cripples 432 performance. This benchmark spends a significant amount of 
its total running time inside a tight inner loop (greater than 50 percent of the 
total, in the 432’s case). The inner loop consists of a single source statement that 
executes 14,000 times during the benchmark. The procedure containing this loop 
is called 1,000 times. The compiler places an enter-em inside the loop. The same 
environment is entered on each iteration. The enter-env could be moved outside 
the loop without ill effects, since the loop does not need access to more than the 
three environments available simultaneously. Moving the enter outside the loop 
in this example will save approximately 5.4 percent of the total cycles executed 
due to executing 13,000 fewer enters, plus the savings due to 14,000 fewer 
D&cache misses (1.8 percent). 

While this is a worst-case example, there are several other cases where flow 
analysis could have removed unnecessary enter-ems. Compiler technology has 
reached the point where we should expect it to be routinely performed in 
production-quality compilers. 

Table VIII shows the total cycles used by each benchmark after the code is 
adjusted for more efficient management of the entered-environments. We will 
use this set of results as the basis for the common subexpression analysis in the 
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Table VIII. Total Cycles Executed per Benchmark, 
Adjusted for Better Environment Management 

Benchmark 

A&r 
Sieve 
CFA5 
CFA5R 
CFAlO 
Dhrystone 

Total cycles Total cycles 
executed executed with 
originally improved envs 

394650393 same 
7603486 same 

32168445 25490445 
61137893 55059893 
48803486 41162488 

69036 60502 

% Improvement 

0.0 
0.0 

18.2 
10.0 
15.7 
12.4 

next section. The percentage improvement is shown in this table, but subsequent 
tables will not show percentages so that the cycles saved can be combined under 
various assumptions (e.g., better compiler and instruction stream literals, or eight 
general registers with wider buses). 

5.1.2 Common Subexpression Analysis. Common subexpression analysis is a 
common compiler optimization technique that allows the results of some inter- 
mediate calculations to be reused rather than recomputed. For instance, when 
accessing an array, the address of the array element must be computed as a 
function of the base address of the array, the size of each array element, and the 
method of packing the array elements into physical memory. This calculation 
normally entails a multiplication and a type conversion. If the same array element 
is specified on both sides of an assignment operation, then reusing the address 
will save one multiplication and one conversion. Note that this optimization can 
be done even without local registers, since storing and retrieving such temporaries 
from memory may still be faster than repeatedly recomputing a sequence of 
addressing calculations. 

The 432 has an addressing mode that permits a single macroinstruction to 
express an Ada source line such as 

arruy[x] := arruy[x] + 30; 

It can only be used for one-dimensional arrays, however. Arrays of two or more 
dimensions require explicit address calculations at the macroinstruction level. 
For these more complex addressing modes, the 432 Ada compiler provides no 
optimizations, even for the trivial case of identical array elements on both sides 
of an assignment. The compiler also fails to reuse addresses and temporary data 
across several macroinstructions. 

The lack of common subexpression optimization is a problem in the CFAlO, 
CFA5, CFA5R, and Puzzle benchmarks, since those programs involve extensive 
access to arrays or structures. In CFA5, for example, removal of the three 
redundant instructions would save 150 clock cycles out of the loop total of 1,110 
cycles. Since this loop accounts for 56 percent of all cycles used in the benchmark, 
overall elapsed time would be decreased by (150/1100)(0.56)(100) = 7.6 percent 
(compared to the baseline measurements). 

Hand-optimizing the 432 assembly code by eliminating common subexpres- 
sions produced the cycle savings shown in Table IX. 
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Table IX. Cycles Saved Due to Hand-Optimized 
432 Assembler Code 

Benchmark Cycles saved 

A&W 0 

Sieve 0 

CFA5 4044000 
CFA5R 4560000 
CFAlO 3696000 
Dhrystone 457 

51.3 Protected Procedure Calls. The Release 3.0 Ada compiler and 432 system 
treat every call identically; calls on critical system routines look no different 
from the standpoint of execution efficiency than does a call to a private function 
within a user’s procedure. While this strategy does preserve the call graph of the 
object model with admirable consistency, keeping this generality often seems 
pointless, especially when the compiler has full control over both the calling and 
called procedures simultaneously [16, 231. Procedures that are private to a given 
package may be candidates for an optimization that relaxes the normal checks 
and constraints of a protected call. 

Suppose that a compromise strategy were used to combat this procedure call 
overhead, with the philosophy that the security and correctness of intra-module 
calls are the province of the compiler. Protecting inter-module calls would remain 
the responsibility of the architecture. With this plan, nonrecursive intra-module 
calls and returns could be replaced with a simple “branch and adjust stack” (for 
new local variables) sequence, with the instruction segments made coresident in 
the same instruction object.5 (Flow analysis would be required to determine the 
maximum depth of nested calls.) This would make this procedure call no more 
costly than a call on a conventional architecture. 

The 432 instruction set does in fact provide instructions with the required 
semantics for such operations (branch-intersegment, branch-intersegment-and- 
link). However in none of the benchmarks reported here, nor in any of the dozens 
of other programs run during this research, were these instructions ever generated 
by the Ada compiler. 

Dhrystone provides the best example of what kind of savings are possible with 
unprotected call mechanisms. Seven of its 15 procedure calls are intra-module, 
and eight of them inter-module. If these intra-module calls and their returns had 
been unprotected, then a total of 12,405 clock cycles would have been saved 
out of the baseline total of 60,502 cycles, for a performance improvement of 
20.5 percent. 

Table X shows how performance would improve if the “compiler-protected 
intra-module call” compromise suggested were available on the 432. 

5.1.4 Parameters Passed by Value/Result. The Ada language allows the pro- 
grammer to specify the formal parameters of a procedure call as in, out, or in 

6 In the case of a recursive call, the depth of recursion cannot in general be known at compile time, 
so the required context-segment size cannot be determined. Hence a new context segment is needed 
for each procedure call. 
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Table X. Summary of the Performance Improvements Possible 
if Intramodule Calls Were Protected by the Compiler 

Benchmark 

% Intramodule % Total cycles 
calls spent in 

and returns intramod. calls 

% Improvement 
possible over 

baseline 

Acker all recursive 75.0 0.0 
Sieve no calls 0.0 0.0 
CFA5 100.0 7.4 7.4 
CFA5R 100.0 3.6 3.6 
CFAlO 100.0 4.3 4.3 
Dhrystone 47.0 44.7 20.5 

out. In parameters are to be passed by value to the called routine, which cannot 
change the actual value. Out parameters can be assigned by the called routine so 
that the called routine can transfer data back to the caller. In out parameters 
allow both calling and called routines to read or assign values to the actual 
parameters. 

