
Supporting OIS design
through semantic queries

B. Pernici
Politecnico di Milan0

Office information system design is a complex activity which needs conceptual modeling to represent office
data and activities in a formal way. The problem of retrieving information from conceptual schemas of o&e
systems is addressed, to support the designer in the different phases of office information system design. A
semantic query language is proposed, based on a semantic representation of the TODOS Conceptual Model for
office design.

1. INTRODUCTION

The complexity of information system (IS) design and in particular of office information system (01s) design
requires the use of design tools for supporting the different design activities.

Two types of tools have been proposed in the literature: conceptual models and computer based design tools.
ConceptuaJ models allow to represent data and procedures in routine office activities /Bra 84a, Bra 84b, Nut
81/. Such models are often associated with a methodology for collecting and modeling requirements. The use of
automated design tools has been advocated in /Sch 82/ for IS design, and in /Ken 82/ for OIS design, due to the
amount of data to be collected and the effort to produce project documentation, the focus being on producing
correct and easy to read reports on requirements. Information resource dictionaries /Nav 861 have been proposed
to collect project management data, while data dictionaries are used to collect meta-data about database schemas
/Dat 85/. The structure of such dictionaries is very often based on the relational model of data.

The TODOS (A u t omatic Tools for Designing Oflice Systems) project, a three year project in the ESPRIT
Programme of the Commission of European Communities, has the purpose of providing a design support environ-
ment for the design of 01s. TODOS automatic tools include a requirement collection tool, a conceptual modeling
tool, an office rapid prototyping tool, and a tool for selecting an architecture for the office system being developed.
The TODOS approach to 01s design is presented in /Per 86/. The 01s group at Politecnico di Milan0 has been
working in particular on the development of the conceptual modeling tool C-TODOS /Per 87/.

C-TODOS is based on the TODOS Conceptual Model (TCM) and on a Specification Database (SDB),
storing the formal specification of office elements being defined. While the first phase of C-TODOS development
focused on the memorization of specification in the SDB, recent work showed that a sophisticated query module
is needed, to allow the designer to interrogate the base of collected requirements and specifications, to support
further analysis and modelization of the system being developed, and to support the other design phases of
prototyping and architecture selection.

The purpose of this paper is to propose a method for allowing complex queries on an office conceptual schema.
The basis of this method is a semantic representation of conceptual models. The powerful query language on
semantic schemas being developed to this purpose and tailored specifically to design queries is presented.

In Sect. 2., the TODOS project is presented, with a short overview on the TODOS Conceptual Model. The
semantic representation of TCM and the semantic query language (TOD-QueL: TODOS Query Language) are
described in Sect. 3. In Sect. 4., the use of such a query language for supporting office design is discussed. We
also discuss how the use of semantic queries could be generalized to build design support tools in database design,
software engineering, object oriented system design, and knowledge base design.

2. AUTOMATIC TOOLS FOR DESIGNING OFFICE SYSTEMS
2.1 Overview

The TODOS project aims at studying and realizing an integrated set of automatic tools to support 01s
design. TODOS tools support office designers in producing correct and complete functional specifications of
office systems, in defining user interfaces, and in selecting office system architectures.

The definition of functional specifications is supported by the conceptuirl modeling tool C-TODOS. Office
conceptual schemas, defined using the TODOS Conceptual Model (TCM) are stored in a specification database

Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.

0 1988 ACM 0-89791-261-6/88/ooO3/0276 $1.50
276

http://crossmark.crossref.org/dialog/?doi=10.1145%2F966861.45440&domain=pdf&date_stamp=1988-04-01

(SDB). C-TODOS allows the designer to enter office element specifications, automatically checking their correct-
ness and consistency with elements already defined in the SDB.

The functional specifications stored in the SDB are used as an input by the two other design support tools:
the office rapid prototyping tool and the architecture selection tool.

The rapid prototyping tool semiautomatically builds the user interface of the office system, on the basis
of the elements defined in the functional specifications. Future users of the office system are thus able both to
verify using the prototype whether the office system being developed meets their requirements and to suggest
modifications to the interface layouts.

The architecture design tool receives as its input the office conceptual schema and other non-functional
requirements defined during the requirement collection and analysis phase, such as office layout, performance
and cost constraints. Based on these elements, an architecture for the office system, including both software and
hardware components and their connections is proposed, satisfying the given constraints. The office schema is
therefore a central element of TODOS design methodology.

