
Director Strings as Combinators

RICHARD KENNAWAY and RONAN SLEEP

University of East Anglia

A simple calculus (the Director String Calculus-DSC) for expressing abstractions is introduced,
which captures the essence of the “long reach” combinators introduced by Turner. We present
abstraction rules that preserve the applicative structure of the original lambda term, and that cannot
increase the number of subterms in the translation.

A translated lambda term can be reduced according to the evaluation rules of DSC. If this terminates
with a DSC normal form, this can be translated into a lambda term using rules presetid below. We
call this process of abstracting a lambda term, reducing to normal form in the space of DSC terms,
and translating back to a lambda term an impZ.ementation.

We show that our implementation of the lambda calculus is correct: For lambda terms with a
normal form that contains no lambdas (ground term), the implementation is shown to yield a
lambda calculus normal form. For lambda terms whose normal forms represent functions, it is shown
that the implementation yields lambda terms that are beta-convertible in zero or more steps to the
normal form of the original lambda term. In this sense, our implementation involves weak reduction
according to Hindley et al. [9].

Categories and Subject Descriptors: D.l.l [Programming Techniques]: Applicative Functional
Programming; D.3.1 [Programming Languages]: Formal Definitions and Theory-semantics; D.3.2
[Programming Languages]: Language Classification-applicative languages; F.3.2 [Logics and
Meanings of Programs]: Semantics of Programming Languages

General Terms: Languages, Theory

Additional Key Words and Phrases: Combinators, eta optimization, implementation of functional
languages, lambda calculus, weak reduction

1. INTRODUCTION

For a number of reasons, ranging from use in specification and software proto-
typing to exploitation of new ideas for parallel architectures, increasing interest
has been shown in languages whose semantics are based on the lambda calculus.
Examples include Iswim, LISP, KRC, HOPE, ML, and Miranda. We ignore the
various deviations all practical implementations make from the lambda calculus
model, and concentrate on the lambda calculus spirit of such languages.

Work by Turner and others [5, 23, 241 has shown it is possible to implement
lambda languages by translating a lambda term into combinatory form,

This work was partially supported by the UK Science and Engineering Research Council as part of
the Distributed Computing Systems program.
Authors’ address: School of Information Systems, University of East Anglia, Norwich NR4 7TJ U.K.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1933 ACM 0164-0925/63/1000-0602 $01.50

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, October 1968, Pages 602-626.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F48022.48026&domain=pdf&date_stamp=1988-10-01

Director Strings as Combinators . 603

Fig. 1. (Xx.EF)G.

and reducing the result to normal form according to the rules for combinator
reduction.

We consider one such scheme formally. First we present the basic insight
behind the “long reach” combinators introduced by Turner [24], and discussed
in a short note by Dijkstra [8]. This leads to the idea of representing abstractions
by trees of application nodes in which each application is associated with a string
of directors. Each director is associated with a level of abstraction. Director
strings encode the distribution subtrees associated with substituting in an ab-
straction. The idea is initially expressed using informal abstraction rules, which
are illustrated using familiar examples.

The remainder of the paper develops these ideas in a more formal way. Section
2 introduces the Director String calculus, shows how to move between the worlds
of lambda terms and DS terms, and presents some basic results. Section 3
discusses the relation between DSC reduction and beta-reduction. Section 4
discusses evaluation strategies for DS terms. Section 5 discusses the use of the
eta-rule and the removal of redundant directors. Section 6 is devoted to remarks
about pragmatic issues, such as the space requirements of abstraction and the
run-time consequences of abstraction. Section 7 discusses related work. The
conclusion summarizes the main results and identifies issues left unresolved.

1 .l Long Reach Combinators

The practicality of Turner’s implementation technique depends critically on the
introduction of some “long reach” combinators described in [23]. The basic idea
behind these long-reach combinators can be explained in terms of Figure 1, which
represents a lambda term that is a beta redex.

The symbol @ is the usually implicit application constructor for lambda terms.
By the beta conversion rule of the lambda calculus, the term illustrated converts
to the term:

(E’F’) = (EF)[x := G] = (E[r := G]F[x := G])

in which every free occurrence of x in both E and F is replaced with G (possibly
after some alpha conversion to resolve variable clashes).

Usually we regard beta conversion as an atomic action. However, for the
purpose of practical implementations we may be interested in expressing beta-
conversion in terms of smaller steps. One basis for this is provided by the above
diagram, in which it is clear that the substitution [X := G] will have to be conveyed
to both E and F, E alone, F alone, or neither depending on the free occurrences

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, October 1988.

604 l R. Kennaway and R. Sleep

of x in E and F. This suggests it may be useful to encode abstractions such as
(Xx.(EF)) in a variety of ways, depending on the pattern of free occurrences of x
in E and F.

1.2 Informal Abstraction Rules

As an introduction to the more detailed technical presentation, we develop a set
of informal abstraction rules by considering the three forms.of a lambda term E
in A, the set of lambda terms:

E ::= (EE) an application
Xv.E an abstraction
V a variable

v E VARS

We might add some collection of atoms, with rewrite rules, to provide built-in
arithmetic, for example, but for our present purposes there is no great interest
in doing so. We shall use pure lambda calculus throughout this paper.

To avoid the technical complications associated with variable name clashes,
we adopt the usual variable convention, that all lambda abstractions in a lambda
expression bind distinct variables, which are also distinct from the free variables
of the expression. Alpha conversions are assumed to be performed implicitly to
ensure that this condition is maintained throughout. We may omit redundant
parentheses, assuming left-associative application.

To abstract a variable from an application we have the following four rules.

A.x.(E,F,) + +(Xx.E,)(Xx.F,))
Xx.(E,F) --+ /((Xx.E,)F)
Xx.(EF.J + \(E(Xr.F,))
Ax.(EF) + -(EF)

These express the notion of “moving abstraction through application,”
leaving a directing symbol behind and transmitting the abstraction process to
the rator/rand as appropriate. Subscripts encode the freeness or otherwise of
the variable x in a term. For example, the third rule can be read as “the abstraction
of x from a (rator rand) combination in which x occurs free in the rand but not
in the rator can be encoded as a send to the right director symbol, followed by
the application of the rator to an encoding of the abstraction of the rand with
respect to x.” Note that similar rules may be devised for any binary operator
which might be added to the lambda calculus. The basic insight can be generalized
to n-ary operators, by using bit strings to indicate the various directing patterns.

For an abstraction (the case Xx.Ay.E) there is no rule. This ensures abstraction
takes place innermost out. First y will be abstracted from E, then x will be
abstracted from the result. Such multiple abstractions lead to strings of directors,
called director strings, appearing at the nodes of the syntax tree. In the completed
translation, the number of directors at a given node will be equal to the number
of variables free in the subtree rooted at that node and bound by lambda-
abstractions above that node.
ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, October 1988.

Director Strings as Combinators 605

X Y

Fig. 2. Translation of A.x.Ay.xy.

Fig. 3. Translation of xX.Ay.Xz.y.

For a variable, there are two cases:

Xx.x --* I

XX.Y 3 WY) (for any variable y other than x)

These rules use the usual I and K combinators to express variable abstraction.
The formal presentation of the DS calculus will introduce new notations that
remove the need for I and K.

The director symbols (A, /, \, -) have the natural interpretations send both
ways, send to the left (i.e., the rator) only, send to the right (i.e., the rand) only,
and send neitherway, respectively.

1.3 Examples

The abstraction process outlined above can be depicted as a series of tree
transformations in which each step removes one lambda, and all occurrences of
its bound variable.

(i) Xx.Ay.xy. Each of the steps depicted in Figure 2 represents more than one
application of the informal abstraction rules. The lack of a rule for the case
Xx.Ay.E prevents the outermost abstraction overtaking the inner one, thus
enforcing innermost abstraction.

