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SELECTION 

Suppose you have a list of heights of 101 people. It isn’t 
too hard to find the tallest or the shortest on the list, 
but how would you identify the most mediocre person 
(speaking heightwise, of course)? That is, how would 
you find the person on the list who is taller than the 50 
shortest people and shorter than the 50 tallest? 

The next section describes the problem around 
which this column is built: selecting the K’h-smallest 
member in a set of N elements. A program for the task 
is derived in the following section, and the subsequent 
section analyzes its (rapid) running time. 

The Problem 
This excerpt from a table entitled “Density of Popula- 
tion by States” gives the 1989 figures in persons per 
square mile. 

Name Population 
Densitv 

West Virginia 80.8 
North Carolina 120.4 
Virginia 134.7 
Pennsylvania 264.3 
New York 370.6 
Maryland 428.7 
Connecticut 637.8 
New Jersey 986.2 
District of Columbia 10,132.3 

If you had to choose a single number to characterize 
the “typical” density in these nine contiguous areas, 
what would it be? The average (arithmetic mean) value 
is 1461.8, but that seems too high: it is greater than 
eight of the nine values. New York’s “middle” value of 
370.6 seems more representative; it is the fifth largest of 
the nine. Statisticians refer to the M + lS’-smallest ele- 
ment in a set of 2M + 1 elements as the median. We’ll 
use medians (and other quantiles) later in this column 
to analyze data on the run time of the selection algo- 
rithm. 

Computer scientists use medians in many “divide- 
and-conquer” algorithms. The median partitions a set 
into two subsets which the algorithm then processes 
recursively: Problem 8 calls for an algorithm with this 
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structure. Furthermore, the selection problem is a prac- 
tical introduction to the theoretical field of comparison 
problems; Problem 9 presents two other representative 
problems. 

Let’s turn now from the abstract world of sets to the 
concrete world of programs. The input to our selection 
routine will be the positive integer N, the array 
X[l . N], and the positive integer K 5 N. The program 
must permute the array so that X[l . . K - l] 5 X[K] 5 
X[K + 1 . N]. At that point, the K’h-smallest element in 
the set resides in its proper position, X[K]. 

The Program 
A simple selection program merely sorts the array X. 
Unfortunately, this straightforward solution requires 
O(N log N) time. In this section we’ll study a faster 
algorithm due to C. A. R. Hoare. His method selects the 
I@‘-smallest element in just O(N) average time. Hoare 
called his program Find; I’ll refer to the implementation 
in this column as Select. 

Hoare’s selection algorithm is closely related to his 
Quicksort program, which was described in the April 
1984 columnThat divide-and-conquer algorithm can 
be (roughly) sketched as 

procedure QSort(set S): sequence 
ff size(S) <= 1 then 

return the element in S 
else 

partition S around a random 
element T into subsets A 
and B such that elements 
in A are less than T and 
elements in B are greater 
than T 

return QSort(A) followed by 
T followed by QSort(B) 

The procedure’s input is a set and its output is the 
sequence of elements in sorted order. Both input and 
output structures can be efficiently implemented in a 
single array: the elements in the subvector X[L. U] are 
represented by the two integers L and U. 

The Select algorithm has the same structure as 
Quicksort. Given L 5 K I U, its first step in finding the 
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proper occupant of X[K] is to partition the array around 
a random element. While Quicksort then recursively 
operates on both subsequences, Select saves time by 
recurring only on the side that contains K. Figure 1 
shows Select as it finds the median of a Z-element 
array. Each level in the picture represents a stage of the 
algorithm, and the array’s finail configuration is de- 
scribed in the last level. The partitioning element is 
circled; elements to its left have lesser values, while 
elements to its right are greater than or equal to the 
partitioning value. 

21 5 IS 7 19 7 075 65 35, 25 73 9X YS S.3 39 27 63 46 .5X X2 

27 25@65 73 9X 95 53 75 39 63 46 SX X2 

(58 73 5.3 65 ,3Y 63 46 @ 98 95 x2 

(46 39@6S 73 63 5x1 

p9@J 

21 5 IS 7 19 7 22 27 25 39046 53 6.5 71 63 5X 79 YX 95 X2 

FIGURE 1. Finding the Medianl of a 2%Element Array 

An iterative selection algorithm can be sketched as 
follows. 

set range to entire array 
while range is large do 

partition range 
repeat on proper subrange 

We’ll first review the partitioning code described in the 
April 1984 column on Quicksort, and then turn to the 
complete algorithm. 