During the first phase of the TODOS project, it was assumed that functional specifications where passed
altogether onto the following phases of rapid prototyping and architecture selection. On going research is now
concentrating on how the SDB, storing all functional specifications, can be interrogated, allowing complex queries
to extract specifications and their characteristics selectively. In the following of this paper, we briefly introduce
the characteristics of TCM first, then we discuss how to interrogate office schemas with a semantic query language.

2.2. TODOS Conceptual Model: a semantic office model
Abstraction mechanisms

Semantic models have been used in many areas of computer science, e.g., for knowledge representation in
artificial intelligence and in database and information system modeling /Bra 84/.

TCM is a semantic model for office systems, utilizing the concepts of entity type, generalization, aggregation,
association. Moreover, it is possible to establish semantic links (‘references’) between entities.

Each entity type is defined as a specialization of another type defined in the schema, that can be either
one of the predefined types defined in the model or another type already defined in that particular office schema.
Specializations of types inherit all properties of their supertypes. Moreover, each type can have associated its own
properties, using the constructs of aggregation (list of properties), association (repeating groups of properties)
and semantic links (properties defined as references from a property to another entity type).

An example of definition of an office element is graphically represented in Fig. l., which illustrates the static
entity letter and its specialization reply-letter.

<rtalK-emfy> <letter>

I
paragraph <paper>

Fig. 1. Semantic description of entities letter and reply-letter

The entity letter is a subtype of entity type document and is defined as an aggregation of properties ‘sender’,
‘receiver’, and ‘paragraphs’, which in turn consists of an association of items with property name ‘paragraph’.

Entity reply-letter is defined as a subtype of letter and inherits all properties defined for entity letter. In
addition, it has its own particular property ‘referenced-dot’, which is a reference to another entity, paper.

Elements of the model

Office element types belong to two basic types: static entities and dynamic entities.

Static entities allow to model information in the office, such as documents, messages, information bearing
objects, and agents performing office activities. The entities letter and reply-letter defined in Fig. 1. are
examples of static elements. Documents are oflice elements of the office system which are important in the office
for storing information. The data they contain are usually indivisible, that is documents should be archived in

277

the same form they are presented and distributed to the office workers. Messages contain information coming to
the office system from the outside world (e.g., another office, another organization) or distributed to the outside
world. Objects contain information needed to perform office activities and not directly contained in documents.

Dynamic entities model information flows mainly making use of the concepts of event and action. Actions on
static elements are specified in TCM in dynamic-transitions, where for each event type a11 its consequences are
specified in terms of actions performed on static elements. These actions can cause new events, thus having event
- action - event cycles. Predefined events are: arrival of a message, modification or removal of a static entity,
temporal event, completion of the content of a static entity. A predicate is associated to each event definition
which specifies the occurrence condition for the event.

3. SEMANTIC QUERY LANGUAGE

In this section we present the TODOS Query Language (TODQUEL), which allows to interrogate TCM
schemas.

TODQUEL is based on a semantic representation of TCM and provides constructs for navigation in a semantic
schema. TODQUEL constructs are not specific to TCM and can be used to query semantic representations of
other (semantic) models, working on a semantic representation of these models.

3.1. Semantic representation of a model

The semantic representation of a model is built using the following semantic modeling constructs: subtyping,
aggregation, association, and semantic links.

The semantic representation of the model has the purpose of being a guidance schema for user queries, and
not that of defining the schema, therefore redundancy is used in describing concepts to enable to express complex
queries in an easy and understandable way.

In Fig. 2. a semantic representation of TCM is given. It contains a description of the TCM concept entity,
of the TCM modeling constructs used to define entities (structure, aggregation-structure, association-structure,
reference-structure), and of some (for sake of brevity) of the predefined elements in the model (document, dynamic-
transition, action).

3.2. Semantic query constructs

The semantic description of a model can be used as a basis for asking queries on schemas defined using that
model. In the following, we present a semantic query language which allows to navigate in semantic networks.
Using TODQUEL, it is possible to retrieve the name and/or the definition of all entities in the office schema
satisfying a condition. TODQUEL is based on set theory and predicate calculus, and provides navigation con-
structs for the basic constructs of the semantic network: aggregation, association, reference, and subtyping. The
grammar for TODQUEL is presented in App. 1. In the following, we consider each construct separately.