(ii) Xx.Ay.A.z.y. (See Figure 3.)
(iii) Af.Ax.f (fx)--the “twice” function. (See Figure 4.)
(iv) Af.(Ax.f (xx))(Xx.f (xx))-Curry’s fixed-point combinator. (See Figure 5).

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, October 1988.

R. Kennaway and R. Sleep

Fig. 4. Translation of xf.Xx.j (1~).

Fig. 5. Translation of xf.(Az.f (xr))(Xx.f (xx)).

From these examples we see that a tree representation of a lambda expression
may be encoded as a tree in which all the abstraction operators and associated
variables are removed, and we are left with a tree of application nodes annotated
with director strings, with leaves K or I. Note that unlike the other examples,
(ii) required the introduction of a new @ node. This does not happen with the
full notation introduced in the next section, which preserves the “applicative
structure” exactly.
ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, October 1988.

Director Strings as Combinators 607

@
ML

A\\&3 G Fig. 6. A director string expression.

ML
E F

\\A/ @
1/k

Fig. 7. The result of reducing Figure 6.
@ @

JL ML
E GF G

a,@Ab a 2x@
a b

tix
a I IH Lb

Fig. 8. Computation of (xf.kf (fx))ub.

1.4 Computation with Directors

To evaluate an expression such as that shown in Figure 6 we look at the leading
director of the string. Since it is A, the argument G must be sent to both E and
F. The remainder of the director string appears at the top of the resulting
expression, shown in Figure 7.

Figure 8 shows an example of a simple computation: the expression
(Af.Xx.f (fx)) ab. The lambda expression Af.Ar.f (fx) was translated in Example
1.3 (iii) above.

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, October 1988.

608 l R. Kennaway and R. Sleep

2. THE DIRECTOR STRING CALCULUS

The director string calculus, or DSC, is a term rewrite system formalizing the
constructions above. The terms of this calculus (DS terms) are constructed from
the set of symbols (A, /, \, - , !, #, A], together with variables, and pair and triple
constructors. The first six of these symbols are called directors, of which the first
four are binary and the last two are unary. The symbol A is a hole, indicating a
place in an expression. Unary directors are used to express abstractions such as
xX.Xy.Xz.y. Informally, “#” means discard, and “!” means insert here. Unary
director strings that arise from translating lambda terms contain at most one “!”
symbol.

As there will never be any confusion between unary and binary directors, we
could reduce the number of different directors by overloading “A” and “-“, using
them in place of “!” and “#“. However, for expository purposes, it is clearer to
use one symbol for one thing. Similarly, we might write the familiar symbol I
instead of A, as A will behave in a manner very similar to the I combinator. But
as the correspondence is not exact, we use the notation we have described.

A director string is a string of directors, all of the same arity. DIR is the set of
all director strings, and is the union of DIR, (strings of unary directors) and
DIR2 (strings of binary directors). In what follows, d, e, f . . . will represent
individual directors, and D, D1, DZ . . . will represent director strings. In the
director string dD, d is called the leading director. a2 and al denote the empty
binary and unary director string, respectively. Where the context makes the
meaning clear, we may drop the subscript. ATOMS is the set of all variables,
together with the symbol A.

2.1 Director String (DS) Terms

The set DST of DS terms is defined inductively as follows:

D1 E DIRl, a E ATOMS + (01, a) E DST
D, E DIRl, E E DST + (01, E) E DST
Dz E DIRz, El, Ez E DST + (02, El, Ez) E DST

This is a slightly sugared six-sorted term algebra. The six sorts are unary and
binary directors, unary and binary director strings, atoms, and DS terms. (,) and
(,,) are used as pair- and triple-forming operators, and juxtaposition is used to
prefix directors to director strings. To avoid notational clutter, we may abbreviate
(!, A) (which in the DS calculus replaces the I combinator used previously) to !A,
and omit the a1 or a2 terminating a nonempty director string.

2.2 Mixed Lambda Calculus and Director String Terms

We map lambda-calculus terms into a system DSX of mixed X-calculus and
director string terms, by replacing every occurrence of a variable u by (@, u) and
every application (E F) by (a2, E, F). This embeds the X-calculus into a system
DSX generated by the syntactic rules:

E E DST + E E DSXT
x E VAR, E E DST =$ AXE E DSXT

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, October 1988.

Director Strings as Combinators l 609

Thus Xf.Xx.(f (XX)) converts to the mixed term:

V.~a32, (@1, f), (@2, kih, x), k31, xl))

We will identify lambda terms with their DSX images from now on, although we
may still write the conventional textual representation.

We now define a translation from lambda terms in DSXT to DST, which
removes all lambdas and bound variables. The abstraction rules are expressed
using the notational convention that x occurs free in E, but not in E. D1 and D2
range over unary and binary director strings, respectively.

xX.(% ~1 - (UA, A)
MDI, E) ---) (#DI, El

WD2, Em J’,) - (ADZ, (~x.E,J, (Ax.Fx))
XdD2, Ez, F) + (/D2, (AXE,), F)
XdD2, E, Fx) -+ bD2, E, (Xx.F,))

xX.(D2, J’S F) - t-02, E, F)

(*)

The rule (*) presents an opportunity for optimizing the translation that will be
discussed in Section 5.1.

Remark. If the first rule is replaced by the rules:

~(DI, Ex) ---) WI, Ox&)) (if E, # x)

Xx.(& xl + C, A)

we obtain a translation from the whole of DSXT onto DST. However this is not
needed for dealing with lambda terms, in which unary directors are initially only
attached to’variables (a property that remains true throughout the translation
process).

Examples. The X-expression Xf.xX.f (fx) (example (iii) of Section 1.3) is mapped
into DSXT as Xf.Xx. (a2, (@, f), (~~42, (aI, f), (@, x))). The translation of this
term into DST yields the following reduction sequence:

V.~3c.(@2, (@I, f), k32, @I, f), @A, x)1)
+ V.h (@I, f), ~d@2, @1, f-1, (@I, x)))
- v.0, kB1, f), (\, kih, f), w@h, xl))
- M.h (@I, f), (\, (@I, f), !A))
+ (A 1, V.(@I, f), V.0, (@I, f), !A))
+ (A 1, !A, (/ \, W.(@l, f h !A))
+ (A \, !A, (/ \, !A, !A))

The other examples of Section 1.3 translate thus:

Lambda term DS term

(9 Xn.Ay.xy (/ \, !A, !A)
(ii) xx.xy.x.2.y (#!#, A)
(iv) Af.0x.f (XX))(W(X~)) (A, (/ 1, !A, (5 !A, !A)),

(/ 1, !A, (“5 !A, !A)))
ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, October 1988.

610 l Fi. Kennaway and R. Sleep

!A appears instead of I, and the introduction of a K combinator in example (ii)
is avoided. In fact, the translation preserves the “applicative structure” of the
original lambda term.

2.2.1 PROPOSITION. The abstraction rules are confluent and terminating. Every
lambda term has a unique normal form with respect to the rules, and this normal
form is a DS term.

PROOF. It is trivial to verify that the rules are commutative-that is,
if E + Fl and E ---f Fz by reduction of different redexes, then there is a G such
that F1 + G and F2 + G. It immediately follows (see, e.g., [16]) that the
rules are confluent. Each application of an abstraction rule replaces a lambda
abstraction by a finite set of smaller lambda abstractions. Such a process
must terminate. The existence of unique normal forms follows from Newman’s
Lemma [l].

