
by Jon Bentley

programming
pearls

SELECTION

Suppose you have a list of heights of 101 people. It isn’t
too hard to find the tallest or the shortest on the list,
but how would you identify the most mediocre person
(speaking heightwise, of course)? That is, how would
you find the person on the list who is taller than the 50
shortest people and shorter than the 50 tallest?

The next section describes the problem around
which this column is built: selecting the K’h-smallest
member in a set of N elements. A program for the task
is derived in the following section, and the subsequent
section analyzes its (rapid) running time.

The Problem
This excerpt from a table entitled “Density of Popula-
tion by States” gives the 1989 figures in persons per
square mile.

Name Population
Densitv

West Virginia 80.8
North Carolina 120.4
Virginia 134.7
Pennsylvania 264.3
New York 370.6
Maryland 428.7
Connecticut 637.8
New Jersey 986.2
District of Columbia 10,132.3

If you had to choose a single number to characterize
the “typical” density in these nine contiguous areas,
what would it be? The average (arithmetic mean) value
is 1461.8, but that seems too high: it is greater than
eight of the nine values. New York’s “middle” value of
370.6 seems more representative; it is the fifth largest of
the nine. Statisticians refer to the M + lS’-smallest ele-
ment in a set of 2M + 1 elements as the median. We’ll
use medians (and other quantiles) later in this column
to analyze data on the run time of the selection algo-
rithm.

Computer scientists use medians in many “divide-
and-conquer” algorithms. The median partitions a set
into two subsets which the algorithm then processes
recursively: Problem 8 calls for an algorithm with this

0 1985 ACM 0001.0782/S5/1100-1121 750

structure. Furthermore, the selection problem is a prac-
tical introduction to the theoretical field of comparison
problems; Problem 9 presents two other representative
problems.

Let’s turn now from the abstract world of sets to the
concrete world of programs. The input to our selection
routine will be the positive integer N, the array
X[l . N], and the positive integer K 5 N. The program
must permute the array so that X[l . . K - l] 5 X[K] 5
X[K + 1 . N]. At that point, the K’h-smallest element in
the set resides in its proper position, X[K].

The Program
A simple selection program merely sorts the array X.
Unfortunately, this straightforward solution requires
O(N log N) time. In this section we’ll study a faster
algorithm due to C. A. R. Hoare. His method selects the
I@‘-smallest element in just O(N) average time. Hoare
called his program Find; I’ll refer to the implementation
in this column as Select.

Hoare’s selection algorithm is closely related to his
Quicksort program, which was described in the April
1984 columnThat divide-and-conquer algorithm can
be (roughly) sketched as

procedure QSort(set S): sequence
ff size(S) <= 1 then

return the element in S
else

partition S around a random
element T into subsets A
and B such that elements
in A are less than T and
elements in B are greater
than T

return QSort(A) followed by
T followed by QSort(B)

The procedure’s input is a set and its output is the
sequence of elements in sorted order. Both input and
output structures can be efficiently implemented in a
single array: the elements in the subvector X[L. U] are
represented by the two integers L and U.

The Select algorithm has the same structure as
Quicksort. Given L 5 K I U, its first step in finding the

November 1985 Volume 28 Number 11 Communications of the ACM 1121

http://crossmark.crossref.org/dialog/?doi=10.1145%2F4547.315131&domain=pdf&date_stamp=1985-11-01

Programming Pearls

proper occupant of X[K] is to partition the array around
a random element. While Quicksort then recursively
operates on both subsequences, Select saves time by
recurring only on the side that contains K. Figure 1
shows Select as it finds the median of a Z-element
array. Each level in the picture represents a stage of the
algorithm, and the array’s finail configuration is de-
scribed in the last level. The partitioning element is
circled; elements to its left have lesser values, while
elements to its right are greater than or equal to the
partitioning value.

21 5 IS 7 19 7 075 65 35, 25 73 9X YS S.3 39 27 63 46 .5X X2

27 25@65 73 9X 95 53 75 39 63 46 SX X2

(58 73 5.3 65 ,3Y 63 46 @ 98 95 x2

(46 39@6S 73 63 5x1

p9@J

21 5 IS 7 19 7 22 27 25 39046 53 6.5 71 63 5X 79 YX 95 X2

FIGURE 1. Finding the Medianl of a 2%Element Array

An iterative selection algorithm can be sketched as
follows.

set range to entire array
while range is large do

partition range
repeat on proper subrange

We’ll first review the partitioning code described in the
April 1984 column on Quicksort, and then turn to the
complete algorithm.