Implementing the in out parameter passing convention is normally done with 
“call-by-reference” or “call-by-value/result” semantics. As long as the called 
routine terminates normally and has no side-effects, either method will achieve 
the same result 1311. However for large parameters the efficiency of these two 
methods is quite different, since “call-by-reference” requires only pointers to be 
passed, while “call-by-value/result” necessitates copying of the parameters before 
and after the call. 

The 432 Ada compiler passes all in out parameters by value/result. (In 
parameters are always passed by value, and out parameters by result.) This 
unnecessary copying of data can be circumvented at the Ada source-code level 
by declaring pointers (Ada’s “access types”) to the data structures, and then 
passing the pointers instead of the structures. This was done in the Dhrystone 
benchmark. 

Table XI summarizes the clock cycles spent in each benchmark moving in out 
parameters unnecessarily. The Dhrystone benchmark requires an order-of- 
magnitude more time to complete when the default “call-by-value/result” 
semantics are employed (total cycles for this benchmark were listed as 
60,502 in Table VIII). One of the calls in Dhrystone passes two large arrays, one 
with 50 integers, and the other with 2,500. Copying these arrays both before 
and after the procedure call takes nearly ten times as long as the rest of the 
benchmark! 

5.2 Lack of Local Data Registers 

The 432 is a pure memory-to-memory architecture, with the single exception of 
16 bits of the top-of-stack. There were three major reasons for this design 
approach. For its time of introduction, the 432 Execution Unit was a very large 
chip, and it was felt that local data registers could not be included without 
trading away essential features such as base/length registers or substantial 
amounts of microcode. Another reason was the speedup in process-swap time 
when on-chip state is minimized. Finally, there was felt to be a conceptual unity 
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Table XI. Clock Cycles Wasted by the 432 Ada Compiler’s Use 
of “Call by Value/Result” Semantics 

Benchmark 

Acker 
Sieve 
CFA5 
CFA5R 
CFAlO 
Dhrystone 

Cycles moving 
in out params 

0 
0 

1034000 
9563000 
5844000 

630584 

Cycles to Cycles saved by 
pass ptrs “call-by-ref” 

na 0 
na 0 

128000 906000 
128000 9435000 
128000 5716000 

256 630328 

and simplicity afforded by a memory-to-memory machine, especially a shared- 
memory multiprocessor such as the 432. Since the 432 architecture was expected 
to outlive several generations of implementation technology, some loss of per- 
formance was felt to be acceptable. 

However, the performance penalty paid for such a design can be large. For 
variables that are frequently referenced, such as loop counters, and especially for 
loop counters used within the loop (array indices, for instance), a very large 
percentage of otherwise redundant memory data transfers can be avoided if on- 
chip data registers are available. 

In order to gauge the effects that this design decision had on the 432’s 
performance on these benchmarks, the benchmarks were simulated using a 432 
architecture enhanced with a set of general registers, assumed to be accessible in 
one clock cycle. The 432 requires approximately 15 clock cycles to read 32 bits 
from memory (9 internal clock cycles plus 6 bus/memory waitstates). If the 432 
had incorporated eight 32-bit data/address registers, its performance on the 
benchmarks would have improved substantially, as shown in Table XII. 

Had the 432 included some general-purpose registers, the object-code size 
would have decreased as well, since fewer bits are required to reference a register 
than to reference a memory location within an object. This in turn improves the 
overall execution time since fewer overall instruction fetches are required. The 
microsimulator log tiles show instruction fetch cycles, so the number of cycles 
saved due to shorter instructions can be estimated as follows. Scalar data 
references normally require 19 bits of the instruction stream: 2 bits for the data 
reference mode, 2 bits for the access selector mode, 1 bit determining the 
displacement length, 7 bits of access selection, and 7 bits of displacement (for a 
short displacement). We assume here that specification of a register would take 
4 bits: 1 to decide register or memory, and 3 to select the register. As a result, we 
save 19 - 4 = 15 bits in the instruction stream for each memory reference 
eliminated. 

Using registers to pass variables can save many more cycles than the simpler 
scheme, which was modeled here, since only those register values that must be 
saved (via a memory operation) are saved, while those containing information 
useful to both calling and called routines can be left untouched. In those cases 
where the compiler has control over both the calling and the called routines, this 
is straightforward. Calls to procedures written in other languages, or compiled 
by different versions of the compiler, present different challenges that have not 
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Table XII. Cycle Savings Possible if Eight 32-Bit Data Registers 
Had Been Included in the 432 

Benchmark 
Memory access Instruction stream 

cvcles saved cvcles saved 

Acker 0 0 
Sieve 2681926 -1 x lo6 
CFA5 3555000 -1.6 x lo6 
CFABR 3261000 -1.6 x lo6 
CFAlO 5715000 -2.7 X lo6 
Dhrystone 1305 -6 x 10’ 

yet been resolved in the literature. Performance improvements possible for 
register-based parameter-passing are not further considered here. 

An issue not addressed in this paper is the 432’s multiprocessing support. 
Providing local registers that are under the control of the compiler (avoiding the 
problems associated with variables being shared by more than one process) would 
also improve system performance by decreasing the contention for memory 
among the GDPs in a 432 system. 

5.3 Bit-Aligned Instructions 

Because the size of object code can have a major influence on the performance 
of an architecture, designers attempt to minimize instruction width. From an 
information-theoretic point of view, instructions could be smaller if they did not 
have to occupy an even number of bytes or words. On the other hand, these 
instructions might begin at any bit within a byte or word. The 432 is the second 
important architecture to exploit such bit-aligned instructions; the Burroughs 
B1700 [28] was the first. Unfortunately the expected object-code size savings 
were not realized in the 432. Hansen et al. [13] reported that the 432 object code 
was not much smaller than that of the VAX or the Motorola 68000. The reason 
is the disproportionately large number of memory references that are made by 
the 432 due to its lack of data registers. 

When a bit-aligned instruction is fetched, the first bit retrieved from memory 
is usually not the first bit of the instruction. The machine must perform two 
separate memory accesses, and then combine two bit strings via barrel shifting 
in order to reconstitute the instruction. The 432’s Instruction Decoder is imple- 
mented in such a way that it can usually reconstitute and decode the instruction 
bitstream in parallel with the program execution occurring in the Execution 
Unit. But for pipeline breaks such as jumps, calls, and returns, a number of 
cycles are lost while the Execution Unit is stalled waiting on the Instruction 
Decoder to flush the pipe and refill it from the new stream. 

For the benchmarks used in this paper, the number of cycles lost to Instruction 
Decoder stall can be quantified, since they are marked in the log tiles (see 
Table XIII). 