Aggregation

We have chosen the dotted notation to address aggregations of properties. In the dotted notation, used for
instance in functional query languages, such as /Shi Sl/, and in relational query languages, such as SQL /Dat
85/, it is possible to refer to a property of a type as follows:

type.property-name.property-name

Association

Members of an association can be addressed in three different ways in queries:

- retrieval of ‘one of’ (any) the member properties

For instance: “retrieve entities with a property with property name equal to ‘sender”’

retrieve t.name (V t E entity 1 t.property-list one of p-property-name = ‘sender’)

- requiring that ‘all’ member properties present the same characteristics

For instance: “retrieve those entities whose properties are all not of type ‘image’, i.e., non graphical documents

retrieve t.name (V t E entity (t.property-list all p.property-type # ‘image’)

- retrieval of single members of an association. For the purpose of retrieving single members of associations,
we assume to have an implicit internal order of the members: So, we can address the members of ‘property-list’
as follows:

278

<entity>

I--

“allte
(string)

spec-tent
di%d

a”C.eSt0i-S
(strmg)

f

r-4-l

ref cond level

i
<entity>

<entity>

I
<static-entity>

rlll I
refers-to

f

<entity> <str”ct”reZ

1 is-a

<aggregation-structure>

children property-str”ct”ro

II

property-list

t <
r---l- <aggregat,on.struaure,

r---+-l
ref tend level property. praperty- property

8

name path type
(string) (strmg) (string)

<entity>

i
ProPMY-
name

(string)

I

PropeW PrPportY-
path type
(string) (string)

<St‘"ct"re>

1 is-a

ca~sociation-structure>

---I---

<static-entity>

I’ is-a

<document>

author text type

<structure>

It is-a

<reference-structure>

-I-
referekd-
entity

u
<entity>

<dynamic-entity>

fi is-a

<dynamic-transition>

input-entity

t

<entity>

triggering-event

0

<event>

I

transition4ements

?

tranrition4ement

condition triggering-
factor

aCtlO” output-
enmy

<dynamic-entity>

<action>

values in act-prop authowations

act-

entity
steps operations

i

0

<agent>

0

Fig. 2. Semantics of some general element types in TCM

279

t.property-list ith p

Referent es

In the retrieval of elements, queries may use semantic links between entities.

For instance, we might ask “the name of the entities referred to from a static entity”:

retrieve t.name (V t E entity, 3 s E static-entity 1 s.refers-to one of e = t)

In some other cases, it may be necessary to control semantic links traversals mentioning the type and number
of semantic links to be traversed, using the following construct:

through n references to type-name

Generalization abstraction

Properties inherited from supertypes are not distinguishable from properties specifically defined for a certain
type. Although property inheritance is a useful concept for type definition, it may be heavy to consider all
inherited properties when querying about entity properties. In many cases, the designer wants to know which
properties have been specified specifically for a particular entity.

We provide the ‘hide’ query mechanism to control the result of queries in relation to their supertypes:

(hide supertypes from nth level up)

For instance:

retrieve p (V p E string, 3 t E entity 1
t.name = ‘E’ A p = t (hide supertypes from 1st level up).property-list one of p.property-name

retrieves all properties specifically defined for a certain entity type ‘E’ (all supertypes are hidden in the query
result).

On the other hand, it may be useful to know only which are the inherited properties. We obtain this with
the following construct:

hide supertypes from 0th level down

Containment property

Since TCM entities are defined in general as complex structures, it is useful to provide the capability of
querying structures about their similarity. For instance, it is of interest to select all structures including a given
sub-structure. This condition can be expressed with a special keyword contains that allows to match pairs of
structures.

The following query is an example of the use of the contains construct:

“Get the entity types containing the following structure:

n*: aggregation-of

referenced-doe :* n

The sub-structure definition is dependent on the model, and uses the schema definition language constructs.

The wild card ‘*’ is used to indicate parts of the structure which are not of interest in the query (in this
case, the first * indicates any property name, and the second * that any structure is accepted for property
‘referenced-dot’.

4. SEMANTIC QUERIES FOR 01s DESIGN

Semantic queries are a powerful tool for the conceptual designer to verify the consistency and comleteness
of the office schema. Moreover, semantic queries can be used to query the office schema during prototyping and
architecture selection.

Queries for conceptual design

Queries on the conceptual schema can be performed at several points during a design session, as an aid to
the designer to check completeness and consistency of the office schema being created: when elaborating new
specifications, inserting specifications, at the end of a design session.

