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1. Introduction 
Temporal logic [27, 281 provides a formalism for describing the occurrence of 
events in time that is suitable for reasoning about concurrent programs (cf. [24]). 
In defining temporal logic, there are two possible views regarding the underlying 
nature of time. One is that time is linear: At each moment there is only one possible 
future. The other is that time has a branching, treelike nature: At each moment, 
time may split into alternate courses representing different possible futures. De- 
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pending upon which view is chosen, we classify (cf. [29]) a system of temporal 
logic as either a linear time logic in which the semantics of the time structure is 
linear, or a system of branching time logic based on the semantics corresponding 
to a branching time structure. The modalities of a temporal logic system usually 
reflect the semantics regarding the nature of time. Thus, in a logic of linear time, 
temporal modalities are provided for describing events along a single time path (cf. 
[ 141). In contrast, in a logic of branching time, the modalities reflect the branching 
nature of time by allowing quantification over possible futures (cf. [ 1, 71). 

Some controversy has arisen in the computer science community regarding the 
differences between and appropriateness of branching versus linear time temporal 
logic. In a landmark paper [ 191 intended to “clarify the logical foundations of the 
application of temporal logic to concurrent programs,” Lamport addresses these 
issues. He defines a single language based on the temporal operators “always” and 
“sometimes”. Two distinct interpretations for the language are given. In the first 
interpretation, formulas make assertions about paths, whereas in the second 
interpretation they make assertions about states. Lamport associates the former 
with linear time and the latter with branching time (although it should be noted 
that in both cases the underlying time structures are branching). He then compares 
the expressive power of linear time and branching time logic and finds them 
incomparable. On the basis of his comparison and other arguments, he concludes 
that, although branching time logic is suitable for reasoning about nondeterministic 
programs, linear time logic is preferable for reasoning about concurrent programs. 

In this paper, we reexamine Lamport’s arguments and reach somewhat different 
conclusions. We first reprove Lamport’s incomparability results in a setting more 
appropriate to concurrency by considering R-generable structures (i.e., structures 
generated by a binary relation similar to those used in the logics of [ 131 and [2]; 
cf. [5]). But we then show that these incomparability results only apply to the two 
particular systems he defines. Since Lamport’s arguments, all of which are based 
on this one comparison, do not apply in general, sweeping conclusions regarding 
branching versus linear time logic are not justified. 

We argue that there are several different aspects to the problem of designing and 
reasoning about concurrent programs. Although the specific modalities needed in 
a logic depend on the precise nature of the purpose for which it is intended, we 
can make some general observations regarding the choice between a system of 
branching or linear time. We believe that linear time logics are generally adequate 
for verifying the correctness of preexisting concurrent programs. For verification 
purposes, we are typically interested in properties that hold for all computation 
paths. It is thus satisfactory to pick an arbitrary path and reason about it. However, 
there are applications where we need the ability to assert the existence of alternative 
computation paths as provided by a branching time logic. This arises from the 
nondeterminism-beyond that used to model concurrency-present in many 
concurrent programs. In order to give a complete specification of such a program, 
we must ensure that there are viable computation paths coresponding to the 
nondeterministic choices the program might make. (An example is given in Section 
6.) Neither of Lamport’s systems is entirely adequate for such applications. 

In order to examine these issues more carefully, we define a language, CTL*, in 
which a universal or existential path quantifier can prefix an arbitrary linear time 
assertion. CTL* is an extension of the Computation Tree Logic (CTL), defined in 
[3] and studied in [9]. This language subsumes both of Lamport’s interpretations 
and allows us to compare branching with linear time. Moreover, the syntax of 
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CTL* makes it clear which interpretation is intended. We then compare several 
sublanguages of CTL* in expressive power. These sublanguages correspond to ones 
that have been considered elsewhere in the literature (cf. [2, 3,7-9, 141. By making 
such a comparison, we can better understand which of these languages is most 
appropriate for reasoning about a given application. 

The paper is organized as follows: In Section 2 we summarize Lamport’s 
approach and discuss its limitations. In Section 3 we present the syntax and 
semantics of CTL*. We also define some natural sublanguages of CTL* and 
compare their expressive power in Section 4. In particular, we show (cf. Theorem 
4.2) that a language substantially less expressive than CTL* still subsumes both of 
Lamport’s interpretations. Section 5 then shows how CTL* can be embedded in 
MPL [l] and PL [ 161. Finally, Section 6 concludes with a comparison of the utility 
of branching and linear time logics. 