5.4 Lack of Literals or Embedded Data 

The 432 instruction set does not provide for instruction-stream literals other 
than zero and one. A study performed within Intel early in the 432 project 
concluded that the constants zero and one would cover nearly all of the need for 
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Table XIII. Cycles Lost to Instruction Decoder Stall 

l 319 

Benchmark 
Cycles spent waiting 

on instr decoder 

Ackm 5936775 
Sieve 682846 
CFA5 743011 
CFA5R 1171016 
CFAlO 1692005 
Dhrystone 1266 

constants. This conclusion was almost certainly in error, but it enabled the 
Instruction Decoder and Execution Unit to be built as separate chips, and thus 
facilitated building such a complex system on silicon (George Cox, private 
communication, January 1985). Since the 432’s instruction stream is bit-aligned, 
literals would have had to be reconstituted in the instruction decoder’s barrel 
shifter and then sent to the Execution Unit. No suitable transmission path 
existed for such a transfer. As a consequence, when it became clear that zero and 
one would not suffice it was too late to rectify the mistake. 

The lack of immediate data impacts performance in several ways. A reference 
to data in the local constants object usually occupies 19 bits, much more than 
most of the constants themselves. Hennessy et al. [15] report that for a set of 
Pascal programs, a 4-bit constant is sufficient for approximately 70 percent of 
all data constants, and 8-bit constant suffices for 95 percent. Besides the wasted 
instruction stream bits, the additional memory references required to fetch the 
constants are expensive. 

Application-code data constants are not the only constants used by the 432. 
In calculating array offsets, and while manipulating system-defined objects, the 
432 microcode frequently requires constants such as 4 or 8 with which to calculate 
addresses of various ADS or ODs. These constants are currently kept in the 
Global Constants Object. Fetching these constants degrades performance just 
like fetching local constants. 

The 432 microcode uses constants fetched from the local constants object 
during procedure calls. If the local constants object is not qualified at the time 
of the call, then a data-segment (DS) cache miss will occur, adding approximately 
77 clock cycles to the procedure-call total (see Section 56.1 for more details on 
the DS-Cache). If instruction-stream literals were available these expensive 
qualifications would not occur. For the Dhrystone benchmark, 1,078 clock cycles 
are lost to DS-Cache miss processing on the local constants object, or 1.8 percent 
of the baseline total. 

Another subtle performance degradation due to accessing constants objects is 
the increase in size of the context segments. Each context must have ADS to 
both local and global constants objects, and the overhead of maintaining and 
using these ADS is paid in extra cycles for procedure calls and returns. 

Table XIV shows the performance speedups possible if the 432 instruction set 
architecture had included immediate data. We assume here that a Is-bit data 
path from the instruction decoder to the execution unit is available, and that a 
transfer takes 2 cycles. 
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Table XIV. Cycles Saved with Instruction Stream Literals 

Cycles spent 
referencing 

Benchmark data constants 

A&3 - 

Sieve 413532 
CFA5 720000 
CFA5R 720000 
CFAlO 876000 
Dhrystone 636 

Cycles spent 
referencing 

addressing constants Totals 

2927961 2927961 
34461 447993 

250944 970944 
260885 980885 
404613 1280613 

1550 2186 

5.5 Three Entered Environments 

The 432 provides each context with four addressing spaces: the current context, 
and three “entered environments.” (The operation of the enter-environment 
instruction was discussed in Sections 3.5 and 51.1.) These environments are 
used to provide fast access to a “working set” of objects. If there are too few 
entered-enuironments then a working set may not be achieved, and a substantial 
performance loss may be incurred in repeated changes of environments. 

Because each entered-enuironment requires a substantial amount of chip 
resources, only a few environments can be provided. The 432 provides three, the 
minimum reasonable: triadic instructions such as a := b + c can generate 
references to three separate objects. The Ada modules containing a, b, and c 
would have to have been “entered” prior to execution of this addition, of course. 

Even with good management of environments, there are addressing require- 
ments that make use of more than three environments from a given procedure’s 
context. Traversing a linked list of structures, for instance, may require that a 
new enter be executed per node of the list. 

One would expect this to be a problem for large programming systems, where 
many modules exist and call each other in patterns that are not completely 
determinable at compile time. Of the benchmarks used here, only Dhrystone 
would be speeded up by the availability of additional entered environments. The 
other five benchmarks would actually run slower, because the procedure call and 
return time is partly a function of the number of environments. 

To get a more meaningful measurement of how large Ada programming systems 
would use the entered environments we have measured the module connectivity 
of three such systems. The first is CMU’s “HG” mail system, developed by 
Michael Horowitz and David Nichols, consisting of approximately 33K lines of 
Ada source code. The second is the Adix kernel, developed at the University of 
California at Santa Barbara under the direction of John Bruno and Laurian 
Chirica, consisting of approximately 20K lines of Ada source code. The third is 
a relational database program developed at Hughes Aircraft under the Distributed 
Software Architecture Project by Paul Rabow and his colleagues, comprising 
approximately 5K lines of source code. The Adix kernel and the Hughes programs 
were written with the 432 as their intended execution engine. 

For each of these three programs, Figure 5 shows the fraction of Ada packages 
that reference a particular number of other packages. This graph shows that all 
three Ada programs exhibit roughly similar organizations in terms of their 
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Fig. 5. Large Ada system module interconnectivity. 

intermodule connectivity. Of the three programs, the Mercury Mail System is 
believed to be the most reliable, since it is the largest program, and it is the only 
one of the three that is in daily use. Figure 5 shows that 38 percent of all Mercury 
routines (functions + procedures) make no routine invocations to other packages, 
22 percent call only one other package, 18 percent call two other packages, and 
10 percent call three other packages. The remaining 12 percent of all routines 
call more than three other packages. 

These figures cannot be used to extrapolate the number of modules that could 
profit from more than three entered environments. For example, in the best case, 
if a sequence of calls to routines in four separate modules were to be invoked and 
only one environment were available on-chip, duplicate enters can still be avoided 
if the call pattern is A, A, A, B, B, B, C, C, C . . . . The worst case occurs when 
more modules are referenced than there are environment slots on-chip. If the 
call pattern is A, B, C, D, A, B, C, D . . . then a new enter must be performed 
upon each new call, independent of the number of environments. Thus a module 
that calls more than three modules may not benefit from having more than three 
environments.6 

This analysis seems to indicate that, at least for the programs studied, the 
benefits of adding more environments would be slight. Also, the meager improve- 
ment might be offset by increased procedure Call/Return time due to the 
additional state associated with the extra environments. During a Call, 
the environments are cleared for the new context, but Returns must restore the 
environment values as they existed just prior to the Call. Thus increasing 

6 Environments may also have to be used to permit access to data residing in other modules. However, 
in well modularized code, data shared directly without the benefits of an intervening type manager 
are extremely rare. 
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the number of environments makes the Return operation slower. Analysis of the 
432’s Return microcode shows that 144 clock cycles are required for each 
environment that must be restored. If all three environments were in use prior 
to the procedure Call, then the Return will execute approximately 430 clock 
cycles out of a total of 850 cycles in restoring the environments. If the Return 
instruction had to restore 10 environments, the total time to execute the Return 
would more than double to 230 $S. 