The routine partitions the array X[L . . U] around the 
value T = X[L]. After the I - 1” step of the iteration, 
the loop invariant is depicted as 

-- 
L M : u 

The iterative step inspects the I”’ element. If X[I] 2 T 
then the invariant remains true. When X[I] < T, we 
regain the invariant by incrementing M to index the 
new location of the small element, and then swapping 
X[M] with X[I]. The loop terminates with I = U + 1, 
leaving 

T <T 

4 ,‘T 
L M u 

We then swap X[L] with X[M] to give 

I <T 

‘;‘q 
L M u 

That final swap ensures that we can operate next on 
L . M - 1 or M + 1 . . U. In both cases, we exclude 
X[M], and thereby avoid an infinite loop. 

Partitioning around the first element in the array can 
require excessive time for some common inputs-for 
instance, arrays that are already sorted. We do better to 
choose a partitioning element at random. We’ll accom- 
plish this by swapping X[L] with a random entry in 
X[L . . U].’ The complete partitioning code is 

Swap(X[Ll, X[RandInt(L,U)]) 
M := L 
for I := L+l to U do 

if XII] < X[L] then 
M := M+'l 

Swap(XCM1, XC111 
Swap(X[LJ, X[MI) 

Upon termination, we know that.X[L . . M - l] < X[M] 
5 X[M + 1.. U]. 

With this partitioning code in hand, we can turn our 
attention to the complete selection subroutine. Our first 
version is recursive: Select(L, U, K) partitions the array 
X[L.. U] so that X[L.. K - l] 5 X[K] I X[K + 1 . . U]. If 
L 2 U then the subarray contains at most one element, 
so we can halt. Otherwise, we partition the array 
around the element T, which is placed in X[M]. The 
position of K relative to M gives three cases: 

Cast I Cast 2 Cast 3 

i M 

Case 2 is the easiest: when K = M, the K’h-smallest 
element is in its final place and the program is finished. 
When K < M we have Case 1: the Kth-smallest element 
can’t be in X[M . . U], so we exclude that range by re- 
cursively operating on the range L . . M - 1. Case 3 is 
similar, and the recursive routine is sketched as 

procedure Select(L, U, K) 
pre L <= K <= U 
post XfL..K-I] <= X[KI <= XIK+l..U] 

if L < U then 
/x Partition XEL..U] so that 

X[L..M-l] <= X[M] <= X[M+l..U] */ 
if K < M then Select(L, M-l, K) 
else if K > M then Select(M+l, U, K) 
/* else K = M so finished */ 

Since X[M] is excluded by each recursive call, the pro- 
gram can’t have an infinite loop. 

’ If you don’t have a Randlnt function. you can make one using a func- 
tion Rand that returns a random real distributed uniformly in [0, 1) by 
the expression L + int(Rand x (U + 1 - L)). In the unlikely event that 
your system doesn’t have that routine, consult Knuth’s Seminumerical 
Algorithms. But whether you use a system routine or make your own, be 
careful that RandInt returns a value in the range L U-a value out of 
range is an insidious bug. 
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The recursive calls in the above procedure are of a 
special form called tail recursion: the call is always the 
last action in a procedure. A tail-recursive procedure 
can always be transformed into an equivalent proce- 
dure with a while loop; Program 1 is an iterative se- 
lection subroutine. It uses L and U as local variables, 
maintaining the relation that L 5 K 5 U until the final 
step. After partitioning around X[M], the code adjusts L 
or U (and sometimes both) to narrow the range L . . U. 

procedure Select(K) 
pre: 1 <= K <= N 
post: X[l..K-I] c= X[K] <= X[K+l..N] 

L := 1; U := N 
while L < U do 

/* Invariant: X[l..L-I] <= X[L..UJ 
<= X[U+l..N] */ 

SwapCXCLl, X[RandInt(L,U)]) 
M := L 
for I := L+l to U do 

/* Invariant: X[L+l..M] < X[L] 
and X[M+l ..I-11 >= X[L] */ 

if X11] x X[L] then 
M := M+l 
Swap(X[M], X111) 

Swap(XIL1, XCMI) 
/* X[l..L-I] <= X[L..U] <= X[U+l..N] 

and X[L..M-I] c X[M] <= X[M+l..U] +/ 
if K G= M then U := M-l 
if K >= M then L := M+l 

PROGRAM 1. Hoare’s Setection Algorithm 

Program 1 is the Select algorithm we’11 study in the 
rest of this column, and it is fine for typical day-to-day 
use. There are, however, several improvements one 
should incorporate into an industrial-strength selection 
routine. Speedups to the partitioning code are described 
in the April 1984 column (see especially Problems 3 
and 4) and Problem 1 discusses superior methods for 
choosing the partitioning element. 