2. A Critique of Lamport’s Approach 

For the reader’s convenience we summarize Lamport’s approach here (we do take 
the liberty of slightly altering his notation): 

2.1 STRUCTURES. A structure M = (S, X, L) where 

S is a nonempty set of states, 
X is a nonempty set of paths (where a path is a nonempty sequence of states), and 
L is a labeling that assigns to each state a set of atomic propositions true in the 

state. 

We use s, t, s’, t,, . . . to denote states in S and x, y, x’, yl , . . . to denote (finite 
or infinite) sequences of states (with repetitions allowed) over S. We think of a 
state as being the state of a system during the execution of a concurrent program. 
A path is the sequence of states describing one particular (entire) execution of the 
program. Thus, X represents a set of possible executions of the concurrent program. 

Certain restrictions are often placed on the set of paths X. In order to describe 
them, we first need some definitions: A sequence x is of length k, written ] x ] = k, 
if it consists of 1 + k states.’ We use first(x) to denote the first state, SO, of x. 
If ] x ] > 0, we define xsucc = (sr, . . . , sk, . . .); otherwise, xsucc = x. We define the 
suffixes of x, x0 = x, xm+’ = (x’~)~“~~. If y # x is a sufftx of x, then y is a proper 
sufix of x. The prefixes and proper prefixes of x are defined similarly. 

Lamport, in particular, requires that X be suflx closed, that is, if x E X then 
X ‘“” E X. (The motivation for this requirement will be discussed subsequently.) 

2.2 SYNTAX. Lamport inductively defines the syntax of a class of temporal 
formulas : 

(1) Any atomic proposition P is a temporal formula. 
(2) If p, q are temporal formulas, then so are p A q (“conjunction”) and 1p 

(“negation”). 
(3) If p is a temporal formula then so are up (meaning “always p”) and -p 

(meaning “sometimes p”). 

2.3 SEMANTICS. A temporal formula’s meaning depends on whether it is 
interpreted as a formula of branching time or a formula of linear time. For the 
branching time interpretation, we write M, s l=B p to indicate that formula p is 

’ An infinite sequence x = so, s,, s*, . . . is of length w because it consists of 1 + w = w states. 
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interpreted as true in structure M at state s. We define l=B inductively: 

(1) M,sbBPiffPEL@). 
(2) M,s~BI)AqiffM,S~BpandM,s~~q; 

M, s l=B 1p iff not (M, s l=n p). 
(3) M, s kB q p iff t/path x E X with first(x) = s, Vn ~0, M, tirst(x”) l=Bp; 

M, s t=~ *p iff Vpath x E X with first(x) = s, 3n I 0, M, lirst(x”) I=B p. 

Similarly, for the linear time interpretation we write M, x l=~ p to indicate that 
in structure M formula p is true of path x. Again, we define EL inductively: 

(1) M, x l==L P iff P E L(Iirst(x)). 
(2) M,xKrpAqiffM,xl=:~pandM,xb~q; 

M, x l==L 1p iff not (M, x l=L p). 
(3) M,x~=LnpiffVIZ~O,M,x”~=Lp; 

M,x~L wpiff3nr0,M,x”l=Lp. 

For both interpretations, the modality Op (“not never p”) is introduced as an 
abbreviation for -KILL and the other logical connectives are introduced as abbre- 
viations in the usual way. It can be easily checked that *p is equivalent to Op in 
the linear time, but not the branching time interpretation. This justifies Lamport’s 
comment that “sometimes” is sometimes (but not always) “not never.” 

Note that in the branching-time interpretation, a formula is true or false of a 
state whereas in the linear time interpretation, a formula is true or false of a path. 
Thus, we cannot directly compare the expressive power of linear time with 
branching time. In an attempt to overcome this difficulty, Lamport extends l=~ 
and eL to entire models: 

Definition 1. Given structure M = (S, X, L) temporal formula p is M-valid 
under the branching time interpretation, written M I=B p, provided that for every 
state s E S, M, s l+, p. Similarly, p is M-valid under the linear time interpretation, 
written M l=L p, provided that for every path x E X, M, x l=L p. 

Next, Lamport defines his notion of equivalence: 

Definition 2. Formula p under interpretation I is strongly equivalent to formula 
q under interpretation J (with respect to a class of structures %7), written p =F q, 
provided that for every structure M E %‘, M l=i p iff M l=, q. (When %? is understood, 
we simply write =,.) 