5.6 Caches 

Two “addressing” caches were included in the 432: a set of four base/length 
registers pointing to the most recently used object tables (the object-table cache), 
and a set of five base/length registers pointing to the most recently referenced 
data objects (the data-segment cache). A third cache for ADS was considered for 
the 432, but not provided due to implementation constraints. This section 
explores the effects on performance of the cache sizes (4, 5, and 0, respectively), 
cache management, and system usage patterns of the caches. 

The address caches (OT and DS) are crucial to throughput. In a conventional 
architecture, the ratio of memory access time to cache-hit access time may be 
from 2:l to 5:l [3]. In the 432, there are no data or instruction caches, and just 
to generate an address efficiently assumes a high hit rate in the DS-Cache (and 
if that misses, the OT-Cache). Assuming a word access to memory is underway, 
a DS-Cache hit will cause the memory transaction to be 12 cycles long, including 
waitstates. If the DS-Cache misses, but the OTCache hits, then the transaction 
takes 89 clock cycles. When both caches miss, the transaction requires 179 clock 
cycles. Thus the cache-miss access ratios for the 432 are between 7: 1 and 16: 1. 

5.6.1 Th-e Data Segment Cache. In issuing an operand reference, the 432 
microcode tests whether the translated virtual address maps into an object for 
which a base/length register pair is available on-chip. If it does, the memory 
reference proceeds normally, with the bus delays and memory waitstates de- 
scribed elsewhere in this paper. If no match is found, the microprogram raises 
an exception and calls the Data-Segment-Cache-Fault handler. This microcode 
finds the least recently used entry in the Data Segment (DS) Cache and flushes 
that entry. The microcode then “qualifies” the referenced object by testing its 
type, length, and rights against the type of access being attempted by the program 
and the rights the program has to that object. The flushed base/length registers 
are then refilled with the base address and length of the new data object, and the 
read/write rights associated with that object are stored on-chip. From that point 
the memory reference causing the DS-cache miss is retried. A simplified version 
of the 432 address caches are shown in Figure 6. 

DS-Cache entries include the base address of the data segment, the length of 
the segment, read and write rights, and the “altered” bit. The length is used for 
bounds checking every access to the segment. The read/write access rights are 
also checked upon every memory access. 

DSXache miss processing costs 77 clock cycles at 6 waitstates per memory 
access (148 clock cycles when the reference is to a refinement). A substantial 
fraction of the baseline cycles executed (Table VI) are due to DS-cache miss 
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Fig. 6. The 432 addressing caches. 

processing, but are not really necessary. This is because execution of enter- 
environments causes whatever DS-cache entries were associated with that envi- 
ronment to be flushed, and as Section 5.1.1 demonstrated, a large proportion of 
all enters executed are redundant. 

The DSXache entries are flushed when the entered-environment to which 
they correspond is altered. This is done because the cache is associatively 
searched using a tag composed of the entered-environment number concatenated 
with the AD-Selector. Since procedure calls and returns cause changes to all 
enteFed_enUiFOWZentS, the DS-Cache is always empty immediately following 
any context switch. 

Due to the empty D&Cache, the first reference to a passed parameter within 
the called context causes a DSXache miss. In serving this miss, the microcode 
will discover that the called routine’s AD to the Message object is actually a 
refinement and will then proceed to traverse this refinement to get the base and 
length of that portion of the Message object to which the called routine is entitled. 

By making the Message object a refinement of the calling context, the calling 
context saves the DS-Cache miss, which would otherwise be associated with 
accessing a separate data object. For the situation where a calling routine invokes 
only one procedure (with parameters) this scheme saves 30 cycles.7 The economics 
of this parameter-passing scheme will be discussed further in Section 5.6.3, since 
the addition of a cache which remains intact across procedure calls makes other 
options more attractive. 

For the benchmarks used in this paper, the DSXache is large enough-the 
“least-recently-used” management policy is never tested here. However, manag- 
ing the DS-Cache is responsible for a large percentage of the clock cycles used 
in Dhrystone, due to the large number of calls, returns, and enters executed. 

’ The difference between the price for traversing a refinement, 148 cycles, and the cost for both the 
caller and called routines to each take a DS-Cache miss on their first access to the Message object: 
89 + 89 = 178 cycles. 
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To find out how well the DS-Cache performs in the 432, the Dhrystone 
benchmark log files were analyzed to determine the reason for every DS-Cache 
miss that occurred. Six reasons were found: 

(1) First Access: A D&Cache miss occurred because this is the first time that 
the object is being referenced. 

(2) Local Constants Object: Data needed by the microcode during execution of a 
procedure call resided in the Local Constants Object, which was not qualified 
at the time. 

(3) Message Object Overflow: The parameters to be passed did not fit into the 
Message Object, and were placed into a separate Overflow object, which 
required separate qualification. 

(4) Environment Mismanugement : Poorly placed enter-environments invali- 
dated the DSXache slot. 

(5) Environment Reuse: An environment was reused, invalidating the corre- 
sponding DSXache entries as a side-effect. 

(6) Call Wipe: Upon returning from a procedure call, the environments are 
restored but the DSXache is empty. 

Table XV shows the frequency of occurrence of these six categories. Notice that 
overflow of the DSXache itself is not one of the reasons for DSXache misses 
(i.e., the cache is not too small). The cache is large enough because local variables 
do not require a DS-Cache entry in order to be accessible; they reside in the 
context data part, which is qualified as part of the current context. The distri- 
bution of operand localities in Dhrystone is 48.5 percent locals, 7.9 percent 
globals, 18.7 percent parameters, 2.1 percent function results, and 22.8 percent 
constants [35]. Of these operands, only the globals, parameters, and constants 
(approximately half of all operands) require assistance from the DSXache to be 
made accessible. 

By examining the simulator log tiles from the Dhrystone execution, it is 
possible to estimate the DSXache hit ratio. The total number of DS-Cache hits 
was 403, with 40 misses. Thus the DSXache hit ratio is 

Fd,, = 403/(403 + 40) = 0.9097 (91 percent) 

Ackermann’s function shows the DSXache scheme at its worst. Acker consists 
almost solely of recursive procedure calls and returns, along with some trivial 
additions and subtractions and some conditional branching. The cost to pass two 
integers in each recursive call is 148 clock cycles, a very high price to pay for 
access to the passed parameters. Analysis of this benchmark shows that if local 
data registers were available to the 432, and the compiler were adept at using 
them for parameter-passing between recursive contexts, Aclzer would speed up 
by over 20 percent due to the lack of DSXache misses and faster arithmetic in 
the simple operators category. 