Analysis of Run Time 
In the previous section we derived a selection routine 
and informally analyzed its correctness: it halts on all 
inputs, and always computes the correct answer. We’11 

23 IX 4.5 7') 9 40 7') ss@xs x2) 
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Y 23 IX 40 45079 7') x2 x.5 x2] 

turn now to its (allegedly linear) run time. The intuitive 
idea behind the O(N) average time is that typical itera- 
tions remove a substantial fraction of the range L U. If 
each step were to remove half the elements, then an 
identity like 

N + N/2 + N/4 + N/8 + . 5 2N 

would describe the total run time. 
This section supports our intuition with observations 

of the algorithm at work. In addition to insight about 
Select, this exercise illustrates general techniques for 
the empirical analysis of algorithms. (Problem 6 intro- 
duces the mathematical analysis of selection algo- 
rithms.) 

Figure 1 illustrates the algorithm’s behavi.or on an 
array of 21 elements. That figure is useful as one first 
studies the algorithm, but it is too detailed to give 
much insight into the algorithm’s performance. Figure 
2 therefore presents a similar picture of an array, and a 
“stick diagram” representation of the same computa- 
tion. The horizontal lines represent the subrange L . . U 
at each iteration, the bullets represent the partitioning 
elements, and the vertical line represents K. The stick 
diagram contains less information than the array (we 
don’t know the values being permuted), but it shows 
the key element of performance: the size of the sub- 
arrays throughout the computation. 

I generated Figure 2 by adding print statements at 
key positions in a selection routine. The resulting out- 
put was processed by a program written in a language 
for describing graphical displays of data. The array por- 
tion of the figure requires the complete information. 
The stick diagram, on the other hand, can be con- 
structed by this program that stores only the values of L 
and U, and does away entirely with the array X: 

L := 1; U := N 
while L < U do 

decrement Y 
M := RandInt(L,U) 
draw a line from L,Y to U,Y 
plot a bullet at M,Y 
if K <= M then U := M-l 
if K >= M then L := M+l 

FIGURE 2. Array and Diagram Representations 

November 1985 Voluwle 28 Number 7 1 Communications of the ACM 1123 



Programming Pearls 

If the array contains no duplicate elements, then ran- 
domly choosing the partition element makes it equally 
likely to wind up in every position between L and U. 
For that reason, the above code sets M to a random 
integer in that range. The statistical nature of the algo- 
rithm’s performance makes no assumption about the 
probability distribution of the inputs; the variation is a 
function of the randomizing Sulap statement. Figure 3 
displays five runs of the program to select the median 
of 101 elements; the integer plotted at the right of each 
run is the total number of comparisons used by the 
process. 

7 

IYY 
- 

277 

FIGURE 3. Five Run!; of Selection 

The model of each step halving the range implies 
that selecting the median of 101 elements requires 
roughly 

100+50+25+ “’ = 200 

comparisons. Figure 3 shows th,at the model is imper- 
fect yet still useful. The second computation was quite 
close to the model: each guess came close to halving 
the existing interval. The first computation was partic- 
ularly unlucky; it chose several partitioning elements 
near the end of the range. The three other computa- 
tions fall between those two extremes. The halving 
model suggests that the algorithm uses 2N comparisons; 
these experiments suggest that the program finds the 
median in Grrd;,,,, x N comparisons for some value of 
C ,rwi,m > 2. 

