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Abstract

Simulation will be used to 1llustrate the Central Limit Theorem and the concept of
testing a hypothesis.

Introduction
STATEMENT OF THE CENTRAL LIMIT THEOREM

No matter what type of distribution a random variable X has, provided its mean A and
variance a2 exlist, the sampling distribution of sample means, where each random sample
has size n, will have
(1) & mean = .

(2) a standard deviation = o> / Y n and
(3) will be approximately normally distributed.

In order to show that the Central Limit Theorem is valid regardless of the choice of
the distribution, a random variable X will have each of the following density functions.

Normal -((x o )/~ ) /2
1 e
f(x) = , all real x
gy 2m
Exponential
- X/ A
f(x) = 1 e , x> 0
P
Chi-Square
n/2 - 1 - x/2
X e
, X > 0
f(x) = n/2
2 T2y
Standard Uniform
f(x) = 1 , 0 < x <1
Triangular
1 + x , =1l < x <0
f(x) = 1 - x , 0 <= x <1

Letting X have one of the five listed density functions, an approximation to the
distribution of sampling means for a fixed sample size can be obtained by simulating the
drawing of repeated samples and calculating the mean for each sample. The computed sample
means obtained using simulation will then be used to see if (1) and (2) in the statement
of the Central Limit Theorem hold and (3) the computed sample means will be tested for
normality using a result by Kolmogorov and Smirnov as in (Hoel) and (Romano).

Observing that the distribution of X is known and using (1) of the cCentral Limit
Theorem, the concept of testing the hypothesis that the mean of X = known mean of X will
be illustrated by computing the percentage that the true null hypothesis is rejected.
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Generation of Random Variates

If f(x) is the density function of a random variable X, then

X
F(x) = ]/;(t)dt.
'

One way to generate random variates is to select a random number R, 0 < R < 1, and solve
F(x) = R for x where x then represents a random variate. In the case of the standard
uniform distribution and the exponential distribution, we see

R =x implies X = R and
-x/ N _
R =1-ce implies x = - "X\ ln(l - R)
where it is also noted that E(X) = mean of exponential distribution = A

The figure below by (Leemis) shows what transformations are needed to handle the
remaining cases.

X P
/ o~
Chi-Square X, + o 4K, Standard \ Normal
x>0 /[ Normal \ all x
n \ all real x /
+ G~ X
/N M
A =2 |n=2
AL/
Exponential - M logx Standard X - XQ, Triangular
x> 0 / Uniform : \N|o~1 < x <1
Y \ 0 <x <1 /

Approximation of the Standard Normal Distribution Function

In order to approximate the standard normal distribution function F, a polygonal

function P is constructed by joining the points (-5,0), (-4,0.00003), (=-3.5, F(=-3.5)),
(=3,F(=3)), . . , (3.5,F(3.5)),(4,0.99997), (5,1) where the ordinates of the points are
found by wusing a normal cumulative frequency table. In the computer program that

follows, the array X1 will represent the abscissas of the points and the array Yl will
represent the ordinates of the points.

Outline of Computer Program

Program Central Limit Theory;

Type

Arl = Array[l..500] of real;
Var

X, Y : Arl;

Procedure Approx_Normal(Var X1, Y1 : Arl;
Var Size_of Array : Integer);
(* Defines two l-dimensicnal arrays X1 and Y1 for the normal case as mentioned earlier *)

Function Straight_Line_ Interpolate(x : real; Size of Array : Integer;
X, Y : Arl ) : Real;

(* For ¥[1] <= x <= X[Size_of Arrayl, interpolate at x. That is, find J using a binary
search as 1n (Stubbs and Weber) so X[J~1)] <=xX< X[J]. Then define the function = vy where
(x,y) 1is the point on the line joining the points (X[J-1), Y[J-1]) and (X[J],Y[J]). *)
SIGCSE
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Function Generate Random_Variate(R : Real; Size_of_ Array : Integer;
X, Y : Arl ) : Real; ‘
(* Having defined arrays X and Y both of size=Size_of_Array earlier in the program which
approximate a given distribution function where 0 < Y[J] < 1 where 1 <=J <= Size_of_Array
and X represents values of the random variable, define
function = Straight Line_ Interpolate(R,Size_of Array,¥Y,X).
Note that R must satisfy 0 <= R <=1 ¥)

Function Distribution Fen(x : Real; Size_of Array : Integer;
X, Y : Arl ) : Real;
(* Having defined arrays X and Y both of size=Size_of_ Array earlier in the program which
approximate a given distribution function where 0 < Y[J] < 1 where 1 <=J <= Size_of_Array
and X represents values of the random variable, define
function = Straight Line Interpolate(x,Size_of_ Array,X,¥Y). *)

Procedure Sort(Var A : Arl ; Size of Array : Integer); . .
(* Sorts an array A in ascending order. This is needed in the Normality test of sampling
means based on Kolmogorov and Smirnov. The quick sort is very fast *)