Using this formalism, Lamport argues that linear time and branching time have 
incomparable expressive power: 

THEOREM 1 [ 191. OP in branching time is not strongly equivalent with respect 
to SUTX closed structures to any assertion of linear time. 

THEOREM 2 [ 191. +++oP in linear time is not strongly equivalent with respect to 
sufix closed structures to any assertion of branching time. 

We now provide our critique of Lamport’s approach. Although we do have a 
few minor criticisms regarding some peculiar technical features and limitations of 
Lamport’s formalism, we would like to emphasize, before we begin, that Lamport’s 
formal results are technically correct-that is, they follow via sound mathematical 
arguments from his definitions. Our main criticisms instead center around 

(1) Lamport’s basic definitions and underlying assumptions, and 
(2) the informal conclusions regarding the application of temporal logic to reason- 

ing about concurrent programs that Lamport infers from his technical results. 
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First, to make the technical results comparing expressive power relevant to 
concurrent programming, the underlying assumptions about the semantics of a 
concurrent program as given by the structure should reflect essential properties of 
genuine concurrent programs. Lamport correctly observes that “the future behavior 
[of a concurrent program] depends only upon the current state, and not upon how 
that state was reached.” With this motivation, Lamport requires that the set of 
paths X be suffix closed, that is, if x E X then xsucc E X. As observed in [5], 
however, suffix closure is not sufficient to guarantee that a program’s future 
behavior depends only on its current state. We also need to require that, at least, 
X be fusion closed (cf. [26]), meaning that if xl sy, , x2sy2 E X then xl sy2 E X.’ 
Moreover, there are some additional properties that the set X of all computations 
of a concurrent program can be expected to satisfy. We say that X is limit closed 
(Cf. [I]) if whenever each Of the infinite sequence Of paths x1 yl , xIx2y2, x1x2x3y3, 
. . . is in X, then the infinite path x1 ~2x3 . - . (which is the “limit” of the prefixes 
(xl, x1x2,x1x2x3,. . .)) is also in X. We say that a set X of paths is R-generable iff 
there exists a total, binary relation R on S such that X consists precisely of the 
infinite sequences (so, sI, s2, . . .) of states from X for which (Si, si+l ) E R. 
R-generability corresponds to the common approach (cf. [2, 7, 9, 13, 211) of 
describing a concurrent program via a transition relation (R) on states. It is also 
convenient for many applications to assume that every path in X is infinite, thus 
identifying a finite execution (so, . . . , sk) with the infinite execution (SO, . . . , Sk, 
Sk, Sk, . . .). (Note: This is essentially what is done by our successor operation on 
paths.) As shown in [5], a set X of infinite paths is R-generable iff it is suffix closed, 
fusion closed, and limit closed. We say that a structure M = (S, X, L) is suffix 
closed (respectively, fusion closed, limit closed, R-generable) exactly if the set of 
paths X is. Finally, a structure M is state complete if, for all s E S, there is some path 
x E X whose first state is s. 

As the above remarks indicate, the expressiveness results should be developed 
with respect to either R-generable structures or structures that are both suffix closed 
and fusion closed. However, Lamport’s proof of Theorem 1 only applies to 
structures that are suffix closed but not fusion closed, while his proof of Theorem 
2 only applies to structures that are suffix closed but not limit closed (and hence 
not R-generable). Nonetheless, as we show in Section 4, Theorems 1 and 2 do 
extend to the more relevant types of semantics. 

We also have a technical objection concerning the notion of strong equivalence. 
By only considering the truth of a formula in a (whole) model, rather than at a 
state or path, a great deal of information is lost. For example, in the branching 
time interpretation, although there is a model M with state s such that M, s l+ 
-P A lP, there is no model M such that M l=:B -P A 1P. Similar remarks apply 
for the linear time interpretation. Thus, we get 

PROPOSITION 1. In linear time or in branching time, -P A 7P =S false. 

This suggests that zs is too coarse an equivalence relation for properly comparing 
the expressive powers of logics, in that it classifies satisfiable formulas as equivalent 
to false. 

We are further concerned that, since the same notation is used for both branching 
and linear time formulas, it is not clear from the syntax which interpretation is 
intended. This has the effect of obscuring an essential difference between the two 

* Roughly speaking, when X is fusion closed, if xs is a prefix of some execution of the program and sy 
is a suffix of another execution, then XSJJ is also an execution. 
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interpretations, namely, that linear time formulas make assertions about paths and 
branching time formulas make assertions about states. It also causes difficulties 
when translating from English into the formalism. 