5.6.2 The Object Table Cache. This paper has concentrated on low-level 
compute-bound benchmarks so that the primitive operations of a machine with 
a significant object-based overhead can be investigated. For such benchmarks, 
however, the size of the Object Table Cache (OT-Cache) is irrelevant as long as 
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Table XV. Reasons for Misses in the DS-Cache 

Reason for 
D&cache miss Number and percentage 

First access to object 
Local constants object 
Call wipe 
Env. mismanagement 
Env. re-cycling 
MSG. object overflow 

15 (37.5%) 

13 (32.5%) 
4 (10.0%) 

3 (7.5%) 

3 (7.5%) 

2 (5.0%) 

there is at least one slot in the cache. For all of the benchmarks used here, 
including Dhrystone, the compiler and linker allocated every application-level 
object out of the same object table. As a result, these benchmarks took only one 
OTXache miss early and hit on all subsequent attempts. 

The 432 was designed to support “programming-in-the-large,” so the fact that 
these benchmarks only required one object table is not compelling evidence that 
the OTCache could safely have been made only 1 slot deep. However, both the 
Adix and Hughes programs allocated all code segments from one object table as 
well, so they do not provide raw data for an investigation of OT cache size. To 
test the effect of OT-Cache size, a mathematical model was developed, as 
described in [5]. It assumed locality of reference to the object table; i.e., that the 
next object referenced had a certain, fairly high probability of being in the same 
object table as the previous one. Given the observed number of DSXache misses 
for the Dhrystone benchmark, the model suggests that there would be little 
benefit from increasing the size of the OT-Cache beyond its current 4 entries. 

5.6.3 The Hypothetical AD Cache. As the 432 manages the DSXache, it is 
often loaded with an entry for some data object, then cleared as a side-effect of 
some operation, and finally reloaded with the same information. For instance, 
when both the calling and called routines must access the same data object (e.g., 
data that are within the scope of both routines, or data for which a pointer was 
passed to the called routine) the DSXache is first qualified by the caller. A 
protected procedure call must ensure that the called routine cannot access any 
objects for which it has no AD, so the DS-Cache is cleared during the procedure 
call. Consequently, in order to access the data, the called routine must requalify 
the data object. 

Without violating any of the fundamental principles of object orientation, it is 
possible to place a new address cache into this addressing mechanism. This 
proposed new cache would fit between the OTXache and the DS-Cache, match- 
ing on access descriptors in the event of a DS-Cache miss. Matching at the AD 
stage provides addressing information that is early enough in the addressing 
chain so that a hit would still provide a relatively quick,reference. Most important, 
though, the AD-Cache would not be affected by context changes or by the 
vagaries of enter-environments. Hence one would expect the usual intercontext 
types of data locality to provide a high hit rate in this new cache, significantly 
improving overall performance. 

The best way to view the operation of this new cache is as a part of the 
DS-Cache (this is why these two caches were shown connected in Figure 6.) 
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Figure 7 shows a block diagram of this combined cache. The columns in the 
cache are used as follows. A single cache entry takes up a horizontal slot in the 
diagram. The rights (Read or Write) information goes into the right-most column. 
A bit indicating the current validity of the Access Selector in column three is 
stored in column two. Column four contains the 24 bits of the AD, and column 
five holds a tag that is used to reference the base/length pairs in the DS-Cache. 
Column six holds the matching tag value, and columns seven and eight contain 
the base/length information for the referenced data object. The “tag” feature is 
not strictly necessary. However, without this additional mechanism, separate 
base/length information would have to be kept for the cases where multiple ADS 
(with different rights, for example) are being used to refer to a single object. 
Since the base and length information is the same regardless of the accessing 
rights any particular AD has to that object, this feature is expected to (in effect) 
make the cache larger. 

The following algorithm shows how this combined cache would work: 

-first, attempt to match the DS-Cache as usual. 
begin 

if (Access-Selector matches any AS slot) 
and (that slot is valid) 

then begin 
use slot’s tag to get base and length; 
generate operand reference; 
end; 

else begin -DS-Cache missed. Try AD-Cache. 
fetch AD to object being referenced; 
if (AD matches any AD slot) 
and (AS is not valid) 

then begin 
fill in slot rights from fetched AD; 
fill in AS slot from instruction AS; 
set AS slot to valid; 
use slot tag to get base and length; 
generate operand reference; 
end: 

else begin -AD-Cache missed too. 
do normal OT-Cache processing; 
do LRU replacement on DS/AD cache; 
generate operand reference; 
end; 

end; 
end 

If the AD-Cache is provided, the economics of parameter-passing change 
substantially. The two mechanisms under consideration for the 432 were 

(1) Parameters are passed as a refinement of the calling context, saving a 
DSXache miss by the caller, but causing the called routine to traverse this 
refinement (148 clock cycles). 

(2) Parameters are always placed into a separate object, with both caller and 
called objects taking a D&Cache miss on first access (2 x 89 = 178 clock 
cycles). 
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Fig. 7. Proposed DS/AD cache organization (sample values). 

With an AD-Cache, it may be more advantageous to place parameters into a 
separate object. If a routine calls two or more other routines, and the AD-Cache 
is large enough, the initial DS/AD-Cache miss processing by the caller will allow 
all called routines to reference these data with a DELCache miss but an 
AD-Cache hit. The caller will also only experience a DSCache miss and 
an AD-Cache hit after the return from the first called routine. The next and 
subsequent calls will hit the AD-Cache. The total difference in cycles for this 
scheme is 89 (caller 0) + 30 (called 1) + 30 (caller 0) + 30 (called 2) = 179 cycles. 
Using refinements, this sequence would require 0 (caller 0) + 148 (called 1) + 0 
(caller 0) + 148 (called 2) = 296 cycles. 

Providing this AD-Cache on a next-generation 432 would require substantial 
chip resources. How much would performance be improved by such a cache? 
Would using these resources in other ways, such as to enlarge the D&Cache, be 
more advantageous? We have argued that neither the OT-Cache nor the 
DS-Cache are too small. The main problem with the DS-Cache is that it rarely 
stays loaded for long, since calls, returns, and enters all invalidate it. 