To estimate the constant Cnlt.dla,,, we’ll gather data on 
the number of comparisons used by the algorithm. In- 
stead of running the complete algorithm on real data, 
we’ll use this “skeleton” program to count the compari- 
sons the algorithm would use. 

ccount := 0 
L := 1; U := N 
while L < U do 

CCount := CCount + U-L 
M := Rand1ntcL.U) 
if K <= M then U := M-l 
if K >= M then L := M+l 

Program 1 uses U -- L comparisons to partition the 
U - L + 1 elements in the range L . U. The above pro- 
gram can simulate the computation on a set of size 
N = lo6 in a few dozen steps rather than a few million 
steps. 

Figure 4 plots the results of selecting the median 101 

times at five different values of N, ranging from 101 to 
l,OOO.OOl. The top graph presents the complete data: 
each mark records the number of comparisons in one 
experiment divided by N, which estimates the constant 
C ntPdron. It appears that Cnlpdran is somewhere between 2 
and 6, but the sheer bulk of the data obscures the infor- 
mation it contains. 

N 

101 10.001 I .ooo.oo I 

I - 

6 

1 

- 

zz 

4 - 

2 4 

Comparisons 
per clcmcnt 

Compariwns 
per clcmcnt 

-I 

101 10.001 I .ooo,oo I 

N 

FIGURE 4. Performance of Select in Selecting Medians 

The bottom graph in Figure 4 summarizes the top 
graph using J. W. Tukey’s “box plots.” The middle hori- 
zontal line in the box denotes the median of the sam- 
ples, and the top and bottom lines denote the upper and 
lower quartiles (in this case, the 26’h- and 76’h-smallest 
elements in the set of 101 real numbers). The lines out 

of the box show the spread to the 5’h and %‘h percen- 
tiles, and the extreme points beyond those percentiles 
are plotted explicitly. By highlighting the important 
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quantiles. the box plot shows that Cmcdian tends to be 
between 3 and 4. In 1971, Knuth showed mathemati- 
cally that its average value tends to 3.39 as N grows 
large; the five medians in the bottom graph are, in in- 
creasing order, 2.90, 3.28, 3.24, 3.37, and 3.32. 

So far we have concentrated on computing the me- 
dian. Figure 5 presents data on selecting the Vh value, 
for K = 1, 100,001, 200.001, , l,OOO,OOl; N is fixed at 
l,OOO,OOl. The top graph indicates that the median is 
the most expensive to compute, while other values 
tend to require fewer computations. 

K 

I 500.00 I I .ooo.oo I 

6 = -- - - 
1 $~ijl)~- 1- i-= 

- 
Comparisons 
per clcmcnt 

- Q zz I 
I I ’ 

I 500.00 I I .000,001 
K 

FIGURE 5. Performance of Selecl When N = 1,000,000 

The box plot in the bottom graph in Figure 5 presents 
the information more clearly. We already knew that 
the median requires about 3.4N comparisons. This 
graph suggests that the minimum and maximum re- 
quire about 2N comparisons. It also suggests that the 
cost is symmetric around the median (which makes 
sense-selecting the K”‘-smallest is just selecting the 
(N - K)‘h-largest with the comparisons reversed). 

Our analysis of Program 1 concentrated on the fact 
that it uses O(N) comparisons. Because it does only 
some constant number of other operations along with 
each comparison. its total running time is also linear. 
To gain further insight I implemented Program 1 in C 
and compared it to the library subroutine qsort. The 
system sort required about 100N log,N microseconds to 
sort an array of N elements, while Program t selected 
the median in about 100N microseconds. For N = 
100,000, this translates into 10 seconds for Program 1 
versus almost three minutes for the sort. 

Principles 
We have analyzed two aspects of Hoare’s selection algo- 
rithm: its answer is correct, and it computes that answer 
efficiently. This exercise illustrates two important points 
about the analysis of programs. 

A Spectrum of Analyses. There are several reasons 
why I believe that Program 1 is correct. This column 
presented both an informal correctness argument and 
pictures showing the algorithm at work (generated by 
the program itself). The July 1985 column discussed 
scaffolding for viewing the program at work and for 
testing the program. Each of these analyses supports the 
others: watching the program at work gives insight into 
its invariant, which in turn is useful for testing. 

I am also convinced that Program 1 runs in O(N) 
time on arrays with few duplicated elements. This col- 
umn supports that premise with an informal mathemat- 
ical argument (the “halving model”) and a series of 
experiments observing the program at work. The exper- 
iments progressed from detailed pictures of the array to 
“stick diagrams” illustrating the size of the subrange to 
graphs counting the number of comparisons. Each ex- 
periment in the series described more computations but 
gave less information about each one. Problem 6 con- 
tinues this trend, and shows how abstraction of the 
program can eventually lead to a mathematical 
analysis. 