While defining elements of the office schema, the designer may be interested in knowing which element types
have already been defined. We present here two examples of such queries:

280

(Q4.1) “retrieve all the subtypes of a given entity E”

retrieve sube.name (V sube E entity, 3 t E entity 1
t.name = ‘E’ A sube = t.children one of c.ref)

(in Fig. 2., entity has a property named ‘children’, which is an association of elements c, with property ref,
referring to elements of type entity)

(Q4.2) “all actions performed as a response to an event E”

retrieve a.name (V a E action, 3 d E dynamic-transition 1
d.triggering-event.name = ‘E’ A a = d.transition-elements one of transition-element.action)

(dynamic elements in the schema are retrieved. The name of the triggering event is obtained through dynamic-
transition. triggering-event. The action is part of the properties of each transition-element in the association
transition-elements)

Queries for office rapid prototyping

Queries in this design phase should allow to aggregate elements defined in the office schema according to the
different agent types defined in the office schema. For instance:

(Q4.3) “finding out all th e d ocument types which are used by a certain agent type AGI”

retrieve d.name (V d E document, 3 a E action 1
a.authorizations one of a.name = ‘AGl’ h (a.in one of i = d V a.var one of v = d))

(properties of action - authorizations, in, var - are used to retrieve the required documents; in, out, and
var are properties of actions specifying which are the input, output, and internal information sources of a given
activity type)

Queries for architecture selection

In this phase, it is interesting to aggregate data according to different points of view to analyze specifications
for choosing an architecture. For instance, to retrieve multimedia documents with properties of ‘image’ type, or
to examine whether multimedia documents are only retrieved or also modified by office activities.

(Q4.4.) “retrieve actions in which there are editing operations in multimedia documents*

retrieve d.name, a.name (V d E document, V a E action 1
d.property-list one of p.property-type = ‘image’ A
a.values.act-entity = d A a.values.operations one of o = ‘EDIT’)

(property operation in action.values allows to retrieve action types which edit image documents)

5. CONCLUDING REMARKS

We presented a method and language constructs for querying a semantic model of the office with the specific
goal of supporting design activities.

While the given semantic representation of a semantic conceptual model is tailored to the TODOS Conceptual
Model, the given language constructs can be used for any semantic model. The ideas at the basis of semantic
queries can be used in all areas where the design activity is complex and involves the definition of many different
types and operations, such as, for instance, in the design of object oriented systems, of knowledge bases, of
software systems. The solution proposed for the office conceptual design tool could be applied to such development
environments, too. For instance, a formal definition of the software program concept could be given in terms of
its components, its references and dependencies on other software objects, its variables, and so on. Then, it would
be possible to ask queries about procedures utilizing some variables, in a certain way, with certain links to other
procedures, and so on. The same technique could be applied to rule based systems, too. The rule concept could
be defined in terms of accessed facts, triggered actions and conditions. Groups of rules with certain characteristics
could then be retrieved, providing a powerful design tool to the designer, when defining new rules.

We are studying a user friendly interface, based on the semantic description of TCM, to provide an interactive
menu based interface for asking queries about office schemas.

A first implementation of some types of semantic queries is being realized within the TODOS ESPRIT
Project at Politecnico di Milano.

281

Acknowledgements

This work has been partially supported by the Commission of European Communities under ESPRIT Project
N. 813 “Automatic Tools for Designing Office Systems,, (TODOS).

We acknowledge the contribution to this work of all components of the Work Package 2 in TODOS: C. Rolland
of University of Paris, J.R. Rames of Thomson Informatique Services, F. Barbie, M.G. Fugini, R. Maiocchi, and
S. Pozzi of Politecnico di Milano.

M.G. Fugini and S. Ceri have provided useful remarks and suggestions on this work.

6. REFERENCES

/Alb 86/ Albano, A., Cardelli, L., and Orsini, R., ‘Galileo: A strongly typed, interactive conceptual language’,
ACM l’hns. OR Database Systems, Vol. 10, N. 2., 1985.

/Ber 87/ Bertino, E. and Rabitti, F., ‘Query processing based on complex object types’, submitted for
publication.

/Bar 82/ Borgida, A.T., Mylopoulos, J., and Wong, H.K.T., ‘Methodological and computer aids for interac-
tive information system development’, in /Sch 82/.

/Bra 84a/ Bracchi, G. and Pernici, B. ‘The design requirements of office systems’, ACM Dans. on Oflice
Systems, Vol. 2, N. 2, Apr. 1984.

/Bra 84b/ Bracchi, G. and Pernici, B., ‘SOS: A conceptual model for office information systems,, , Data Base,
Vol. 15, N. 2, Winter 1984.

/Bra 82/ Brodie, M.L. and Silva, E., ‘Active and Passive Component Modeling: ACM/PCM’, in Information
Systems Design Methodologies: a Comparative Review (T.W. Olle, H.G. Sol, and A.A. Verrjin Stuart eds.), North
Holland, 1982.