Procedure Compute Mean SD( A : Arl; Size of Array:Integer;
Var Mean_of_Array, SD_of_ Array: Real);
(* Given an array A of numbers, the mean and standard deviation are computed. *)

Procedure Test CLT Theory( Sigma, Mu : real;

Mean, Standard Deviation : real;

Sample_Size : Integer);
Sigma = standard deviation of population

= mean of population
Standard Deviation = standard deviation of sampling means
Mean mean of sampling means
Procedure compares
Mu and Mean
Standard_Deviation and Sigma/Sqrt(Sample_size)

Central Limit Theorem says they are approximately egqual

LR R
Hol
¥k % % % %
—

P e W I

Procedure Testing_of Null Hypoth{Mu, Sigma, Sample_mean,
Sample_SD : Real ;
Sample_Size : Integer ;
Var Cur_No_of Rejections:Integer);

(* Mu known mean of population, Sigma = known standard deviation of population, Sample_
Size prescribed sample size, Sample_mean = computed sample mean for a given sample,
Sample_SD = computed standard deviation for a given sample, Cur_No_of Rejections =
current number of times that NULL HYPOTHESIS has been rejected as described below.

Define 2 = (Sample mean - Mu)/(Sigma/Sqrt(Sample_Size)). If Z > 1.96 or 2Z < =-1.96,
increment Cur_No_of Rejections by one thereby denoting a rejection of the null hypothesis
that the mean of the population = Mu which we know to be true by our choice of one
of the five known probability distributions. 1.96 implies a five per cent level of
confidence. *)

Procedure Confidence_Results{Var Cur_No_of Rejections,

No_of_Samples : Integer);
(* Computes Per Cent = 100*Cur_No_of_ Rejections/No_of_Samples which should be less than
or equal to five per cent according to statistical theory. *)

Function Test_ Tabkle(No_of_ Samples : Integer) : Real;

(* This function gives the D statistic of the Kolmogorov-Smirnov Test for Normality at a
5% level of significance which is based on sample size. Such a table can be found in
(Hoel) and (Romanoc) *)
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Procedure Normality Test( A : Arl; Sigma, Mu : Real;

No_of_ Samples : Integer);
(* A = Array of Sampling Means, Sigma = standard deviation of Sampling Means, Mu = Mean
of Sampling means, No_of Samples=Number of computed sample means which will be the number
of times that one chooses to sample.

Having sorted the array A in ascending order, this procedure constructs a table
consisting of rows with one row for each sample mean A[J] with headings A[J], Obs prop,
Z-Stat, Exp Prop, Diff, and Abs Diff where Obs prop = J/No_of_Samples, 2 Stat = (A[J] -
Mu)/Sigma, Exp Prop = Distribution Fen(Z_Stat,Size of Array,X1,Yl) where X1 and Y1 arose
frem an invocation of the procedure Approx Normal, Diff = Obs - Exp Prop, Abs Diff =
Absolute wvalue of Diff. By using a loop, each row of the table is constructed and the
largest value of Abs Diff in the table is denoted D. Setting D1 =
Test_Table(No_of_ Samples), we compare D and Dl1. By the non-parametric one-sample test for
normality by Kolmogorov and Smirnov, we reject the hypothesis of normality if D > D1 and
fail to reject the hypothesis if D <= D1. *)

Procedure Results(Var A : Arl,
Var Sample_SD, Sample_Mean : Real;
Var No_of_Samples: Integer);

var

Begin
Approx_Normal(X1l,Yl,Size of Array); (* Needed for normality test at least *)
Writeln('Enter the number ( > 0 )} of samples to be drawn');

Readln(No_of_ Samples);

Writeln('Enter the desired fixed sample size ( > 0 )');
Readln(Sample Size);

Writeln('Enter either 1, 2, 3, 4 or 5');

Writeln('where 1 = Exponential Distribution with specified mean');
Writeln('where 2 = Normal Distribution with specified mean and standard deviation');
Writeln('where 3 = Chi Square Distribution with 3 degrees of freedom (df)');
Writeln('where 4 = Standard Uniform Distribution');
Writeln('where 5 = Triangular Distribution');
Readln(Code);
Case Code of
1 : Begin

Writeln('Enter the mean of the Exponential Distribution');

Readln(Mu) ;

Sigma := Mu;

End;

2 : Begin

Writeln('Enter the mean of the Normal Distribution');

Readln(Mu);

Writeln('Enter the standard deviation of the Normal Distribution');
Readln(Sigma) ;
End;

3 : Begin (* Df = degrees of freedom of Chi-Square distribution *)

Df := 3; Mu := Df; Sigma := Sqrt(2*Df); (* Chi-Square with 3 Df *)
End;
4 : Begin
dMu = 0.5; Sigma := Sqrt(1/12); (* Uniform Distribution¥)
End;
5 : Begin
dMu = 0; Sigma := 1/8grt(6) (* Triangular Distribution *)
End;
End; (* Case *)

(* Having chosen X to have a particular distribution, we now *)
(* sample from the known population *)
Cur_No_of_Rejections := 0; (* Initialize no of rejections *)