Skeleton Programs. We saw several programs that pro- 
vide information about Program 1 without performing 
all the work of the complete program; Problem 6 de- 
scribes several additional programs with this flavor. 
While Program 1 would use several billion steps on a 
set of size one billion, these programs can gather infor- 
mation on the same computation in just a few dozen 
operations. These programs are important midpoints on 
the spectrum of analyses sketched above. 

Graphical Methods in Analysis. Graphical output is 
now available to many programmers; we should use it 
to understand our programs. All pictures in this column 
were drawn by simple programs (between 10 and 30 

input lines). We understood the correctness of the algo- 
rithm with detailed pictures showing the history of the 
computations and “array boxes” that illustrated the 
loop invariants. Graphical displays allow us to analyze 
a large volume of experimental data. The bottom graph 
in Figure 5, for instance, uses about 150 horizontal and 
vertical lines to represent 550 computations that to- 
gether represent over a billion comparisons. Mathemat- 
ical analysis of most algorithms is downright hard, but 
simulations and pictures are well within the grasp of 
most programmers. 

Problems 
1. Program 1 partitions about a random element in 

the subrange. Study the effectiveness of using 
other partitioning elements (such as the median of 
the first, middle, and last elements in the array or 
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an appropriate representative of a larger sample). 
2. The Select algorithm and its derivatives aren’t al- 

ways the best ways to implement selection. How 
would you select the second-smallest element in a 
three-element array? What if K = 6 and N = ll? 
What if K = 1000 and the N = l,OOO,OOO input 
values were stored on a reel of magnetic tape? 

3. How would you find the median of one million 
values stored on magnetic tape if your computer 
had only about a dozen words of main memory? 

4. Although Program 1 runs in O(N) average time, it 
requires O(N’) time in the worst case. Describe a 
selection algorithm with O(N) worst-case time. 

5. Perform experiments and (display data for the fol- 
lowing problems. 
a. The discussion of run :time concentrated on 

the number of comparisons used; that is a 
good but sometimes imperfect indicator of cost 
on a real machine. Implement a selection algo- 
rithm and measure its run time: any sur- 
prises? 

b. Delete the randomizing Swap statement from 
Program 1. How does the average run time 
change? Describe an input that achieves the 
worst possible run time. 

c. The analysis in Figure 4 held K fixed at 
(N + 1)/Z and varied N; the analysis in Figure 
5 held N fixed at l,OOO,OOl and varied K. De- 
scribe the function of two variables that tells 
the average number of comparisons needed to 
find the K’h-smallest element in a set of N dis- 
tinct elements. In particular, what is the shape 
of the curve induced by varying K when N is 
fixed? When K is fixed at a constant fraction of 
N, how does that curve behave? 

d. Our analyses assumed that the input array 
contained no duplicated elements; how does 
Program 1 perform if some array elements ap- 
pear many times? How can that performance 
be improved? 

6. This problem mathematically investigates the 
performance of Program 1 ,when it is called with 
K = 1 (that is, when it selects the least element in 
the array). The skeleton program that counts com- 
parisons (without actually selecting the least ele- 
ment] simplifies to 

u := N 
while U > 1 do 

CCount : = CCount + U-l 
rJ := RandInt:( 1,Ul - 1 

Show that this recursive program computes the 
same function 

function CCount(N) 
if N <= 1 then 

return 0 
else 

return N-l + 
CCount(RandInt(O,N-If) 

If CN denotes the average value of CCount(N) after 
the code is executed, show that it satisfies the 
recurrence relation 

C,) = c, = 0 

cN = IV-I + llN 2 C, 
O- i- N - I 

Write a program that computes C,, C,, . , C,,,,. 
(Hint: first use a table C[O . . M] and O(M”) time, 
then make your algorithm run in O(M) time, and 
finally remove the table.) Use that program to 
characterize the behavior of CN; one possible use 
is to run the program to gather data, while another 
approach studies its structure to see how to “tele- 
scope” the recurrence analytically. 