/Bra 84/ Brodie, M.L., M y opoulos, 1 J., and Schmidt, J.W., eds., On Conceptual Modeling, Springer-Verlag,
New York, 1984.

/Dat 85/ Date, C.J., An introduction to database systems, Addison Wesley, 1985.

/Isr 84/ Israel, D.J. and Brachman, R.J., ‘Some remarks on the semantics of representation languages’, in
/Bra 84/, pp. 119-143, 1984.

/Ken 82/ Konsynski, B.R., B racker, L.C., and Bracker, W.E., ‘A model for specification of office communi
cations’, IEEE Tkans. on Comm., Vol. COM-30, N. 1, Jan. 1982.

/Mai 871 Maiocchi, R. and Pernici, B., ‘Verification and refinement of office procedures’, IEEE Computer
Society Symp. on Office Automation, Gaithersburg, MD, Apr. 1987.

/Nav 861 Navathe, S. and Kerschberg, L., ‘Role of data dictionaries in information resource management’,
Information and Management, Vol. 10, pp. 21-46, 1986.

/Nie 87/ Nierstrasz, O.M., ‘Hybrid - A language for programming with active objects’, in /Tsi 871, pp.
15-42, 1987.

/Nut 81/ Nutt, G.J. and Ricci, P.A., ‘Quinault: an office modeling system’, Computer, May 1981

/Per 86/ Pernici, B. and Vogel, W., ‘An integrated approach to 01s development,,, ESPRIT Technical Week
‘86, Bruxelles, Sept. 1986.

/Per 87/ Pernici, B., Barbie, F., Fugini, M.G., Maiocchi, R., Rames, J.R., and Rolland, C., ‘C-TODOS: An
automatic tool for office system conceptual design’, Politecnico di Milano, Electronics Dept., Rep. N. 87-15, 1987.

/Rot 85/ Roth, M.A., Korth, H.F., and Batory, D.S., ‘SQL/NF: A query language for not 1NF relational
databases’, Department of Computer Sciences, Univ. of Texas at Austin, Austin, TX, TR-85-19, Sept. 1985.

/Shi 81/ Shipman, D.W., ‘The functional data model and language DAPLEX”, ACM Trans. on Database
Systems, Vol. 6, N. 1, 1981.

/Sch 82/ S h ‘d c nei er, H.-J., Wasserman, AI. (eds.), Automated Tools for Information Systems Design, North
Holland, 1982.

/Tsi 87/ Tsichritzis, D. (ed.), Objects and Things, Centre Universitaire d’Informatique, Universite’ de Gen-
eve, Technical Report, Mar. 1987.

282

APPENDIX 1 - TODQUEL GRAMMAR
query - retrieve select-part (type-variable-list ‘I’ condition)

select-part - type-part , type-list 1 type-part

type-part - VARIABLE (VARIABLE .name 1 VARIABLE .structure-spec

type-list -+ type-part , type-list 1 type-part

condition --+ qualification A condition 1 (condition) 1 qualification) qualification V condition 1 not condition

type-variable-list - type-variable 1 type-variable , type-variable-list

type-variable - 3 VARIABLE c type-name 1 V VARIABLE E type-name

qualification - type-property-path predicate value I type-property-path predicate type-property-path
) type-property-path contains n struct-spec

predicate - =) # (2 I . . .

NUMBER - sequence of digits I *

value - STRING 1 NUMBER) . . .

shorthand-list - shorthand ; shorthand-list (shorthand

shorthand - through NUMBER references 1 through NUMBER references to type-name I
hide supertypes from NUMBER level up 1 hide supertypes from NUMBER level down)
hide supertypes where qualification I as type-name I
include subtypes from NUMBER level down I association-member

type-property-path - type-name property-path

property-path - aggregation-member property-path I association-member property-path I
(shorthand-list) property-path I (shorthand-list) 1 property-name

aggregation-member - .

association-member - one of I all I 1st I 2nd I 3rd I NUMBER th I VARIABLE th

type-name - STRING 1 * I VARIABLE

property-name - STRING 1 type-property-path) *

struct-spec - TSL-spec

TSL-spec - property-name : TSL-construct

TSL-construct - aggregation-of { TSL-property-list }) association-of TSL-spec I
reference-to type-name I domain

TSL-property-list --+ TSL-spec (TSL-spec ; TSL-property-list

domain - * 1 INTEGER I CHAR 1 . . .

283