Since every term containing a lambda abstraction contains a redex with respect
to these rules (for example, any innermost abstraction must be such a redex), a
normal form cannot contain any lambda abstractions. It is therefore a DS
term. Cl

Note that we cannot simply apply the general theorem of [16] that a regular
combinatory reduction system (CR@ is confluent, since the requirement that x
occur free in E, and F, makes these rules fall outside the scope of Klop’s definition
of a CRS.

2.2.2 Definition. For a lambda expression E, let F(E) be the normal form of
E with respect to the abstraction rules. By the preceding proposition, F(E) is a
DS term.

For a DSh expression E, let AS(E) (the applicative structure of E) be the
object resulting from (i) replacing every bound variable in E by A, (ii) removing
all directors from E, and (iii) replacing every subterm of the forms Xx.F
or @I, F) by F.

Thus the applicative structure of the twice function (Example 1.3 (iii)) is
shown in Figure 9, which is also the applicative structure of its translation into
DST. This is a general fact.

2.2.3 PROPOSITION. For a lambda expression E, AS(F(E)) = AS(E).

PROOF. Each of the translation rules preserves AS, therefore, so does F. Cl

Remark. Examples of abstraction techniques that do not preserve applicative
structure are lambda-lifting [13], balancing [4], and the eta-optimized translation
described in Section 5. The advantages of such abstraction techniques must be
judged by pragmatic measures such as speed on a particular machine using
particular benchmarks. We think any practical abstraction techniques will dis-
turb applicative structure to some extent.

However, preservation of applicative structure appears to be a useful property
in reasoning about abstraction algorithms. For example, let] E 1 be the size of a
ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, October 1988

Director Strings as Combinators l 611

@
tiL

A @ Fig. 9. Applicative structure of Xf.hr.f (1~).

ML
A A

mixed term E as measured by number of @i’s, @!‘s, lambdas, and directors.
Because F preserves applicative structure, any difference in size between F(E)
and E must be solely due to the removal of lambdas and addition of directors.
However, the addition of directors does not introduce new subterms. It follows
that F(E) contains at most the number of subterms in E. Given details of the
representations of E and its abstraction, we can begin to reason about the relation
between the space required to store both representations. In particular, if we
observe that the maximum length of a director string introduced by F must be
proportional to] E 1, we can immediately deduce a quadratic bound on the space
complexity of the translation. A more detailed analysis is performed in [Xi].

2.3 Conversion Rules for DS Terms

Evaluation of DS terms is defined by the following rewrite rules. El, Ez . . . stand
for arbitrary DS terms.

(@2, (AD, EI, JW, Ed + (D, @a, ~5, Ed, b., J%, Ed)

(a, t/D, El, Ed, Ed - (D, (c&h, EI, E3), Ed

(a~., W, El, Ed, E3) - (D, EI, (@2, E2, E3))

(~42, t-D, El, Ez), E3) + (D, El, E2)

(a2, CD, El), E2) + (D, (~~42, J% E2))

k-42, (#D, Ed, Ed + UA Ed

(@2, A, EI) - EI

These constitute the conversion rules of the Director String Calculus. The
empty director strings a2 and a1 can be viewed as “activators” for DS reduction,
with the interpretation “transmit argument.” For example, the LHS of the second
rule can be read: “Transmit E3 to (/D, El, E2).” The last rule corresponds to the
rule for the I combinator.

2.3.1 THEOREM. DSC is confluent.

PROOF. The rewrite rules form a regular term rewrite system. Confluence
follows by a standard theorem [16]. 0

2.4 Translating DS Terms to Lambda Terms.

We shall now consider how to translate DS expressions back into the lambda
calculus. The obvious way is to run backwards the translation from lambda

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, October 1988.

612 l R. Kennaway and R. Sleep

calculus to DSC. This suggests the following set of rules:

(!D, (Xx.E)) 4 Xx.(D, E)
(#D, E) + Xx.(D, E)

(AD, (Xx.E), (Ay.F)) 4 Xz.(D, E[x := 21, F[x := 21)
(/D, (Xx.E), F) + Xx. (D, E, F)
(\D, E, (Xx.F)) + Xx. (D, E, F)

(-D, E, F) ---, Xx. (D, E, F)
A + Xx.x

(x a new variable)
(z a new variable)

(x a new variable)
(x a new variable)

In the rules for /- and \-elimination, no variable clash can occur between x and,
respectively, F or E, since the ‘#‘, ‘A’, ‘-‘, and ‘A’ rules always create new
variables.

Remark. The operation of the backwards translation may be visualized as
follows: First, A symbols are converted to the form Xx.x, with a distinct variable
for every A. This introduces h’s, which enable other rules which gradually
percolate their way up throughout the structure. A pair of lambdas appearing at
the children of a binary director string beginning with a A are merged.

2.4.1 THEOREM. Every DS expression E has a unique normal form with respect
to these rules. Denote it by B(E). B(E) is a lambda expression. For any DS
expression containing no directors or holes, B(E) = E. For any lambda expression
E, B(F(E)) = E.

PROOF. Each application of any of the rules removes one hole or one director.
Therefore the rules are terminating. The rules are left-linear and unambiguous,
therefore confluent. Thus every DS expression E has a unique normal form with
respect to these rules.

Since every redex contains a director or a hole, a DS expression E containing
neither must be a normal form, and B(E) = E.

We prove by induction on E that for a lambda expression E, B(F(E)) = E.

Case (i). E = AxI . . . Xx,,.x.

WNW) = W(D, A\)) where D = #i-l!#n-i if x = Xi,
or #” if x is not equal to any Xi

=E (up to alpha-equivalence)

Case (ii). E = AxI . . . Xx,.(FG). First consider F(E). By confluence of the F-
rules, we can choose to compute F(E) by first reducing the F-redex Xx,.(FG).
This gives an expression of the form (d,, F’, G’). d, is “A”, “/,,, “\,,, or “-“,
according to whether x, is free in both F and G, F only, G only, or neither. F’ is
F if xn is not free in F, otherwise F’ is Xx,.F; and G’ is defined similarly. Next
we reduce the F-redex Xx,-l.(d,, F’, G’), giving an expression (d,-Id,, F”, G”).
Continuing, we eliminate the whole of the abstraction string Xxi . . . Xx”, obtaining
an expression of the form (D, Ay, . . . Ayi.F, Xzl . . . X2j.G). y1 . . . yi are the
members of x1 . . . x, occurring free in F, and z1 . . . sj bears the same relation
ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, October 1988.

Director Strings as Combinators - 613

to G. We thus find that

F(E) = F((D, Xyi . . . Ayi.F, XZ~ . . . XZ~.G))

= (D, F(Xy1 . . . Ayi.F), F(Xzi . . . XZj. G)).

Hence:

B(F(E)) = B((D, F(Xyi . . . Ayi.F), F(& . . . X2j.G)).

By confluence of the B-rules, we can evaluate the right-hand side by first finding
the B-normal forms of the subexpressions F(Xy, . . . Ayi.F) and F&z1 . . . Xsj.G).
But by induction these are respectively equal to Xyi . . . Ayi.F and Xzi . . . X2j.G.
Thus:

B((D, F(Xyi . . . Ayi.F), F(Xzi . . . X2j.G))

= B((D, B(F(Xy, . . . Ayi.F)), B(F(Xzl . . . X2j.G)))

= B((D, XY, . . . Ayi.F, XZ~ . +a X2j.G))

We can now apply the B-rules to eliminate D, reversing the string of F-reductions
with which we began:

B((D, XY, . . . Xyi.F, XZ~ . . . X2j.G)) = XXI . . . Xx,.(FG) = E cl

The rules given for B handle all DS terms which can be produced by applying
F to some lambda term, but do not suffice to handle the full generality of
arbitrary DS expressions. A simple counterexample is (A, X, y). The rule for
A-elimination expects the two descendant terms to back-translate to lambda
abstractions. To handle such situations we define an extended set of rules, on
the basis of our intuition of the meaning of directors.