What kind of a hit rate could we expect from the AD-Cache? To estimate it, 
we will use Dhrystone, but we will have to make some assumptions. Table XV 
showed that 32.5 percent of the DS-Cache misses were due to the 432’s lack of 
instruction stream literals. If literals were available, these references would never 
get to the AD-Cache, because they would not require independent memory 
accesses. If literals are not available, then only the first reference to the local 
constants object would miss the AD-Cache, and subsequent references to local 
constants would hit, driving up the apparent AD-Cache hit rate appreciably. 

All DS-Cache misses due to “call wipes” and environment recycling would also 
hit the AD-Cache (if literals are unavailable), accounting for 22 out of the 
original 40 DS-Cache misses, an AD-Cache hit rate of 0.55. With literals, the 
total DS-Cache misses would have been 27, with the AD-Cache hitting on 10, a 
hit rate of 0.37. 
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The reason that the AD-Cache hit rate is so low is due to the parameter- 
passing convention of the 432. As discussed earlier, parameters are placed in a 
Message object, which is actually a refinement of the calling context. This saves 
a DS-Cache miss on the part of the calling context, but forces the called routines 
to traverse the refinement to fetch parameters. If the calling context were to 
arrange for an AD to the Message object to be placed into the AD-Cache as part 
of the caller’s context-qualification, then the called routine would be able to 
access the passed parameters much more readily. Under this assumption (and 
assuming instruction-stream literals) the AD-Cache hit rate is $$, or nearly 
93 percent. 

Estimating the effect of AD-Cache size on the hit rate is difficult for lack of 
suitable benchmarks-the same reasons that make analysis of the DS-Cache 
and the OT-Cache difficult. Assuming that the 432 had incorporated instruction 
stream literals, it appears than an AD-Cache of four entries would allow Dhry- 
stone to execute without having to reuse any AD-Cache slots. But this does not 
imply that any large Ada program that is represented well by Dhrystone can be 
expected to not reuse any AD-Cache slots when only four are available. Intui- 
tively, the same locality of reference to data objects that make the DS-Cache hit 
rate high (in the absence of call perturbations and enter manipulations) would 
apply to the AD-Cache hit rate, except that the AD-Cache would not be cleared 
by those perturbations, hence the AD-Cache hit rate should be higher. 

Lacking extensive statistics on the DSCache, we modeled the effects of the 
AD-Cache for DSXache hit rates of between 0.7 and 0.95 [5]. For Dhrystone, 
an AD-Cache would have given an average operand access time of between 13 
and 18 cycles. This compares favorably with the 22-to-25 cycle averages with an 
OTCache only. 

Several additional architectural changes would have improved 432 perform- 
ance: making buses 32 bits wide instead of 16 bits; using a slightly more elaborate 
signaling convention on the microinstruction bus between the two halves of the 
CPU; updating reclamation information only while garbage collection is in 
progress; and caching more than just 16 bits of the top-of-stack on chip. The 
individual contributions of these items are detailed in [5]; space constraints 
preclude recounting them here. 

6. THE SYNTHETIC 432 

This paper has analyzed the low-level and large-system uniprocessor performance 
of the Intel 432 to prepare for an analysis of its functional migrations. This 
section presents that analysis, using a “synthetic” 432, and then extends the 
lessons learned to other machines and systems. The synthetic 432 is a hypothet- 
ical microprocessor based on the 432 but altered for improved performance as 
described in Section 5. These improvements are presented incrementally to 
accommodate various assumptions about what sets of changes are reasonable to 
the architecture, compiler, and implementation technology. 

We begin with those changes that could have been made in a straightforward 
manner: items such as compiler shortcomings, lack of immediate data, and the 
bit-alignment of the instruction stream. We then show how performance would 
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Table XVI. New Baseline Cycles and Percent Improvement over 
Original Baseline 

Benchmark Cycles saved 

A&r 8864736 
Sieve 1130839 
CFA5 15228248 
CFABR 24207058 
CFAlO 21795608 
Dhrystone 655452 

% Original base Synthetic 
cycles saved baseline cycles 

2.2 385785657 
14.9 6472647 
43.6 19688197 
39.6 36930835 
44.7 27007880 
93.7 44168 

have been improved had the implementation technology been incrementally 
better (and if those additional resources had been used as assumed here). With 
these new performance numbers, comparisons will be made to the baseline 432 
and to other processors, so that conclusions about the inherent cost of 432 object 
orientation can be drawn. 

6.1 The Synthetic Baseline 432 

Several of the cycle sinks discussed in Section 5 have a significant impact on 
overall performance, yet are unrelated to architectural complexity, functional 
migration, or object orientation. As a baseline for further discussion, we will 
assume that the 432 had been released with the improvements listed below: 

-better enter-enuironment management (Section 5.1.1) 

-better code optimization by the compiler (Section 51.2) 

-compiler determination of the appropriate protection mechanism for procedure 
calls (protected call vs. brunch-and-link, Section 5.1.3) 

-use of the fastest parameter-passing mechanism by the compiler (Section 5.1.4) 

-a non-bit-aligned instruction stream (Section 5.3) 

-provision for literals in the instruction set (Section 5.4) 

Table XVI shows the combined cycles saved when the above assumptions are 
made. The results are unimpressive for Ackermann’s function since that bench- 
mark executes mostly procedure calls and therefore exhibits no speedup with a 
better compiler. Because Sieve does no procedure calls and executes mainly 
simple instructions and loops, the cycles lost to bit-aligned instruction stream 
decoding have a large effect. The CFA benchmarks exhibit a 30-40 percent 
reduction in the total number of cycles needed for execution. 

The Dhrystone benchmark shows an enormous reduction of nearly 94 percent, 
due almost entirely to forcing a single array during a single procedure call to be 
passed by reference instead of by value/result. The other cycle-sinks become 
significant only when this array is passed more efficiently; they then constitute 
approximately 36 percent of the remaining cycles needed to execute Dhrystone. 

Since we have asserted here that these changes to the architecture and compiler 
should have been incorporated in the 432, and would have required little or no 
additional chip resources, we will assume that the data in Table XVI represent 
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Table XVII. Relative Contributions of Improvements to Synthetic Baseline Cycles 

Benchmark Enters OptCode Pr.Calls Params Align Consts 

Ackr 0 0 0 0 5936775 2927961 
Sieve 0 0 0 0 682846 447993 
CFA5 6678000 4044000 1886293 906000 743011 970944 
CFABR 6078000 4560000 1982156 9435000 1171016 980885 
CFAlO 7641000 3696000 1769987 5716000 1692005 1280613 
Dhrvstone 8534 457 12403 630584 1288 2186 

Table XVIII. Relative Contributions of Improvements over Original Baseline, in Percentages 

Benchmark Enters OptCode Pr.Calls Params Align Consts 

Acker 0 0 0 0 67 33 
Sieve 0 0 0 0 60 40 
CFA5 44 27 12 6 5 6 
CFA5R 25 19 8 39 5 4 
CFAlO 35 17 8 26 8 6 
Dhrystone 1.2 0.1 1.8 90.0 0.2 0.3 

the new baseline benchmark cycles. Additional architectural enhancements and 
performance comparisons will be conducted using this table as the reference. 