The routine partitions the array X[L . . U] around the
value T = X[L]. After the I - 1” step of the iteration,
the loop invariant is depicted as

--
L M : u

The iterative step inspects the I”’ element. If X[I] 2 T
then the invariant remains true. When X[I] < T, we
regain the invariant by incrementing M to index the
new location of the small element, and then swapping
X[M] with X[I]. The loop terminates with I = U + 1,
leaving

T <T

4 ,‘T
L M u

We then swap X[L] with X[M] to give

I <T

‘;‘q
L M u

That final swap ensures that we can operate next on
L . M - 1 or M + 1 . . U. In both cases, we exclude
X[M], and thereby avoid an infinite loop.

Partitioning around the first element in the array can
require excessive time for some common inputs-for
instance, arrays that are already sorted. We do better to
choose a partitioning element at random. We’ll accom-
plish this by swapping X[L] with a random entry in
X[L . . U].’ The complete partitioning code is

Swap(X[Ll, X[RandInt(L,U)])
M := L
for I := L+l to U do

if XII] < X[L] then
M := M+'l

Swap(XCM1, XC111
Swap(X[LJ, X[MI)

Upon termination, we know that.X[L . . M - l] < X[M]
5 X[M + 1.. U].

With this partitioning code in hand, we can turn our
attention to the complete selection subroutine. Our first
version is recursive: Select(L, U, K) partitions the array
X[L.. U] so that X[L.. K - l] 5 X[K] I X[K + 1 . . U]. If
L 2 U then the subarray contains at most one element,
so we can halt. Otherwise, we partition the array
around the element T, which is placed in X[M]. The
position of K relative to M gives three cases:

Cast I Cast 2 Cast 3

i M

Case 2 is the easiest: when K = M, the K’h-smallest
element is in its final place and the program is finished.
When K < M we have Case 1: the Kth-smallest element
can’t be in X[M . . U], so we exclude that range by re-
cursively operating on the range L . . M - 1. Case 3 is
similar, and the recursive routine is sketched as

procedure Select(L, U, K)
pre L <= K <= U
post XfL..K-I] <= X[KI <= XIK+l..U]

if L < U then
/x Partition XEL..U] so that

X[L..M-l] <= X[M] <= X[M+l..U] */
if K < M then Select(L, M-l, K)
else if K > M then Select(M+l, U, K)
/* else K = M so finished */

Since X[M] is excluded by each recursive call, the pro-
gram can’t have an infinite loop.

’ If you don’t have a Randlnt function. you can make one using a func-
tion Rand that returns a random real distributed uniformly in [0, 1) by
the expression L + int(Rand x (U + 1 - L)). In the unlikely event that
your system doesn’t have that routine, consult Knuth’s Seminumerical
Algorithms. But whether you use a system routine or make your own, be
careful that RandInt returns a value in the range L U-a value out of
range is an insidious bug.

1122 Communications of the ACM November 1985 Volume 28 Number 11

Programming Pearls

The recursive calls in the above procedure are of a
special form called tail recursion: the call is always the
last action in a procedure. A tail-recursive procedure
can always be transformed into an equivalent proce-
dure with a while loop; Program 1 is an iterative se-
lection subroutine. It uses L and U as local variables,
maintaining the relation that L 5 K 5 U until the final
step. After partitioning around X[M], the code adjusts L
or U (and sometimes both) to narrow the range L . . U.

procedure Select(K)
pre: 1 <= K <= N
post: X[l..K-I] c= X[K] <= X[K+l..N]

L := 1; U := N
while L < U do

/* Invariant: X[l..L-I] <= X[L..UJ
<= X[U+l..N] */

SwapCXCLl, X[RandInt(L,U)])
M := L
for I := L+l to U do

/* Invariant: X[L+l..M] < X[L]
and X[M+l ..I-11 >= X[L] */

if X11] x X[L] then
M := M+l
Swap(X[M], X111)

Swap(XIL1, XCMI)
/* X[l..L-I] <= X[L..U] <= X[U+l..N]

and X[L..M-I] c X[M] <= X[M+l..U] +/
if K G= M then U := M-l
if K >= M then L := M+l

PROGRAM 1. Hoare’s Setection Algorithm

Program 1 is the Select algorithm we’11 study in the
rest of this column, and it is fine for typical day-to-day
use. There are, however, several improvements one
should incorporate into an industrial-strength selection
routine. Speedups to the partitioning code are described
in the April 1984 column (see especially Problems 3
and 4) and Problem 1 discusses superior methods for
choosing the partitioning element.