When an argument z is supplied to (A, X, y), the resulting expression
(a, (A, X, y), z) reduces by the DSC conversion rules to (a, (a, X, z), (a, y, 2)).
Thus (A, X, y) may be regarded as the equivalent of Xz. (a, (a, X, z), (a, y, 2)).
Similar arguments for the other directors produce the rules below for elimination
of ‘cA”, “/,,, and ‘Y”, which subsume the earlier rules. In these rules, E must have
no directors at its root. On the right-hand sides of the rules, x is a new variable
not occurring on the left-hand side. If E is a lambda abstraction, E” denotes its
body, with x substituted for the bound variable of the abstraction; otherwise, E”
is (a, E, x). Notice that in either case, E”[x := G] is beta-equivalent to (EG)
(since X, being a new variable, cannot be free in E). This will be relevant when
we prove properties of the translation below. F” bears the same relation to F as
E” to E.

2.4.2 General Rules for Translating a DS Term to a Lambda Term.

(#D, El + Xx.(D, E)

04 El + Xx.(D, E”)

(AD, E, F) + Xx.(D, E”, F”)

(/D, E, F) + Xx.(D, E”, F)

(\D, E, F) + Xx.(D, E, F”)

(-D, E, F) + hx.(D, E, F)
A * hx.x

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, October 1988.

614 l R. Kennaway and R. Sleep

To make clear the use of the notation E”, the fourth of these rules could otherwise
be written as the following set:

t/D, AY.E, F) + Xx.(D, E[y := x], F)
t/D, kh, El, F) - ND, (@a (~$1, E), ~1, F)
C/D, (@z, EI, Ed, F) + Xx.(D, (@a (@a El, Ed, x), J’)

The rules are consistent with the previous set of rules that dealt only with DS
terms of the form F(E) where E is a lambda term. If the abbreviations E” and
F” are expanded out a regular CRS is obtained, so by a theorem of Klop [16] the
existence and uniqueness of normal forms, and hence the well-definedness of B,
still hold.

3. DSC REDUCTION COMPARED WITH LAMBDA CALCULUS REDUCTION

To relate DS reduction to beta reduction, we construct the joint system containing
the DSh terms defined in Section 2.2, and having as its reduction rules both the
DS rules and beta reduction. DS rules can be directly read as applying to DSX
terms; beta reduction requires that the substitution operation be extended to
DSX, which is done in the obvious way, viz. (D, E, F)[x := G] = (D, E[x := G],
F[x := G]), and similarly for unary directors. We call the combined reduction
relation DSP-reduction. Note that this defines a regular CRS.

3.1 THEOREM. If E and F are DS-equivalent DS expressions, then B(E) and
B(F) are beta-equiucdent.

PROOF. It is sufficient to prove this for the case where E + F by a single DS
reduction. We prove it by means of two lemmas.

LEMMA 1. Let E and F be DSX terms, E + F by a single ,l3 reduction,
and E + E’ by a single B-step. Then there is an F’ such that E’ +@F’ +*BF.
Hence B(E) and B(F) are beta-equivalent.

PROOF. Note that the B-rules are disjoint from the rule of beta reduction.
Appealing to standard theory of CRSs [16], we obtain F’ such that
E’ d*,F’ t*BF. Noting also that the B rules are right-linear (they do not
duplicate any of their metavariables), we deduce that the sequence E’ +*@F’
has unit length.

The claim that B(E) and B(F) are beta-equivalent follows by applying the
construction to each step in the B-sequence from E to B(E). We obtain an
expression F” and reductions B(E) --?aF” t*,F. Since B(E) is in B-normal
form, so is F”; hence F” = B(F). Cl

LEMMA 2. Let E and F be DSX terms, E + F by a single DS reduction, and
E + E’ by a single B-step. Then there is an F’ such that either E’ -Q,~F’ t*gF
or E’ -+,F’ ts t,F.

PROOF. Case (i). Suppose that the DS redex reduced in E +=& is E itself.
The proofs for each of the different forms of DS redex are much alike: We shall
prove the cases of the rules for “A”, “-“, and “A".
ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, October 1988.

Director Strings as Combinators l 615

“A”: Let E = b2, (AD, El, Ed, Ed, F = UA (a?, El, Ed, k&, & Ed). If the
B-redex reduced in E to obtain E’ is contained in El, EP, or E3, then it is
disjoint from the DS redex, and we argue as for Lemma 1. For example, if
the B-redex is in El and its reduction yields Ei, then E’ = (a2, (AD, Ei,
Ed, ES) and F’ = (D, (@z, Ei, Ed, (@z, EP, Ed).

Otherwise, the B-redex is (AD, El, EZ). For this to be a B-redex,
El and EP must have the respective forms Xx.Ei and Xx.E6. Then E’ =
(a, Xx.(D, Ei, EL), Ed and F = 0, k%, kL?G, Ed, k%, Ax. El, Ed).
Taking F’ = (D, Ei [x := E3], Ei [x := Es]), we have:

“-9,. . Let E = (a2, (-D, El, Ez), Es), F = (D, El, E2). The B-redex reduced in E
to obtain E’ must be contained in El, E2, or E3, and the result follows
again from disjointness.

“A”: Let E = (a2, A, El), F = El. The B-redex reduced in E to obtain E’ must
be contained in El, and we again use disjointness.

Case (ii). Suppose that the DS redex is a proper subexpression of E. We
proceed by induction on the structure of E. The possible forms of E are Xx.E1,
(D, El, E2), and (D, El) (x and A are clearly impossible).

(a) E = Xx.EI, F = Xx.Fl, El DS-reduces to Fl. Since E is not a B-redex,
E’ = Xx.E:, where EIB-reduces to Ei. By induction there is an F: such that
F B-reduces to F: and E: and F: are P-equivalent. Take F’ = Ax.Fi .

(b) E = (D, El, Ez). Let the DS-redex be within E,. Then E, +ns Fl and F =
(D, F,, Ez). If the B-redex reduced in E to obtain E’ is within El, then we
apply induction; if within E2 then the result is trivial. Otherwise it is E itself,
and its reduction eliminates the leading director of D. There are four cases;
we prove the case of A.

D = AD’. El and Ez must have the respective forms Xx.E’, and Xx.Ei.
E’ = Xx.(D’, Ei, E:). F, has the form Xx.F:, where E: +ns F:. Take
F’=X~.(D’,F:,EL),anditisclearthatF~F’andE’=~F’.

(c) E = (D, El). Similar to case (b).

We now prove the theorem. Let E +ns F and E + E I. We argue by induction
on the longest B-reduction sequence from E to B(E) (which exists since
B-reduction is strongly normalizing). Lemma 2 gives us an F’ such that either
E’ +ns F’ t*n F or E’ d0 F’ ca ca F. In the former case, the theorem follows
by induction, and in the latter case, it follows from Lemma 1. 0

The converse does not hold in general. If a lambda-expression E beta-reduces
to F, F(E) and F(F) may not be DS-convertible. For an example of this, take
E = hx.((Xy.y)x). This beta-reduces to F = Xx.x. However, F(E) = (\, !A, !A)
and F(F) = !A, which are both DS normal forms. In translating E, the subexpres-
sion (@y.y)x) is first replaced by (@?, !A, x), which is a DS-redex. But when
x is abstracted from this DS-redex it is no longer a DS-redex. This is generally
the case: The result of abstracting a variable x from a DS-expression is never a

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, October 1988.