Our chief disagreement is, of course, with Lamport’s conclusion that linear time 
logic is superior to branching time logic for reasoning about concurrent programs. 
We do not think that sweeping conclusions regarding branching versus linear time 
logics in general are justified merely on the basis of the comparison of the two 
particular systems that Lamport considers. Indeed, Lamport gives two specific 
arguments to justify his conclusion: 

(1) To establish certain liveness properties of a concurrent program, it is frequently 
necessary to appeal to some sort of fair scheduling constraint such as strong 
eventual fairness (which means that if a process is enabled for execution 
infinitely often, then eventually the process must actually be executed). This 
constraint can be expressed in linear time logic by the formula (- q lenabled) 
V -executed. However, by Theorem 2, it is not expressible in branching time 
logic. 

(2) In proving a program correct, it is often helpful to reason using the principle 
that, along any path, either property P is eventually true or is always false. This 
amounts to assuming an axiom of the form -P V q ~P, which is M-valid for 
all models M under the linear time interpretation, but not under the branching 
time interpretation. 

The first observation is certainly true for the particular systems that Lamport 
has defined. However, by using a branching-time logic with a richer set of modalities 
(for example, by allowing the “infinitary” quantifiers used in [7]), these assertions 
can be easily expressed. Indeed, by adding enough modalities to a branching time 
logic, any assertion of Lamport’s linear time can be expressed as described in 
Theorem 4. In regard to the second point, it is true that the given formula is valid 
(i.e., true in all models) under the linear time interpretation but not under the 
branching time interpretation. However, the formula is not a correct translation of 
the principle into the formalism under the branching time interpretation. (We 
believe that this is an instance of the confusion caused by the use of the same 
syntax for both interpretations.) Again, as shown in Section 3, it is possible to write 
a formula in a branching time system that accurately renders the principle. 

3. A Unified Approach 

In this section we exhibit a uniform formalism for comparing branching with linear 
time that avoids the technical difficulties of Lamport’s and allows us to examine 
the issues more closely. To illustrate our approach, we describe a language, CTL*, 
that subsumes Lamport’s branching and linear time systems, as well as UB [2] and 
CTL [3, 91. CTL* is closely related to MPL [ 11. (CTL* is also used in [4].) In CTL* 
we allow a path quantifier, either A (“for all paths”) or E (“for some paths”), 
to prefix an assertion p composed of arbitrary combinations of the usual linear 
time operators G (“always”), F (“sometimes”), X (“nexttime”), Urn (“until”), 
as well as the inlinitary state quantifiers of [7], F (“infinitely often”), G (“almost 
everywhere”). 

3.1 SYNTAX. We inductively define a class of state formulas (true or false of 
states) and path formulas (true or false of paths): 

S 1. Any atomic proposition P is a state formula. 
S2. If p, q are state formulas, then so are p A q, lp. 
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S3. If p is a path formula, then Ap, Ep are state formulas. 
P 1. Any state formula p is a path formula. 
P2. If p, q are path formulas, then so are p A q, 1~. 
P3a. If p is a state formula, then Fp is a path formula. 
P3b. If p is a path formula, then Fp is a path formula. 
P4a. If p is a state formula, then Xp is a path formula. 
P4b. If p is a path formula, then Xp is a path formula. 
P5a. If p, q are state formulas, then (p U q) is a path formula. 
P5b. If p, q are path formulas, then (p U q) is a path formula. 
P6a. If p is a state formula, then Ep is a path formula. 
P6b. If p is a path formula, then Fp is a path formula. 

Remark. The other truth-functional connectives are in@duced as abbrzvia- 
tions in the usual way. We also let Gp abbreviate 1Flp and Gp abbreviate 1-p. 
In addition, wemcould take the view that Ap abbreviates yelp, Fp abbreviates 
(true Up), and Fp abbreviates GFp. Thus, we could give a substantially more terse 
syntax and semantics for our language by defining all the other operators in terms 
of just the primitive operators E, X, U, 1, and A. We could also consider state 
formulas as a special case of path formulas whose truth value depends on the first 
state of the path and thus view all formulas as path formulas. This is essentially 
what is done in PL (cf. [ 161) and also leads to a slightly easier formulation of the 
syntax and semantics. However, like Abrahamson [I], we consider the distinction 
between quantification over states and over paths an important one that should be 
maintained. Moreover, this approach makes it easier to give the syntax of each of 
the sublanguages that we consider. 