Analysis of Run Time
In the previous section we derived a selection routine
and informally analyzed its correctness: it halts on all
inputs, and always computes the correct answer. We’11

23 IX 4.5 7') 9 40 7') ss@xs x2)

Y IX4.57Y23407YS.5

["S 4s IX 23 40@7Y

(23 IX@45 ss

p&

Y 23 IX 40 45079 7') x2 x.5 x2]

turn now to its (allegedly linear) run time. The intuitive
idea behind the O(N) average time is that typical itera-
tions remove a substantial fraction of the range L U. If
each step were to remove half the elements, then an
identity like

N + N/2 + N/4 + N/8 + . 5 2N

would describe the total run time.
This section supports our intuition with observations

of the algorithm at work. In addition to insight about
Select, this exercise illustrates general techniques for
the empirical analysis of algorithms. (Problem 6 intro-
duces the mathematical analysis of selection algo-
rithms.)

Figure 1 illustrates the algorithm’s behavi.or on an
array of 21 elements. That figure is useful as one first
studies the algorithm, but it is too detailed to give
much insight into the algorithm’s performance. Figure
2 therefore presents a similar picture of an array, and a
“stick diagram” representation of the same computa-
tion. The horizontal lines represent the subrange L . . U
at each iteration, the bullets represent the partitioning
elements, and the vertical line represents K. The stick
diagram contains less information than the array (we
don’t know the values being permuted), but it shows
the key element of performance: the size of the sub-
arrays throughout the computation.

I generated Figure 2 by adding print statements at
key positions in a selection routine. The resulting out-
put was processed by a program written in a language
for describing graphical displays of data. The array por-
tion of the figure requires the complete information.
The stick diagram, on the other hand, can be con-
structed by this program that stores only the values of L
and U, and does away entirely with the array X:

L := 1; U := N
while L < U do

decrement Y
M := RandInt(L,U)
draw a line from L,Y to U,Y
plot a bullet at M,Y
if K <= M then U := M-l
if K >= M then L := M+l

FIGURE 2. Array and Diagram Representations

November 1985 Voluwle 28 Number 7 1 Communications of the ACM 1123

Programming Pearls

If the array contains no duplicate elements, then ran-
domly choosing the partition element makes it equally
likely to wind up in every position between L and U.
For that reason, the above code sets M to a random
integer in that range. The statistical nature of the algo-
rithm’s performance makes no assumption about the
probability distribution of the inputs; the variation is a
function of the randomizing Sulap statement. Figure 3
displays five runs of the program to select the median
of 101 elements; the integer plotted at the right of each
run is the total number of comparisons used by the
process.

7

IYY
-

277

FIGURE 3. Five Run!; of Selection

The model of each step halving the range implies
that selecting the median of 101 elements requires
roughly

100+50+25+ “’ = 200

comparisons. Figure 3 shows th,at the model is imper-
fect yet still useful. The second computation was quite
close to the model: each guess came close to halving
the existing interval. The first computation was partic-
ularly unlucky; it chose several partitioning elements
near the end of the range. The three other computa-
tions fall between those two extremes. The halving
model suggests that the algorithm uses 2N comparisons;
these experiments suggest that the program finds the
median in Grrd;,,,, x N comparisons for some value of
C ,rwi,m > 2.

To estimate the constant Cnlt.dla,,, we’ll gather data on
the number of comparisons used by the algorithm. In-
stead of running the complete algorithm on real data,
we’ll use this “skeleton” program to count the compari-
sons the algorithm would use.

ccount := 0
L := 1; U := N
while L < U do

CCount := CCount + U-L
M := Rand1ntcL.U)
if K <= M then U := M-l
if K >= M then L := M+l

Program 1 uses U -- L comparisons to partition the
U - L + 1 elements in the range L . U. The above pro-
gram can simulate the computation on a set of size
N = lo6 in a few dozen steps rather than a few million
steps.