616 l R. Kennaway and R. Sleep

DS redex, as it will have a nonempty director string at its root. In the sense of
Hindley et al. [9], DSC reduction is weak.

3.2 THEOREM. Let E and F be lambda expressions, and let E + F by a reduction
of a beta redex R of E. If R has no free variables that are bound in E, and R is not
the body of a lambda abstraction, then F(E) +* F(F) in DSC.

PROOF. As with the last theorem, we prove this by means of lemmas about
DSX.

LEMMA 1. Let E and F be DSX terms, *S F by reduction of a DS redex R, and
E --*F E’. Then there is an F’ such that E’ +os F’, and F +*F F’. Hence
if E and Fare DS-equivalent DSX terms, then F(E) and F(F) are D&equivalent
DS terms.

PROOF. The first part follows from the disjointness of DS-reduction and F-
reduction, and right-linearity of F-reduction. The second follows by induction on
the length of an F-reduction sequence from E to F(E). Cl

LEMMA 2. Let E and F be DSX terms, E +@ F by reduction of a beta reden
R satisfying the restriction, and E * E ‘. Then there exists F’ such that either
E’--*BF’t*FForE’~~sF’~*a F. In either case, the beta-reductions satisfy
the restriction.

PROOF. If R is a DS redex, then this follows from the disjointness of DS-
reduction and F-reduction. Let R be a beta redex. We proceed by induction on
the structure of E.

Case (i). R is the whole of E. The residual of R by the F-reduction will be the
whole of E’, which clearly satisfies the restriction.

E has the form (Xx.E1)E2 and F = El[x := EJ. If the F-redex reduced in E to
obtain E’ is contained in El or EO, then it is disjoint from R and the result
follows. Otherwise, the F-redex is Xx.E1. We proceed by cases of the form of El.
For illustration we prove the case El = (D, Ell,, El&.

E = ouC.(D, J%,, EaJ)E2
F = (D, Ell,[x := Ez], ElzJx := E,])
E’ = (AD, Xx.Ell,, hx.E,zx)E,

-Q-S (D, (@dx.Enx, E2h k32, ~~.Elz.w E2))

+P-OF

So we can take F’ = F.

Case (ii). R is not the whole of E. We proceed by cases of the form of E. The
possible forms are Xx.E1, (D, El, E2), and (D, El).
(a) E = Xx.E1, El +@ Fl by reduction of R, F = Xx.Fl, and E --*F E’. If the F-

redex is contained in El, then the result follows by induction. Otherwise, the
F-redex is E. It will be disjoint from R, unless R is El. But by hypothesis, R
is not the body of a lambda abstraction, so is not El. The lemma follows,
except possibly for the claim that the residual of R by the F-reduction
satisfies the restriction.

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, October 1988.

Director Strings as Combinators l 617

To prove this, we must analyze the possible forms of E1, which are
(D, E11, Elz) or (D, En) (for any other form, either E would not be an
F-redex, or El could not contain any beta redex). There are then 12 cases,
depending on the freeness of x in El or E2, whether D is unary or binary,
and whether R is in EL1 or Elz. As an example, we consider the cases where
D is binary, and x is free in E1 and not Ez. We have:

F = WD, Fll, IM or k4D, IL Flz) (depending on where R is)

E’ = t/D, Ax.&, En)

F’ = t/D, Xx.Fll, EJ or t/D, kdL, FIZ)

If R is in E12, then its residual in E’ satisfies the restriction. If R is in Ell,
then its residual in E’ satisfies the restriction, unless R = Ell. But x is free
in Ell, but (by the restriction on R) not free in R, so R # I&.

(b) E = (D, E1, Ez). Suppose R is contained in E1 (the case of EP is similar). If
the F-redex is contained in E1, we argue by induction; if contained in EP,
the result follows by disjointness. These are the only possibilities, since E is
not an F-redex.

(c) E = (D, El). E is not an F-redex, so R and the F-redex are in E1, and the
result follows by induction. Cl

PROOF OF THEOREM. We proceed by induction, first on the number of director
strings in the rator of R (which for brevity we call the size of R), and then on the
length of the longest F-reduction sequence of E to F(E).

By Lemma 2, we obtain F’ such that either E’ -+0 F’ Cam F or E’ *s
F’ +*B F. In the first case, F(E) and F(F) will be DS-equivalent iff F(E’) and
F(F’) are. The beta redex reduced in E’ +0 F’ will have the same size as R, and
the F-reduction from E’ to F(E) will be one step shorter than the sequence for
E. So induction applies to establish the DS-equivalence of F(E) and F(F).

In the second case, if the sequence F’ + *B F is empty, then E’ and F are DS-
equivalent, and Lemma 1 implies the DS-equivalence of F(E) and F(F). Other-
wise, the 1 or 2 beta redexes in this sequence are smaller than R (having, e.g.,
the form (a, Xx.En, Ez), if R is (a2, Xx.(@z, Ell, E12), Ez)). So induction applies,
and F(E) and F(F) are DS-equivalent. Cl

3.3 THEOREM. If the DS expression E has a normal form containing no directors
and no holes, then it is also the lambda calculus normal form of B(E). If the normal
form of a lambda expression E contains no lambdas, then it is also the DSC normal
form of F(E).

PROOF. Let E be a DS expression with DS normal form F containing no
directors and no holes. Then F = B(F). B(F) contains no lambdas, and is
therefore a lambda calculus normal form, which, by the preceding theorem,
is P-equivalent to B(E).

Let E be a lambda expression with normal form F containing no lambdas. By
a standard result (see [l]), E reduces to F by a sequence of leftmost-outermost
beta reductions. Since the normal form of F contains no lambdas, the leftmost-
outermost redex of E cannot be in the body of any lambda abstraction, so it

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, October 1988.

618 l R. Kennaway and R. Sleep

satisfies the restriction of Theorem 3.2. Therefore F(E) reduces to F(F) by DS
reduction. As F contains no lambdas, F = F(F), and F(F) is a DS normal
form. Cl

These theorems state the soundness and (for expressions having “ground”
normal forms) completeness of the following method of evaluating lambda
expressions: translate the expression into DSC, evaluate it to normal form in
DSC, and translate back to lambda calculus. The result need not be a normal
form, but is guaranteed to be obtainable from the original lambda expression by
beta-reduction (soundness). If the original expression is of ground type (that is,
having a normal form containing no lambdas), then the lambda calculus normal
form is obtained (completeness for ground terms).

4. EVALUATION STRATEGIES

A strategy for a rewrite system such as DSC is a function S that maps every term
t of the system not in normal form to a nonempty set of finite nonempty
reduction sequences, each beginning with t. It is deterministic if S(t) always
contains a single reduction sequence, whenever it is defined. S is a one-step
strategy if S(t) always consists only of one-step sequences.

Some well-known strategies are the following:

(i) The leftmost-outermost strategy is a one-step deterministic strategy that
selects the leftmost-outermost redex.

(ii) The par&Z-outermost strategy reduces all the outermost redexes of a term.
This is a multistep deterministic strategy.

(iii) In a regular combinatory reduction system, a needed redex in a given term
is a redex, some residual of which must be reduced in any reduction of that
term to normal form. A formal definition of the concept is given for regular
TRSs in [ll] and for lambda-calculus in [2, 181. Needed reduction is the
strategy which at each step reduces any needed redex. This is a nondeter-
ministic one-step strategy.

(iv) For any strategy S, quasi-S is the strategy

quasi-S(t) = {R - R’] 3t’. R is a reduction sequence from t to t’ E S(t’))

Thus quasi-S is S “diluted” by extra arbitrary reduction steps.