The set of state formulas generated by all the above rules forms the language 
CTL*. Since we are also concerned with the power of the various modalities, we 
also want to consider various sublanguages of CTL*. The set of path formulas 
generated by rules Sl, Pl, 2, 3b gives the (linear time) language L(F). By adding 
rule 5b we get the language L(F, U) while adding both rules 4b, 5b gives us 
L(F, X, U). We get the (branching time) language B(F) by considering the state 
formulas generated by rules Sl-3, P3a. Adding rules P4a, P5a gives B(F, X, U), 
adding rules P2, P4a, E5a gives B(F, X, U, A, l), and adding rules P2, P4a, P5a, 
P6a gives B(F, X, U, F, A, 1). Thus, for example, A[FP A GQ] is a formula of 
B(F, X, U, A, 1) but not of B(F, X, U). 

The languages defined here include a number of the linear time and branching 
time logics considered in the literature. As we shall see, L(F) and B(F) correspond 
precisely to Lamport’s linear time interpretation and branching time inter- 
pretation, respectively. L(F, X, U) has been used in many applications 
(cf. [ 14, 221); in [30] the same language is called L(F, G, X, U) (we have omitted 
the G here for reazons of brevity). B(F, X, U) is the logic CTL of [3], [S], and [9],’ 
while B(F, X, U, F, A, 1) is essentially the language studied in [7] for describing 
fairness properties. 

We use l p ] to denote the length of formula p, that is, the number of symbols in 
p viewed as a string over the set of atomic propositions union the set of connectives 
(A, 1, -4 E, F, (, 1, etc.). 

3.2 SEMANTICS. We write M, s l= p (M, x l= p) to mean that state formula p 
(path formula p) is true in structure M at state s (of path x, respectively).3 When 

3 Note that M may be an arbitrary structure, and that we define the semantics of path formulas relative 
to u/l paths over the states of M, not just the paths in X; it is the path quantifiers, A or E, of the state 
formulas that restrict quantification to paths in X. 
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M is understood, we write simply s l= p (x l= p). We define l= inductively: 

Sl . s E P iff P E L(s) where P is an atomic proposition. 
S2. s l= p A q iff s E p and s l= q where p, q are state formulas. 

s l= 1p iff not (s l= p) where p is a state formula. 
S3. s l= Ap iff for every path x E X with first(x) = s, x l= p where p is a path 

formula. 
s l= Ep iff for some path x E X with first(x) = s, x K p where p is a path 

formula. 
P 1. x K p iff fust(px) l= p where p is a state formula. 
P2. x l= p A q iff x l= p and x l= q where p, q are path formulas. 

x l= 1p iff not (x l= p) where p is a path formula. 
P3a. x l= Fp iff for some i I 0, first(x’) l= p where p is a state formula. 
P3b. x l= Fp iff for some i 2 0, xi l= p where p is a path formula. 
P4a. x E Xp iff 1 x 1 I 1 and tirst(x’) l= p where p is a state formula. 
P4b. x l= Xp iff ] x 1 2 1 and x1 l= p where p is a path formula. 
P5a. x l= (p U q) iff for some i 2 0, first(x’) l= q and for all j I 0 [j < i implies 

fa(x’) I= p]. 
P5b. x~(~Uq)iffforsomei~O,x’~qandforalljzO[j<iimpliesx~~p]. 
P6a. x l= Fp iff for infinitely many distinct i, first(x’) E p where p is a state 

forrn$a. 
P6b. x l= Fp iff for infinitely many distinct i, xi l= p where p is a path formula. 

Remarks 

(1) It is easy to check that all the equivalences mentioned in the remark in 
Section 3.1 hold. 

(2) The notions of M-validity and strong equivalence (defined in Definitions 1 
and 2, respectively) generalize to apply to arbitrary state and path formulas. El 

As mentioned above, Lamport’s linear time and branching time formalisms 
correspond to L(F) and B(F), respectively. Let p be a temporal formula as defined 
in Section 2.2. Let pL be the path formula that results from replacing each q in p 
by G, and each +, by F. Let pB be the state formula that results from replacing 
each q in p by AC, and each VC, in by AF. Clearly, pL is an L(F) formula and pB is 
a B(F) formula. Moreover, each L(F) (respectively, B(F)) formula_corresponds to 
a unique temporal formula via this translation. We then have 

PROPOSITION 2 

M,.s~P tf M, si=pB; 
M,x~P z@ M, xl=pL. 