Figure 4 plots the results of selecting the median 101

times at five different values of N, ranging from 101 to
l,OOO.OOl. The top graph presents the complete data:
each mark records the number of comparisons in one
experiment divided by N, which estimates the constant
C ntPdron. It appears that Cnlpdran is somewhere between 2
and 6, but the sheer bulk of the data obscures the infor-
mation it contains.

N

101 10.001 I .ooo.oo I

I -

6

1

-

zz

4 -

2 4

Comparisons
per clcmcnt

Compariwns
per clcmcnt

-I

101 10.001 I .ooo,oo I

N

FIGURE 4. Performance of Select in Selecting Medians

The bottom graph in Figure 4 summarizes the top
graph using J. W. Tukey’s “box plots.” The middle hori-
zontal line in the box denotes the median of the sam-
ples, and the top and bottom lines denote the upper and
lower quartiles (in this case, the 26’h- and 76’h-smallest
elements in the set of 101 real numbers). The lines out

of the box show the spread to the 5’h and %‘h percen-
tiles, and the extreme points beyond those percentiles
are plotted explicitly. By highlighting the important

1124 Communications of the ACM November 1985 Volume 28 Number II

Programming Pearls

quantiles. the box plot shows that Cmcdian tends to be
between 3 and 4. In 1971, Knuth showed mathemati-
cally that its average value tends to 3.39 as N grows
large; the five medians in the bottom graph are, in in-
creasing order, 2.90, 3.28, 3.24, 3.37, and 3.32.

So far we have concentrated on computing the me-
dian. Figure 5 presents data on selecting the Vh value,
for K = 1, 100,001, 200.001, , l,OOO,OOl; N is fixed at
l,OOO,OOl. The top graph indicates that the median is
the most expensive to compute, while other values
tend to require fewer computations.

K

I 500.00 I I .ooo.oo I

6 = -- - -
1 $~ijl)~- 1- i-=

-
Comparisons
per clcmcnt

- Q zz I
I I ’

I 500.00 I I .000,001
K

FIGURE 5. Performance of Selecl When N = 1,000,000

The box plot in the bottom graph in Figure 5 presents
the information more clearly. We already knew that
the median requires about 3.4N comparisons. This
graph suggests that the minimum and maximum re-
quire about 2N comparisons. It also suggests that the
cost is symmetric around the median (which makes
sense-selecting the K”‘-smallest is just selecting the
(N - K)‘h-largest with the comparisons reversed).

Our analysis of Program 1 concentrated on the fact
that it uses O(N) comparisons. Because it does only
some constant number of other operations along with
each comparison. its total running time is also linear.
To gain further insight I implemented Program 1 in C
and compared it to the library subroutine qsort. The
system sort required about 100N log,N microseconds to
sort an array of N elements, while Program t selected
the median in about 100N microseconds. For N =
100,000, this translates into 10 seconds for Program 1
versus almost three minutes for the sort.

Principles
We have analyzed two aspects of Hoare’s selection algo-
rithm: its answer is correct, and it computes that answer
efficiently. This exercise illustrates two important points
about the analysis of programs.

A Spectrum of Analyses. There are several reasons
why I believe that Program 1 is correct. This column
presented both an informal correctness argument and
pictures showing the algorithm at work (generated by
the program itself). The July 1985 column discussed
scaffolding for viewing the program at work and for
testing the program. Each of these analyses supports the
others: watching the program at work gives insight into
its invariant, which in turn is useful for testing.

I am also convinced that Program 1 runs in O(N)
time on arrays with few duplicated elements. This col-
umn supports that premise with an informal mathemat-
ical argument (the “halving model”) and a series of
experiments observing the program at work. The exper-
iments progressed from detailed pictures of the array to
“stick diagrams” illustrating the size of the subrange to
graphs counting the number of comparisons. Each ex-
periment in the series described more computations but
gave less information about each one. Problem 6 con-
tinues this trend, and shows how abstraction of the
program can eventually lead to a mathematical
analysis.

Skeleton Programs. We saw several programs that pro-
vide information about Program 1 without performing
all the work of the complete program; Problem 6 de-
scribes several additional programs with this flavor.
While Program 1 would use several billion steps on a
set of size one billion, these programs can gather infor-
mation on the same computation in just a few dozen
operations. These programs are important midpoints on
the spectrum of analyses sketched above.