Given a strategy S and a term to, a reduction sequence generated by S from to
is a sequence to - R. -+ tl - RI -+ t2 - R2 + . . . where Ri is a member of S(ti). S
is normalizing if every such sequence terminates with a normal form whenever to
has a normal form. A substrategy of S is a strategy S ’ such that for all t not in
normal form, 0 C S’(t) c S(t). Clearly, if S is normalizing then so is every
substrategy of S. In particular, if quasi-S is normalizing, so is S.

It is well known [l] that strategies quasi-(i) and quasi-(ii) are normalizing for
lambda calculus. Barendregt et al. [2] showed that quasi-(iii) is also normalizing
for lambda calculus. Huet and Levy [ll] showed that quasi-(iii) is normalizing
for regular TRSs, and that quasi-(ii) is a substrategy of quasi-(iii). As DSC is a
regular TRS, these are normalizing strategies for DSC.
ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, October 1988.

Director Strings as Combinators l 619

THEOREM. Quasi-leftmost-outermost reduction is normalizing for DSC.

PROOF. It is clear that the leftmost-outermost redex has exactly one residual
by reduction of any other redex, and that residual is leftmost-outermost in the
resulting term. Therefore the leftmost-outermost redex is needed, and quasi-
lefmost-outermost reduction is a substrategy of quasi-needed reduction. Cl

5. VARIATIONS ON THE TRANSLATION

5.1 o-optimization

At the cost of losing the property of preserving applicative structure, we can
make a slight optimization of the translation from lambda calculus to DSC, by
taking advantage of the lambda calculus rule of q-reduction. This rule takes an
expression Xx.(Er) to E, if x is not free in E. To accommodate this optimization,
we may replace the rule (*) in Section 2.2 by the rules:

Xr.(D, E, Fx) + (\D, E, (Xx.F,)) if D#@z

Xx.ka, E, FJ + 0, E, @x.F.z)) if F, # x

MGIZ, E, xl + E

The third of these rules is the one that performs the optimization. The first and
second rules are versions of the rule removed, restricted to those cases not covered
by the third rule.

A further optimization can be made for the expression Xx.x. Instead of trans-
lating this to (!, A), we can instead use simply A (as may be verified by comparing
the results when either of these is applied to an argument). This has the effect,
compared with the former rules for F, that no unary director string will be
generated that ends with a ! director. Such directors are redundant.

The resulting system is regular, and therefore Church Rosser. We denote this
optimized translation by F,. The original F translation to DSC, applied to
Xx.(Ex), would give (\G&, E, !A), whereas F, returns just E.

v-redexes appear infrequently in practical functional programs. However, they
often arise in the course of translating to DSC. An example is the translation of
Af.Ax.f (fx). One step of the translation gives the expression

~f.(w!&, f), Xx.(@?& (@I, f), (@I, x)))

which contains the q-redex XX.(@~, (@i, f), (@i, x)). The s-optimized translation
then gives

Af.0, (@I, f), (@I, f))

and the final translation is

(” \, A, A)

This is smaller than the translation given by F, which is (A \, !A, (/ \, !A, !A)).
An q-redex will arise whenever a lambda abstraction Xx.E contains a sub-

expression of the form (Fx) with x not free in F. F,,(E) is never bigger than F(E),
and may be significantly smaller. On average, the optimization makes a linear
improvement.

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, October 1988.

620 l R. Kennaway and R. Sleep

5.2 Redundant Directors

Some DS expressions contain directors that are in a sense redundant. Consider
a DS expression (A, (-, E, F), G). The ‘A’ director will send an incoming argument
to both the subexpressions (-, E, F) and G. However, the argument is then
discarded on the left. Clearly it might as well not have been sent there at all, and
the expression is equivalent to (\, (a, E, F), G). Similarly, if the director string
at the root of G begins with ‘-‘, then an incoming argument is discarded on both
sides, and might as well have been discarded immediately. Another instance of
redundancy was noted in the previous section: a ‘!’ at the end of a unary director
string can be omitted. The following rules formalize this “pruning” of redundant
directors. There is some trivial overlap between them.

Rule (i) Given an expression (D, E, F), let D contain at least n ‘A’ or ‘/
directors, of which the nth is d. Let E have a director string (unary or
binary) at its root of length at least n, of which the nth is either ‘-’ or
‘#‘. Then the ‘-’ or ‘#’ may be deleted and d replaced by ‘\, (if d was
‘A’) or ‘-’ (if d was ‘/‘).

Rule (i’) As rule (i), but considering ‘A’ and ‘\’ directors in D, ‘-’ and ‘#’ directors
at the root of F, and replacing d by ‘/, or ‘-‘.

Rule (ii) Given an expression (D, E), let D contain at least n ‘!’ directors. Let E
have a director string (unary or binary) at its root of length at least n,
of which the nth is either ‘-’ or ‘#‘. Then the ‘-’ or ‘#’ may be deleted
and the ‘!’ replaced by ‘#‘.

Rule (iii) Delete any occurrence of ‘!’ as the last director of a unary director
string.

Rule (iv) Replace (aI, E) by E for nonatomic E.

Rule (v) Replace (D, (D ‘, E)) by (D 0 D ‘, E), where D 0 D ’ is defined by:

@I 0 D’ = D’

Doal =D
!D 0 dD’ = d(D 0 D’) (d = ‘!’ or ‘#‘)
#D 0 D’ = #(D 0 D’)

Note that for a lambda expression E, F(E) contains no directors subject to
rules (i), (i’), or (ii). This results from the occurrence checks written into the F
rules. If these checks were omitted, the resulting (ambiguous) translation rules
would be able to yield DS expressions with redundant directors. The DS expres-
sions obtained by this generalized translation would still be subject to the
theorems concerning the correspondence between DS reduction and beta reduc-
tion. We remark (but do not prove) that for any DS expression E, F,(B(E)) is a
normal form of E with respect to the pruning rules. Normal forms are not unique.
For example, (!, (-, E, F)) can be pruned to (-, E, F) or to (#, (&, E, F)).

5.3 Minimal Directors

We can define another translator of lambda calculus to DSC that does not use
the ‘/’ and ‘\’ directors. When abstracting x from a term (E,F), the translation
F would use a ‘/’ director to avoid sending an incoming argument to where it is
ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, October 1988.

Director Strings as Combinators 621

not needed. However, we could use a ‘A’ director to send to both E, and F. A ‘-’
or ‘#’ director will then be used to discard that argument from F. A similar change
is made to the rule abstracting x from (EF,). This translation uses more directors,
but a smaller set of directors. Which is preferable for implementation will depend
on the details of the machine.

6. COMPLEXITY OF TRANSLATION AND EXECUTION

6.1 Translation

Turner’s translation of lambda calculus into combinators causes in the worst
case a quadratic expansion [14]. Director strings are essentially a clearer repre-
sentation of Turner’s translation, and have the same complexity. Run-length
encoding of the director strings (151 reduces the size of the translation to
O(n log& + 2)) for lambda expressions containing n (occurrences of) atoms
and k lambdas. The time taken to make the compacted translation is, however,
the same as for the original translation-proportional to the size of the uncom-
pacted translation, which is quadratic. The same reference shows that the
quadratic time penalty can be avoided by use of Hughes’ supercombinators [12].

6.2 Execution

Hirokawa has shown [lo] that when a lambda expression is translated into
Turner’s combinators, the resulting expression can be evaluated in time propor-
tional to the time required to evaluate the lambda expression by Wadsworth’s
method [25]. The constant of proportionality is a small constant times the
maximum arity of the functions appearing in the program. Director strings are
closely related to Turner’s combinators, and the result applies to director strings
as well. The overhead introduced by the counting representation is also linear.