Note that under the linear time interpretation the formula discussed in the 
previous section, -P V q lP, corresponds to the L(F) formula FP V GlP, which 
is clearly valid. Under the branching time interpretation, it corresponds to AFP V 
AGlP, which is not valid. However, the valid B(F, X, U, A, 1) formula A(FP V 
GlP) (obtained by simply prefixing the L(F) formula with A) does capture the 
intended principle. 

Clearly, a direct comparison of linear time (i.e., path) formulas with branching 
time (i.e., state) formulas is impossible. As we have seen, Lamport’s approach of 
defining a formula as true or false of an entire structure gives us too coarse an 
equivalence relation. How then can we compare linear time with branching time? 
Since in program verification applications there is an implicit universal quantifi- 
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cation over all possible futures when a linear time assertion is used, this suggests 
that we associate with every path formula p the state formula Ap and ask whether 
this is expressible in a given branching time logic. Thus, we have the following 
definition: 

Definition 3. Given any language L of path formulas, we define the language 
of associated state formulas B(L) = (Ap:p E LJ. (Note that B(L) is not closed 
under semantic negation or disjunction (cf. [l]).) 

On this basis we can compare any linear time logic L with branching time logic 
B by first converting L into the associated branching time logic B(L). This time, 
however, equivalence of the branching time formulas is measured by the “usual” 
notion: 

Definition 4. Given state formulas p, q we say that p is equivalent to q, with 
respect to a class g of structures written p =F q, provided that for every structure 
M in ‘$7, for every state s of M, M, s l= p iff M, s l= q. When %? is clear from context, 
we simply write =. 

It is easy to check that = is an equivalence relation on state formulas that refines 
=s and avoids the problems of Proposition 1. In fact, we have the following results 
which clarify the relation between = and Ed. Let F be the class of all structures 
that are both fusion closed and state complete. 

PROPOSITION 3. For any path formula p, p =s Ap. 

PROOF. Let M = (S, X, L) be an arbitrary structure. We show M l= p iff 
M l= Ap. If M l= p, then for all x E X, M, x l= p. So for all s E S, M, s l= Ap 
and thus M l= Ap. Conversely, if M l= Ap, then for all s E S, M, s l= Ap and for 
all x E X starting at s, M, x l= p. Since each x E X starts at some s E S, M, x l= p 
for all x E X. Thus, M l= p. Cl 

PROPOSITION 4. For any state formulas p, q, p = f q iffAGp =Y AGq. 

PROOF 

(+:) Assume p =;J’ q. It will suffice to show that M, s l= AGp implies M, s l= 
AGq because, by a symmetric argument, we can then conclude AGp =T AGq. So 
suppose M, s l= AGp, where M = (S, X, L) is an arbitrary fusion closed structure 
and s E S. Define M’ = (S’, X’, L’) where S’ = 1s’ E S:s’ appears on some 
x’ E X with first(x’) = s), X’ = lx’ E X: first(x’) E S’), and L’ = L ] S’. Since X 
is fusion closed (s” E S:s” appears on some x’ E X’) = S’ and M’ is thus a 
structure. Observe that for any state formula r, M, s l= AGr iff M’, s l= AGr iff 
Vs’ E S’, (M’, s’ l= r). Taking r = p, we get Vs’ E S’, M’, s’ l= p. Since p =? q, 
Vs’ E S’, we have M’, s’ l= q. Now take r = q, to see that M, s l= AGq as desired. 

(+:) Assume AGp =Y AGq, that is, M, s l= AGp iff M, s l= AGq for all M and 
s in M. It will suffice to show that M l= p implies M l= q, as a symmetric argument 
will yield p =f q. Now suppose M l= p, where M = (S, X, L). Then, Vs E S, we 
have M, s l= p whence, Vs E S, we also have M, s l= AGp. Since AGp =T AGq, 
Vs E S, M, s l= AGq. Since M is state complete, Vs E S, we have M, s l= q. Thus 
M l= q as desired. Cl 

Remark. Both fusion closure and state completeness are needed for the previous 
result. Considering the formulas p = P A EFEXlP and q = false, we see that, 
while p ss q, we also have AGp f AGq if we allow structures that are not fusion 
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closed. Similarly, if we take p = AGEFtrue A EFtrue and q = [AGEFtrue A EFtrue] 
V AGfalse, we have AGp = AGq, but also p f, q if we allow structures that are not 
state complete. 