Graphical Methods in Analysis. Graphical output is
now available to many programmers; we should use it
to understand our programs. All pictures in this column
were drawn by simple programs (between 10 and 30

input lines). We understood the correctness of the algo-
rithm with detailed pictures showing the history of the
computations and “array boxes” that illustrated the
loop invariants. Graphical displays allow us to analyze
a large volume of experimental data. The bottom graph
in Figure 5, for instance, uses about 150 horizontal and
vertical lines to represent 550 computations that to-
gether represent over a billion comparisons. Mathemat-
ical analysis of most algorithms is downright hard, but
simulations and pictures are well within the grasp of
most programmers.

Problems
1. Program 1 partitions about a random element in

the subrange. Study the effectiveness of using
other partitioning elements (such as the median of
the first, middle, and last elements in the array or

Nooemher 1985 Volume 28 Number 11 Communications of the ACM 1125

Programming Pearls

an appropriate representative of a larger sample).
2. The Select algorithm and its derivatives aren’t al-

ways the best ways to implement selection. How
would you select the second-smallest element in a
three-element array? What if K = 6 and N = ll?
What if K = 1000 and the N = l,OOO,OOO input
values were stored on a reel of magnetic tape?

3. How would you find the median of one million
values stored on magnetic tape if your computer
had only about a dozen words of main memory?

4. Although Program 1 runs in O(N) average time, it
requires O(N’) time in the worst case. Describe a
selection algorithm with O(N) worst-case time.

5. Perform experiments and (display data for the fol-
lowing problems.
a. The discussion of run :time concentrated on

the number of comparisons used; that is a
good but sometimes imperfect indicator of cost
on a real machine. Implement a selection algo-
rithm and measure its run time: any sur-
prises?

b. Delete the randomizing Swap statement from
Program 1. How does the average run time
change? Describe an input that achieves the
worst possible run time.

c. The analysis in Figure 4 held K fixed at
(N + 1)/Z and varied N; the analysis in Figure
5 held N fixed at l,OOO,OOl and varied K. De-
scribe the function of two variables that tells
the average number of comparisons needed to
find the K’h-smallest element in a set of N dis-
tinct elements. In particular, what is the shape
of the curve induced by varying K when N is
fixed? When K is fixed at a constant fraction of
N, how does that curve behave?

d. Our analyses assumed that the input array
contained no duplicated elements; how does
Program 1 perform if some array elements ap-
pear many times? How can that performance
be improved?

6. This problem mathematically investigates the
performance of Program 1 ,when it is called with
K = 1 (that is, when it selects the least element in
the array). The skeleton program that counts com-
parisons (without actually selecting the least ele-
ment] simplifies to

u := N
while U > 1 do

CCount : = CCount + U-l
rJ := RandInt:(1,Ul - 1

Show that this recursive program computes the
same function

function CCount(N)
if N <= 1 then

return 0
else

return N-l +
CCount(RandInt(O,N-If)

If CN denotes the average value of CCount(N) after
the code is executed, show that it satisfies the
recurrence relation

C,) = c, = 0

cN = IV-I + llN 2 C,
O- i- N - I

Write a program that computes C,, C,, . , C,,,,.
(Hint: first use a table C[O . . M] and O(M”) time,
then make your algorithm run in O(M) time, and
finally remove the table.) Use that program to
characterize the behavior of CN; one possible use
is to run the program to gather data, while another
approach studies its structure to see how to “tele-
scope” the recurrence analytically.

7. [J. M. Chambers] The Select algorithm ensures
that X[l . . K - l] 5 X[K] 5 X[K + 1 . , N] for a
single value of K, while Quicksort establishes that
condition for all values of K. The problem of “Par-
tial Sorting” calls for establishing the condition for
a set of integers in the range 1 N. For instance,
in drawing box plots of 101 values we were inter-
ested in the set 16, 26, 51, 76, 96). Show how to
modify the Quicksort/Select idea to compute par-
tial orders. Given the input arrays X[l N] and
1 5 K[l] 5 K[2] 5 . . . 5 K[M] 5 N, the program
should establish

XII..KII]-II 5 XlKllll 5

XII(lII+I..KI’I-II 5 Xlicl211 5

XIKI21+ I..Kl31-II 5 x11(1311 5

8. For this problem, assume that every element of
the array X has two fields: X[l].key is the key of
the Ifh element. and X[l].wt is its weight (a posi-
tive real number). Let S denote ClsrsNX[i].wt. The
“weighted median” problem calls for computing
the integer K and partitioning the array such that
these conditions hold:

XIl..K- ll.Xc,y 5 XIKI.Xr! 5 XI/C+ I..N I./icy

c x Ii I.wt c s/2
I-ic-K

2 Xlil.u7 c s/3
A’<.;- N

Modify Program 1 to perform this task in linear
expected time. Show how to use a solution to
Problem 4 as a subroutine to solve this problem in
linear worst-case time. Modify both algorithms
to find other “weighted quantiles”: given a real
0 c Q < 1. find a record such that the weights of
lesser keys sum to at most QS, while the weights
of greater keys sum to at most (1 - Q).S.

1126 Comnru,licafiom of tl~e ACM

Programming Pearls

9. Give algorithms for finding the minimum and
maximum elements in a set and for finding the
maximum and second-largest elements. Try to use
as few comparisons as possible.

10. Experiment with other graphical representations
of median computations. This picture, for in-
stance, illustrates the computation depicted in Fig-
ure 1; numbers in Figure 1 are represented here as
vertical bars.

Try “animating” this or other representations on
interactive displays or as simple “movies.”

Further Reading
Hoare originally described Quicksort and Find in one
page of the July 1961 Communications. He illustrated the
young field of program verification by arguing the cor-
rectness of Find in the January 1971 Communications.
Knuth analyzed the run time of the algorithm in his
“Mathematical Analysis of Algorithms” on pages 19-27
of the proceedings of the 1971 IFIP Congress. In the
March 1975 Communications, Floyd and Rivest present a
selection algorithm that uses just N + K + o(N) compar-
isons. Their algorithm is close to the theoretical opti-
mum, and runs like the wind when implemented as a
program.

For Correspondence: Jon Bentley, AT&T Bell Laboratories. Room Z-317.
600 Mountain Ave., Murray Hill, NJ 07974.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise. or to
republish. requires a fee and/or specific permissimi.

ACM Forum (continued from p. 2220)

are any hardware features that im-
prove programmer productivity-
except that they make that software
run faster. The object-oriented
Smalltalk-80” system is a software
system that relies on extravagant
hardware to improve the program-
mer’s lot, and it currently needs a
Xerox Dorado per programmer, a
$120K user-microprogrammable per-
sonal minicomputer built from ECL.
It is this “cost/performance barrier”
that prevents programmers from us-
ing Smalltalk-like systems, so this
seemed like a good test case for
RlSCs. Our experiments showed
that the simple case was again the
frequent case, so Smalltalk On A
RISC (SOAR) includes tags to check
Smalltalk- is a trademark of the Xerox
Corporation.

types in parallel with fast execution
and traps to software in the infre-
quent case of type disagreement [2].
We just received SOAR chips that I
worked at speed [3], and our simula-
tions show that NMOS VLSI SOAR
chip runs Smalltalk- as fast as the
Dorado [l], thereby demonstrating
that RJSCs lower the cost/perform-
ance barrier for Smalltalk.

Nelson’s references suggest that
he believes in a future based on
high-level, object-oriented com-
puters running Forth and Pascal. I
do not. Fortunately such a differ-
ence of opinion is not resolved in
the pages of a journal. Computer de-
signers and computer users “vote
with their feet,” so the future will
tell whether people build and use
non-von Neumann Forth machines,

or something considerably RISCier.

David A. Patterson
Dept. of Electrical Engineering

and Computer Sciences
Computer Science Division
University of California
Berkeley, CA 94720

REFERENCES
1. Pendleton.).N. A design methodology of

VLSI processors. Ph.D. dissertation, Dept. of
EECS, University of California, Berkeley,
Sept. 1985.

2. Ungar, D., Blau. R., Foley, P.. Samples, D.,
and Patterson, D. Architecture of SOAR:
Smalltalk on a RISC. In Proceedings of the
I Ith Symposium on Computer Architecture
(Ann Arbor. Mich., June 5-7). ACM, New
York. 1984. pp. 188-197.

3. Ungar, D.M. Design and evaluation of a
high-performance Smalltalk computer.
Computer Science Division, Dept. of EECS.
Sept. 1985.

November 1985 Volume 28 Number II Communications of the ACM 1127