This result for complexity of execution depends on executing the rules by
graph reduction, not term reduction. That is, for the A rule:

(@2, (AD, El, Ed, Ed + (D, (@a El, E3), (@2, EP, E3))

we do not make two copies of the subexpression Es, but two pointers to the
original E3. This is a standard technique for implementing functional languages
based on term rewriting [19]. Not only the space is reduced, but also the time,
since a shared subexpression need only be evaluated once. As we saw in Section
4, a needed reduction strategy, such as leftmost-outermost reduction, will only
reduce a subexpression if its value is needed to compute the normal form. Thus
leftmost-outermost graph reduction is a lazy implementation of DSC. The results
of Staples [21] imply that it is an optimal evaluation strategy for DSC-the
reduction sequence to normal form will contain as few steps as possible.

This does not imply that lambda calculus is optimally implemented by trans-
lating to DSC and applying leftmost-outermost graph reduction. The translation
removes some possibilities for sharing of computations, since, as shown in
Section 3, beta redexes having free variables translate to DS terms that are not
redexes. This constrains the possible orders of evaluation.

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, October 1988.

622 l R. Kennaway and R. Sleep

7. RELATIONS WITH OTHER WORK

7.1 Revesz’s Rules for Lambda Calculus

The rules for evaluating DS expressions are related to a system of rules for
lambda calculus proposed by Revesz [20]:

h-1) (Xx.x)Q - Q
(r2) (hx.P)Q + P (if x is not free in P)
(r3) (Xx.Xy.P)Q + Xz.((Xx.P[y := z])Q)

(if x # y, x is free in P, and z is a new variable)

(r4) @x.U%Pd)Q -+ (O~.PI)Q)(~.P~Q) (if 3c is free in PI Pz)

To see the connection with director strings, we will derive a similar set of rules
for evaluating lambda terms from our rules for DSC. If we take a beta-redex and
translate it into DSC by F, the resulting DS term will be a DS redex. We can
reduce this redex and translate the resulting expression back to lambda-calculus
by B. This process is equivalent to applying the following rules directly to the
lambda term. We adopt the notation of E, and F, as before. P and Q are ordinary
metavariables.

(dl) (Xx&l . . . XX,.X)Q + Q

(d2) (Xx.& . . . X,.P)Q + P (if x is not free in P)

(d3a) (Xx& . . . Xx,.(E,F,))Q + Xx1 . . . Xn,.((Xx.E,)Q)((Xx.F,)Q) (n z 0)

(d3b) (Xx& . . . Xx,.(E,F))Q + Xxi . . . Xx,.((Xx.E,)Q)F (n I 0)

(d3c) (hx.Xxl . . . Xx,.(EF,))Q + Xx, . . . hx,.E((Xx.F,)Q) (n 2 0)

There are two main differences between these rules and Revesz’s. Firstly, rule
(r4) corresponds to three rules (d3a), (d3b), and (d3c). This reflects our more
detailed analysis of the occurrences of the bound variable in the rator and is not
of great significance. If we based the rules on the modified translation described
in Section 5.3 that does not use the ‘/, or ‘\’ directors, these three rules would be
a single rule corresponding more closely to rule (r4). The more important
difference lies in the fact that a single application of one of Revesz’s rules to a
beta-redex pushes the incoming argument past the outermost node of the body
of the rator. The director-based rules push the argument past an arbitrarily long
string of abstraction nodes as well. Klop has noted [171 that as a result, leftmost-
outermost reduction is not normalizing for Revesz’s rules, due to the possibility
that two incoming arguments can continually “overtake” each other without
making progress.

An example is an expression of the form (h3~.((Ay.P)Q))R, where x is free in P
and Q, and y is free in P. With Revesz’s rules, this expression gives the following
reduction sequence:

(Xx.((~y.P)Q))R + ((~x.~Y.P)R)((~x.Q)R) b-4)
+ (Xz.((Xx.P[y := z])R))((Xx.Q)R) b-2)

Writing P’ for P[y := z], Q’ for R, and R’ for ((Xx.Q)R), this is
(Xz.((Xx.P’)Q’))R’, which has the same form as the starting expression (note
ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, October 1988.

Director Strings as Combinators l 623

that z is free in P’). An infinite reduction sequence follows. To avoid the loop,
one should at this point reduce not the leftmost-outermost redex (the whole
expression) but the redex (Xx.P[y := z])R.

With the rules (dl)-(d3c) based on DS reduction, we obtain the following
sequence. For illustrative purposes, we assume that P has the form PIPz, with x
free in both PI and Pz.

(WOY.PIP~Q))R --, ((XX.XY.PIP~)R)((XX.Q)R) (dW
* (Xy.(Xx.P,R)(X3c.P,R))((Xx.Q)R) (d3a)

The second step here has performed the work of the second step in the previous
reduction sequence, together with the reduction of the inner redex which we saw
was necessary to make progress. In DS, we have (supposing for illustration that
y is also free in both P1 and Pz):

(@a (A, (AA, P:, Pi), &‘I, R’)

+ (@a (@a (AA, Pl’, PB), R’), (@AZ, Q’, R’))

---) (A, (@z, (@a P:, R’), (@a Pi, R’)), (@a Q’, R’))

7.2 SKIM

Director strings have been implemented on the SKIM2 machine [22]. This is a
successor to SKIM [5], which was a hardware implementation of Turner’s
combinators. SKIM2 is microcoded, and can be programmed to support Turner’s
combinators or director strings. Stoye [22] reports significant, although not
dramatic improvements in performance using director strings.

7.3 Categorical Combinators

Categorical combinators [7] are another variable-free combinator system into
which lambda calculus can be translated. They can be developed from the
de Bruijn indexing technique [3], where variables in a lambda-expression are
replaced by numerical indexes that identify the binding lambda. Categorical
combinators are used as the machine code of the Categorical Abstract Machine,
or CAM [6, 71, and a version of ML called CAML has been implemented on the
CAM. The relationship between categorical combinators and director strings is
not entirely clear, and we only give some brief remarks.

7.3.1 Translation. The translation into categorical combinators is linear. This
is so regardless of whether one assumes that a de Bruijn index occupies unit or
O(log n) space, since either assumption must apply equally to the variables that
the indexes replace.

7.3.2 Execution. Several rule-systems for evaluating categorical combinator
expressions have been discussed in the literature. For comparisons with director
strings, we shall mention here only the “weak” rules of [6, 71.

When a closed lambda expression M has been translated to a categorical
combinator expression M’, M’ is evaluated by applying it to the empty environ-
ment and using the weak rules. M’ itself is already in normal form with respect

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, October 1988.

624 l R. Kennaway and R. Sleep

to the weak rules; only when an environment is supplied can any evaluation be
performed, The weak rules distribute the environment downwards from the root
of M’ to the leaves. When this distribution reaches a subexpression of M’
corresponding to a beta redex of M, the rand of the redex is added to the
environment, and this augmented environment is distributed over the rator. For
example, the evaluation of the term (Xx.(Xy.EF)G))H in the empty environ-
ment-which we denote by ~(Xx.(Ay.EF)G))Hj()-proceeds thus (retaining
lambda calculus notation rather than translating to combinators):

U(~.(~Y.EFMMI(1 + iI(~~.=‘)Gll(~: Wll)
+ UEWN~: UHII, Y: ItGIl)
--, wnb: wn,~: umwnb: wn, Y: mm

and we see how the combined environment is distributed as a unit. This contrasts
with DS reduction, which, described in terms of environments, will, in effect,
first distribute the environment over the unreduced redex, and then proceed to
reduce the now modified redex. Choosing some pattern of occurrence of x and y
for illustration, the DS reduction might begin:

(@z, (A, (/ /, E’, J”), G’), H’)
+ (@a (at, (A/, E’, F’), H’), (~3~2, G’, H’))
+ (~8~2, (/, (632, E’, H’), F’), (~32, G', H'))
+ k32, (~32, h32, E', H'), hzi~2, G', H')), F')

H’ and (a2, G’, H’) are here being distributed separately over E’. However, with
director strings, the environment need not be sent where it is not needed, as with
the subterm F’ above.