The implications of Table XVI must be clearly understood. This table shows 
that from 35-45 percent of the 432’s total benchmark execution cycles are wasted. 
These cycles are not spent in pursuit of object orientation; they are not the 
inevitable fallout of a complex instruction set; and they do not reflect the alleged 
inefficiency of a microcoded processor. We assert that these cycles are consumed 
because of suboptimal design decisions or outright errors, and that such errors 
could have been committed on any new system design, whether object-based or 
not. 

The relative contributions of each of the improvements itemized above will be 
of interest later, so they are shown individually in Table XVII and (as percent- 
ages) in Table XVIII. 

Figure 8 graphically depicts the relative contributions of each of the six 
categories. This figure is arranged such that the fraction of total wasted cycles 
due to each source is shown by the length of the corresponding bar in the bar 
chart. For example, Sieve wastes 15 percent of its total baseline cycles (see the 
box in the lower right), and of those 15 percent, instruction-set-alignment 
“contributes” 70 percent and lack-of-literals is responsible for approximately 
30 percent. To make the figure less cluttered, the CFA benchmarks are repre- 
sented here by CFA5. Figure 9 shows the relative importance of each cycle 
sink by benchmark. 

Since every category in Table XVIII and Figure 8 contributes substantially to 
the speedup of at least one of the benchmarks, the data suggests that each of 
these improvements is significant and should have been incorporated into the 
432 originally. 
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Fig. 8. Relative contributions of cycle sinks to overall wasted cycles. 

6.2 Incrementally Better Technology 

The improvements to the 432 system and architecture discussed in the previous 
section were mainly rectifications of errors in the 432 design or implementation, 
assuming the original implementation technology. In this section we consider the 
performance improvements possible if an incrementally better technology 
(smaller feature size, for instance) were available for a new instantiation of 
the 432 architecture. This situation often occurs in the microprocessor design 
industry (e.g., a processor is currently being marketed and sold, with the next 
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others 

Fig. 9. Relative contributions of cycle 
sinks to overall wasted cycles by benchmark. 
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(1 
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generation design underway). The Motorola 68000/68020/68030 and the Intel 
8086/80286/80386 microprocessors are examples. We consider the following 
improvements to the 432.’ 

-provision for local data registers (Section 5.2) 
-expansion of internal and external buses to 32 bits 

-expansion of the Top-of-Stack register to 32 bits 

-an extra bit on the rInstruction Bus 

-an AD-Cache (Section 5.6.3) 

-a memory-clearing primitive operation. 

Each of these items was discussed in detail in Section 5 except the memory- 
clearing primitive. A protected, object-based procedure call must clear memory 

e We are not dealing with clock-rate improvements here. Smaller feature size makes the gates faster 
and the capacitance lower, so a faster clock rate becomes possible. However, without making major 
changes to the architecture, the clock rate is not one of the parameters that is under the architect’s 
direct control. Here we assume that the clock rate is fixed by the basic technology, and that the 
design goal is to optimize use of the available resources. 
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Table XIX. Cycles Saved with Incrementally Better Implementation Technology 

Benchmark Data regs 32-bit buses 32-bit TOS 17-bit &rstr AD-Cache Mem Clr 

ACkeT 0 58556312 0 1668603 15845470 54381776 
Sieve 3681926 793614 0 14065 0 0 
CFAB 5155000 4842412 2516000 55763 2278752 364870 
CFA5R 4861000 12218554 3944000 228111 4350745 396490 
CFAlO 8415000 7418454 595000 93244 4179242 326120 
Dhrystone 1905 10242 221 123 6188 5187 

before allocating it to a new context. Otherwise, the memory could contain 
leftover random data that could masquerade as ADS, permitting the callee to 
access random regions of online storage. It would be possible [lo] to relegate the 
memory-clearing operation to some dedicated hardware, perhaps to a suitably 
modified 432 Interface Processor or to the Memory Control Unit. The perform- 
ance speedup from shifting this responsibility is the difference in cycles between 
the time that the GDP takes to complete this operation vs. the cost of commu- 
nicating the size and location of the segments to be cleared to the I/O controller, 
plus cycles lost to memory contention thereafter (while the controller performs 
the clearing). We assume here that the cost of communication between the GDP 
and the I/O controller is 30 cycles (two I/O writes), and that only minimal 
interference occurs? Given these assumptions, the procedure call would be 
speeded up by approximately 31 percent. 

Table XIX shows the cycles that could be saved over the original baseline 
numbers if these improvements were incorporated. This table can be used to 
compare the relative cycle contributions of the “errors” discussed in the previous 
section to the contributions of the architectural changes discussed here. 
Figure 10 depicts these contributions graphically. Figure 11 shows how the 
contributions change with each benchmark. Table XX shows the overall improve- 
ment broken down by percentages, and Table XXI shows the percent speedup 
over the original baseline numbers. 

Some care must be taken here in using the cycle savings reported in Section 5 
for these improvements. In analyzing the benchmark log files, categories for cycle 
use were strictly segregated, but some interaction is unavoidable. For example 
the cycles saved by adding local registers are not eligible to be speeded up due to 
wider buses. If instruction stream literals were available, then better enter- 
environment management does not save quite as many cycles as it would other- 
wise (since the first memory reference of an enter is to a Constants object). To 
avoid errors due to double-counting, each category’s total in Table XIX has been 
adjusted as appropriate (this is why they do not match the totals shown in 
Section 5). 

Table XXII shows the additional performance improvement over the syn- 
thetic baseline due to the architecture and implementation changes listed 
above. It indicates that the combined effect of all changes made to the archi- 
tecture, compiler,. and implementation technology was uniform across the 

’ This seems reasonable because the 432 procedure call is not heavily memory-intensive except for 
the memory-clearing sequence. 
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“compute-bound” benchmarks such as CFA5, CFA5R, and CFAlO in spite of the 
different ways these benchmarks stress the machine. This table also shows that 
the performance of the Sieve benchmark has been increased to the point where 
it is now competitive with other machines such as the Motorola 68000 and the 
Intel 8086 (compare the real time in Table XXII to the original Berkeley 
measurement for the other machines, listed in Table IV). The 432 architects 
have long asserted that, for such benchmarks, the 432 should exhibit no major 
performance liabilities once the object-based operations such as DSCache 
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Table XX. Cycles Saved with Incrementally Better Implementation Technology by Percentage 

Benchmark Data regs 32-bit buses 32-bit TOS 17-bit PInstr AD-Cache Mem Clr 

A&r 0 45 0 1 12 42 
Sieve 82 18 0 0 0 0 
CFA5 34 32 17 0 15 2 
CFA5R 19 47 15 1 17 1 
CFAlO 40 35 3 0 20 2 
Dhrystone 8 43 1 1 26 22 

management, context creation, and enter-environments have been done. This 
result is the first direct evidence for that claim. 