7. [J. M. Chambers] The Select algorithm ensures 
that X[l . . K - l] 5 X[K] 5 X[K + 1 . , N] for a 
single value of K, while Quicksort establishes that 
condition for all values of K. The problem of “Par- 
tial Sorting” calls for establishing the condition for 
a set of integers in the range 1 N. For instance, 
in drawing box plots of 101 values we were inter- 
ested in the set 16, 26, 51, 76, 96). Show how to 
modify the Quicksort/Select idea to compute par- 
tial orders. Given the input arrays X[l N] and 
1 5 K[l] 5 K[2] 5 . . . 5 K[M] 5 N, the program 
should establish 

XII..KII]-II 5 XlKllll 5 

XII(lII+I..KI’I-II 5 Xlicl211 5 

XIKI21+ I..Kl31-II 5 x11(1311 5 

8. For this problem, assume that every element of 
the array X has two fields: X[l].key is the key of 
the Ifh element. and X[l].wt is its weight (a posi- 
tive real number). Let S denote ClsrsNX[i].wt. The 
“weighted median” problem calls for computing 
the integer K and partitioning the array such that 
these conditions hold: 

XIl..K- ll.Xc,y 5 XIKI.Xr! 5 XI/C+ I..N I./icy 

c x Ii I.wt c s/2 
I-ic-K 

2 Xlil.u7 c s/3 
A’<.;- N 

Modify Program 1 to perform this task in linear 
expected time. Show how to use a solution to 
Problem 4 as a subroutine to solve this problem in 
linear worst-case time. Modify both algorithms 
to find other “weighted quantiles”: given a real 
0 c Q < 1. find a record such that the weights of 
lesser keys sum to at most QS, while the weights 
of greater keys sum to at most (1 - Q).S. 
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9. Give algorithms for finding the minimum and 
maximum elements in a set and for finding the 
maximum and second-largest elements. Try to use 
as few comparisons as possible. 

10. Experiment with other graphical representations 
of median computations. This picture, for in- 
stance, illustrates the computation depicted in Fig- 
ure 1; numbers in Figure 1 are represented here as 
vertical bars. 

Try “animating” this or other representations on 
interactive displays or as simple “movies.” 

Further Reading 
Hoare originally described Quicksort and Find in one 
page of the July 1961 Communications. He illustrated the 
young field of program verification by arguing the cor- 
rectness of Find in the January 1971 Communications. 
Knuth analyzed the run time of the algorithm in his 
“Mathematical Analysis of Algorithms” on pages 19-27 
of the proceedings of the 1971 IFIP Congress. In the 
March 1975 Communications, Floyd and Rivest present a 
selection algorithm that uses just N + K + o(N) compar- 
isons. Their algorithm is close to the theoretical opti- 
mum, and runs like the wind when implemented as a 
program. 
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are any hardware features that im- 
prove programmer productivity- 
except that they make that software 
run faster. The object-oriented 
Smalltalk-80” system is a software 
system that relies on extravagant 
hardware to improve the program- 
mer’s lot, and it currently needs a 
Xerox Dorado per programmer, a 
$120K user-microprogrammable per- 
sonal minicomputer built from ECL. 
It is this “cost/performance barrier” 
that prevents programmers from us- 
ing Smalltalk-like systems, so this 
seemed like a good test case for 
RlSCs. Our experiments showed 
that the simple case was again the 
frequent case, so Smalltalk On A 
RISC (SOAR) includes tags to check 
Smalltalk- is a trademark of the Xerox 
Corporation. 

types in parallel with fast execution 
and traps to software in the infre- 
quent case of type disagreement [2]. 
We just received SOAR chips that I 
worked at speed [3], and our simula- 
tions show that NMOS VLSI SOAR 
chip runs Smalltalk- as fast as the 
Dorado [l], thereby demonstrating 
that RJSCs lower the cost/perform- 
ance barrier for Smalltalk. 

Nelson’s references suggest that 
he believes in a future based on 
high-level, object-oriented com- 
puters running Forth and Pascal. I 
do not. Fortunately such a differ- 
ence of opinion is not resolved in 
the pages of a journal. Computer de- 
signers and computer users “vote 
with their feet,” so the future will 
tell whether people build and use 
non-von Neumann Forth machines, 

or something considerably RISCier. 

David A. Patterson 
Dept. of Electrical Engineering 

and Computer Sciences 
Computer Science Division 
University of California 
Berkeley, CA 94720 
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