Thus, categorical combinators have the advantage over director strings that
nested beta redexes are in effect reduced simultaneously, but the disadvantage
that arguments to beta redexes are distributed everywhere, not just to the places
where they are needed.

A further difference is that the implementation of the weak rules in the CAM
imposes a strict evaluation order, whereas machines like SKIM2 use leftmost-
outermost reduction to achieve lazy evaluation. There are well-known techniques
for encoding nonstrict functions in a strict language ([6] shows how it is done on
the CAM), but the encoding loses laziness-the ability to evaluate an argument
at most once, no matter how many times it is required, and not at all if it is not
required.

A precise comparison of theoretical performance is difficult; practical tests
must decide the matter.

8. SUMMARY AND CONCLUSION

The basic insight underlying the Director String Calculus is present in Turner’s
S’, B’, and C’ “long reach” combinators [24]. Dijkstra [8] independently sug-
gested the idea of annotating the application subterms with strings. We have
formalized these ideas, and shown that our implementation of the lambda calculus
based on DSC is correct up to beta-convertibility. We have also shown that for
ground terms (those whose normal form contains no lambdas) DSC reduction is
ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, October 1988.

Director Strings as Combinators 625

strong, i.e., the normal form obtained by the DSC implementation is the lambda
calculus normal form. Many of our proofs have been simplified by designing our
rule systems to be regular.

There are a number of reasons for believing that DSC reduction provides a
basis for implementing lambda languages:

(a) Practical implementations (e.g., SKIM) are in use already.
(b) Although DSC reduction is weak, this is sufficient for evaluating ground

terms.
(c) For nonground terms, strong (beta-) reduction can lead to a phenomenon

called code expansion, in which the size of a function body grows considerably
with little if any accompanying benefit. For example the lambda calculus
normal form of the term ((twice twice) (twice twice)) where twice =
Xf.Xx.f (fx) contains 256 subterms, which are applications. The DSC normal
form of the translation of this expression is much smaller.

In practice many optimizations of the DSC implementation can be made.
During abstraction, the use of eta-optimization can lead to significantly more
compact code. During reduction, advantage may be taken of large, frequently
used abstraction patterns (e.g., the supercombinators of Hughes [12]) and spe-
cialized machine code may be written to achieve the same overall effect.

We have shown that our abstraction rules preserve the applicative structure of
the original lambda term, and cannot increase the number of subterms in the
translation. This may be a useful law for reasoning about DSC-like implemen-
tations.

ACKNOWLEDGMENTS

David Turner first showed that combinator implementations of lambda languages
were practicable [23, 241. Peter Buneman pointed out that DSC abstraction
preserves applicative structure. Many helpful comments were made by P.-L.
Curien, members of the Declarative Systems Project at UEA, and the referees.
Jan Willem Klop and Henk Barendregt taught us about reduction theory and
the lambda calculus. The work was partially supported by the UK Science and
Engineering Research Council as part of the Distributed Computing Systems
program.

REFERENCES

1. BARENDREGT, H. P. The Lambda Calculus. Studies in Logic and the Foundations of Mathematics
103, North-Holland, Amsterdam, 1984.

2. BARENDREGT, H. P., KENNAWAY, J. R., KLOP, J. W., AND SLEEP, M. R. Needed reduction and
spine strategies for the lambda calculus. Rep. CS-R.8621, Centre for Mathematics and Computer
Science, Mathematical Centre, Amsterdam, 1986.

3. DE BRUIJN, N. D. Lambda calculus notation with nameless dummies, a tool for automatic
formula manipulation, Indag. Math. 34 (1972), 381-392.

4. BURTON, F. W. A linear space translation of functional programs to Turner combinators. Znf.
Process L&t. 14, 5 (1982), 201-204.

5. CLARKE, T. J. W., GLADSTONE, P. J. S., MACLEAN, C. D., AND NORMAN, A. SKIM-the S, K,
I reduction machine. In Proceedings of the LISP-80 Conference (Stanford, Calif., 1980).

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, October 1988.

626 l R. Kennaway and R. Sleep

6. COUSINEAU, G., CURIEN, P.-L., AND MAUNY, M. The categorical abstract machine. In Proceed-
ings of the Conference on Functional Programming Languages and Computer Architecture. Lecture
Notes in Computer Science 201. Springer, Berlin, 1986, pp. 50-64.

7. CURIEN, P.-L. Categorical Combinators, Sequential Algorithms, and Functional Programming.
Pitman, London, 1986.

8. DIJKSTRA, E. W. A mild variant of combinatory logic. Unpublished note. EWD735, 1980.
9. HINDLEY, J. R., LERCHER, B., AND SELDIN, J. P. Introduction to Combinatory Logic. Cambridge

University Press, London, 1972.
10. HIROKAWA, S. Complexity of the combinator reduction machine. Theor. Comput. Sci. 41, 2-3

(1985), 289-304.
11. HUET, G., AND L&Y, J. J. Call by need computations in non-ambiguous linear term rewriting

systems. Rapport Laboria 359, IRIA, 1979.
12. HUGHES, R. J. M. The design and implementation of programming languages. Ph.D. disserta-

tion, Programming Research Group, Oxford Univ., 1984.
13. JOHNSSON, T. Lambda-lifting: Transforming programs to recursive equations. In Proceedings

of the Conference on Functional Programming Languages and Computer Architecture. Lecture
Notes in Computer Science 201. Springer, Berlin, 1986, pp. 190-203.

14. KENNAWAY, J. R. The complexity of a translation of lambda calculus to Turner’s combinators.
Rep. GSA/13/1984, School of Information Systems, Univ. of East Anglia, 1982.

15. KENNAWAY, J. R., AND SLEEP, M. R. Variable abstraction in O(n log n) space. Znf. Process.
L&t. 24 (1987), 343-349.

16. KLOP, J. W. Combinatory reduction systems. Ph.D. dissertation, Mathematical Centre Tracts
127, Mathematical Centre, Amsterdam, 1980.

17. KLOP, J. W. Term rewriting systems. In Notes for the Workshop on Reduction Machines (Ustica,
1985).

18. L&Y, J. J. Optimal reductions in the lambda-calculus. In To H. B. Curry: Essays on Combinatory

Logic, Lambda Calculus, and Formalism. J. P. Seldin and J. R. Hindley, Eds. Academic Press,
London, 1980, pp. 159-191.

19. PEYTON JONES, S. L. The Implementation of Functional Languages. Prentice-Hall, Englewood
Cliffs, N.J., 1987.

20. REVESZ, G. Axioms for the theory of lambda conversion. SIAM J. Comput. 14, 2 (1985),
373-382.

21. STAPLES, J. Optimal evaluations of graph-like expressions. Theor. Comput. Sci. 10, (1980),
297-316.

22. STOYE, W. Director strings on SKIM. In Proceedings of the Functional Programming Workshop
(Gateborg, 1985).

23. TURNER, D. A. A new implementation technique for applicative languages. Softw. Pratt. Exper.
9 (1979), 31-4s.

24. TURNER, D. A. Another algorithm for bracket abstraction. J. Symbol. Logic 44, 2 (1979),

267-270.
25. WADSWORTH, C. P. Semantics and pragmatics of the lambda calculus. Ph.D. dissertation,

Programming Research Group, Oxford Univ., 1971.

Received August 1982; revised November 1986 and March 1988; accepted April 1988

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, October 1988.