We can relate these results to other machines by comparing the 432’s Dhry- 
stone real-time to the VAX and current microprocessors. Weicker’s report of 
some preliminary measurements on contemporary processors [36] can be sum- 
marized as follows. The VAX 11/780 runs the Dhrystone in 540-1,800 micro- 
seconds, depending on operating system (VMS or UNIX), language (C! or Pascal), 
and compiler switches selected (optimizing or not, checking enabled or disabled). 
The ELXSI superminicomputer requires 110-135 microseconds, and other 
superminicomputers are in the 200-500 microsecond range. Recent 16-bit 
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Table XXI. New Benchmark Cycles and Percent 
Improvement over Original Baseline 

% Original base Improved 
Benchmark Cycles saved cycles saved techn. cycles 

A&r 130452160 33 264021113 
Sieve 4489605 59 4489605 
CFA5 15212797 44 19692875 
CFA5R 25998902 43 25983605 
CFAlO 21027060 43 27769185 
Dhrystone 23866 35 45150 

Table XXII. Total Synthetic Baseline Cycles, Percent 
Improvement over Original Baseline, and Real-Time 

in Milliseconds 

Final 
Benchmark total cvcles 

Ackr 257319033 
Sieve 2653785 
CFAB 11025390 
CFA5R 21050576 
CFAlO 15394492 
Dhrystone 28709 

% Original base 
cycles saved 

35 
65 
68 
66 
68 
58 

Real time 
in mS 

32165 
332 

1378 
2631 
1924 

3.59 

microprocessors (Intel 80286, Motorola 68000) require from l,OOO-1,500 micro- 
seconds, with B-bit microprocessors (Intel 8088) taking 2,400-9,600 microseconds, 
again depending on operating system, language, compiler switches, memory 
speeds, and clock frequency. 

As a rough approximation, these results imply that the synthetic and 
technology-improved 432 is approximately 3-4 times slower than the newer 16- 
bit microprocessors. The synthetic/improved 432 is faster than (or at least 
competitive with) some other reported microprocessor results, such as the 5.2 
millisecond time of the Osborne machine under TurboPascal, or the 4.8 milli- 
seconds reported for the IBM PC running Pascal. Keep in mind that the 432 was 
programmed in Ada while all other machines in this comparison were pro- 
grammed in C or Pascal. The 432 result includes the code optimization, addition 
of local registers, wider buses, call-by-reference parameter-passing where appro- 
priate, and all of the other changes discussed above. Consequently the 432 speeds 
are indicative of the best performance to which the 432 could have aspired 
originally. Allowing for differences in implementation technology between the 
432 and the 16-bit microprocessors, we estimate that the synthetic 432 would 
still have taken between two and three times as long as other microprocessors to 
run the Dhrystone benchmark. This will be our estimate for the inherent cost of 
the 432’s style of object orientation. 

Note that this performance ratio must be used with care. This is a rough 
estimate, since it is essentially comparing apples and oranges (but that is what 
is called for in estimating the overhead of object orientation vs. conventional 
systems). This data point does not prove that all object-based systems can only 
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hope to run within a factor of two or three of conventional systems. The 432 
represents a specific point in the design/implementation space, incorporating a 
certain set of design decisions. What we have shown here implies that a designer 
who builds in an equivalent set of decisions about object orientation into a new 
machine will incur an overhead in performance that is similar. By approaching 
object orientation in a different way, but still without discarding the flexibility 
of capability-based protection, even greater improvements should be possible. 
For example we have argued elsewhere [lo] that more radical changes to the 
432’s procedure-call mechanism could bring it up to a speed that compares 
favorably, by most measures, to that of the VAX or MC68010. 

7. CONCLUSIONS 

The 432 was unique among microprocessors in the degree to which it incorporated 
architectural innovations. Perhaps due to the initial barrage of publicity and the 
consequent high expectations, the disappointing reality of the 432’s performance 
made it the favorite target for whatever point a researcher wanted to make [14, 
16, 29, 331. Through a detailed case study, this paper has shown that many of 
the RISC criticisms of the CISC design style find apt targets in the Intel 432. 
However, we have also argued that, in several cases, published RISC work does 
not indicate what the 432 should have done. 

This paper has shown that the 432 loses some 25-35 percent of its potential 
throughput due to the poor quality of code emitted by its Ada compiler. Another 
5-10 percent is lost to implementation inefficiencies such as the 432’s lack of 
instruction stream literals and its instruction stream bit-alignment. These losses 
are substantial, and essentially unrelated to instruction set complexity or object 
orientation. As such they constitute a stark warning to all computer architects 
about the magnitude of losses that can appear in any implementation unless 
close control over every aspect of the design is maintained. 

Having established what the 432 should have done differently, we proceeded 
to investigate what it could have done had its implementation technology been 
incrementally better. We found that a combination of plausible modifications to 
the 432, such as wider buses and provision for local data registers, increased 
performance by another 35-45 percent. 

This left the 432 executing the benchmark programs used throughout this 
paper from one to four times slower than conventional processors (where “one 
times slower” means approximately equal in performance). We called this ratio 
the inherent cost of the 432’s style of object orientation, but cautioned that other 
approaches to object-based architecture are possible. 

There is no doubt that as a commercial venture whose purpose was to earn 
profits for its manufacturer, the 432 failed completely. But it is more enlightening 
to view it as a research effort that happened to be funded by an IC manufacturer. 
The 432 probably tried to do too many new things all at once (while getting a 
few old things wrong along the way) to succeed commercially. The market it was 
targeted for, high reliability/high availability/large software-systems develop- 
ment, may still not be large enough or defined well enough to economically 
support the introduction of special systems. 
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As a research effort the 432 was a remarkable success. It proved that many 
independent concepts such as flow-of-control, program modularization, storage 
hierarchies, virtual memory, message-passing, and process/processor scheduling 
could all be subsumed under a unified set of ideas. These concepts have attracted 
wide interest, but interest has lately been dulled somewhat by a fear that the 
432’s experience strikes at the viability of the concepts. It is to be hoped that 
interest can be rejuvenated by our demonstration that the 432’s performance has 
been dominated, in large part, by artifacts and not by concepts. 
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