(* of NULL HYPOTH = Mu * )
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For I := 1 to No_of_ Samples Do

Begin
Sum ;= 0; (* Initialize. Used for computing sample *)
sum_sgrs := 0; (* mean and sample standard deviation. *)
For J := 1 to Sample_Size Do (* Draw 1 sample of size = ¥*)
Begin (* Sample_Size *)
Case Code of (* Code was chosen earlier *)
(* Random is random number generator with 0 < Random < 1 *)
1 Y := -Mu*Ln(l - Random); (* Exponential Distribution *)
2 Begin
Y := Random; (* Normal Distribution %)
(* Generate a standard normal variable N(0,1) *)
Y := Generate Random_Variate(Y,Size of Array,Xl,Yl);
Y := Mu + Y*Sigma;
End;
3 Begin
Y := Random;
(* Generate a standard normal variable N(0,1) *)
Y := Generate_Random_Variate(Y,Size_of Array,X1,Yl);
Y := Y*¥Y (* Square of N(0,1) variable is Chi-square variable with 1 df %)
Y2 := -2*Ln(l - Random) (* Chi-square with 2 df noting the figure *)
Y := Y + Y2 (*Chi-square with 3 df by additivity of chi-squares *)
(* REMARK : Rather than df = 3, the above concepts can be used *)
(* to handle df for any positive integer. *)
End;
4 : Y := Random; (* Standard Uniform Distribution with mean = 0.5 *)
5 : Begin
Y := Random;
Y2 := Random;
Y := Y - ¥2; (*¥ Triangular Distribution noting the figure *)
End;
End; (* Case *)
Sum := Sum + Y;
Sum_sqrs := Sum_sqgrs + Y*Y;

End; (* J *)
Sample Mean Sum/Sample_Size;
SS Sample_Size;
Sample SD Sgrt((Sum_sgrs - Sum*Sum/SS)/(SS - 1));
Testing_of Null Hypoth(Mu,Sigma,Sample Mean,Sanmple SD,
a (sample_Size,Cur No of Rejections);
A[I] := Sample Mean; (* Save sample means in an array *)
End; (* I *)
Confidence_ Results(Cur No_of Rejections,No_of_ Samples);
Compute Mean SD(A,No_of Samples,Mean,Sd);
Test CLT_Theory(Sigma,Mu,Mean,Sd,Sample_Size);
End; (* Results ¥*)

Begin (* Program Central Limit_ Theory *)

(* First check parts 1 and 2 of Central Limit Theorem *)
(* and check concept of testing a hypothesis. *)

Results(A,Sd,Mean,No_of_Samples);
(* Check normality of sample means *)
Normality Test(A,Sd,Mean,No_of Samples);

End. (* Program Central Limit_Theory *)
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Results from computer runs

Distribution Sample No of Population o<// n Simulation Results Percentage D
Size Samples Parameters Computed of Rejections Sta-
Mu Mean Standard of True Null tistic
Deviation Hypothesis
* # * #
Normal 30 100 10 60 1.83 59.79 1.73 4 0.063
Exponential 30 100 10 10 1.83 9.97 1.76 4 0.046
Chi-sq (3df) 30 100 2.45 3 .447 3.04 . 430 5 0.041
Uniform 30 100 .289 .5 .053 . 499 .053 1 0.069
Triangular 30 100 . 408 0 .074 .004 .071 3 0.053

Analysis of Computer Results

Part (1) of the Central Limit Theorem appears to be verified by comparing the two
columns that are headed by * with the first of two columns being the theoretical result
and the second column being the simulated one. Part (2) of the Central Limit Theorem is
similar except the two columns headed by # are to be considered.

The percentage of rejections of the true null hypothesis should be less than or
equal to five per cent. This holds in all the cases.

From a D-Statistic with a sample size of 100, D = 0.136, which is greater than any
of the wvalues in the last column of the above table. Thus (3) of the <Central Limit
Theorem ig shown since normality cannot be rejected in any of the cases in the table.

Suggestions for Classroom Use

The following modifications to the program may be useful.
(1) Use only the uniform distribution and illustrate (1) and (2) of the Central Limit
Theorem as a programming assignment in a beginning structured programming course.
(2) In a basic statistics course, have the students use the program without their being
concerned with the actual programming being involved.
(3) In a numerical analysis course, emphasize integration technigques such as Simpson's
Rule and Romberg integration in the evaluation of the distribution functions. Also
discuss the solving of equations R = F(xX) where R = a random number and F(x) 1is a
distribution function by using such techniques as Newton-Raphson, bisection, and false
position.
(4) Without an emphasis on programming but with an emphasis on statistical concepts, a
careful analysis of the computer output would be useful in a senior level statistics
course. Also additional distribution functions might be added and studied.
(5) In a senior level simulation course, all aspects of the program would need to be
analyzed carefully.

The author will be happy to supply the code for the complete computer program to
anyone making a request. Moreover, if one will send a diskette, a copy can be made for
use on an IBM PC and returned.
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