COROLLARY 1. For any path formula p and state formula q, p =? q if 
AGAp =Y AGq. 

Finally, we compare the expressive power of two branching time languages as 
follows: 

Definition 5. As measured with respect to a class of structures 5Z?‘, we say that 
L2 is at least as expressive as L,, written L, I’ Lz, provided that for every p E L, 
there exists q E Lz such that p =O q. We say that L, is exactly as expressive as Lz, 
written L, so Lz, provided L, s@ Lz and Lz s@ L,. Finally, Ll is strictly less 
expressive than Lz. written L, <@ Lz, provided Ll 5% LZ and Ll Z@ Lz. (When it 
is clear from the context, the superscript g is omitted.) 

4. Expressiveness Results 
We now compare linear time and branching time logics using the formalism of the 
previous section. In line with our criticism of Lamport’s underlying semantic 
assumptions, our comparison is done with respect to the class of R-generable 
structures. (We leave it to the reader to check that all our proofs hold without 
change for the class of suffix closed and fusion closed structures as well.) In this 
framework, we reprove Lamport’s incomparability results establishing that the 
branching time logic B(F) and the linear time logic B(L(F)) are i%comparable in 
expressive power. We also prove that B(L(F)) < B(F, X, U, F, A, l), thus 
demonstrating that branching time logic can be more expressive than a linear time 
logic4 Moreover, this result is essentially tight. If we add X and U (actually either 
Xor U alone suffices) to the lineaLtime logic, the resulting language is incomparable 
in expressive power to B(F, X, U, F, A, 1). Indeed, we show that Figure 1 completely 
describes the relative expressive power of the languages we have considered, where 
any two languages not connected by a chain of 4s and =‘s are of incomparable 
expressive power. Such expressiveness results provide important information when 
choosing an appropriate logic for reasoning about a particular application. 

We first show that no linear time language (i.e., one of the form B(L(-))) can be 
more expressive than even B(F). This reproves Lamport’s result (Theorem 1) in 
the R-generable framework. 

THEOREM 3. The B(F) formula EFP is not equivalent to any B(L(F, X, U)) 
formula. 

PROOF. Suppose EFP = Aq for some linear time formula q over F, X, U. 
Consider the R-generable structure M = (S, X, L) where S = (s, , s2 1, X is the set 
of paths generated by R = ((si , sl), (si, SZ), (s2, s2)], and L is such that M, SI l= 1P 
and M, s2 l= P. The R-generable “substructure” obtained by restricting M to S’ = 
(s, 1 is defined as M’ = (S’, X’, L’) where X’ is the set of paths generated by 
((s,, sI)) and L’(s,) = L(si). Plainly, M, s1 I= EFP and M’, s1 I= 1EFP. By the 
supposed equivalence of EFP and Aq, we have M, s1 l= Aq. But then M’, SI l= Aq 
because every path starting at s1 in M’ is also a path starting at sI in M. Again 
using the supposed equivalence we get M’, s1 I= EFP, a contradiction. Cl 

4 Because we are working in the context of R-generable structures, throughout this section we write just 
= for &’ and c for<-+. 
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3 III 

B(F,X,U) 

4 v 

B(F) 

Our next result shows that Lamport’s linear time system B(L(F)) is expressible 
in a branching time logic: 

THEOREM 4. B(L(F))s B(F,X, U,F, A,l). 

PROOF. This proof involves a complicated induction on the structure of B(L(F)) 
formulas. Details are left to the Appendix. Cl 

However, if we add either the nexttime operator or the until operator, the 
situation changes: 

THEOREM 5. Theformula A[F(P A XP)] is not equivalent to any B(L(F, X, U, 
E, A, 1)) formula. 

PROOF. We inductively define two sequences MI, MZ, MS, . . . and N1, N2, N3, 
of models as follows. Define MI, Nr to have the graphs shown in Figure 2 

where in M,, al i= P, br I= P, d, K 1P and in N,, al I= P, and d, I= 1P. 
Suppose we have defined M; and Ni. Then Mi+ 1 and Ni+ 1 have the graphs shown 

in Figure 3, where in both Mi+I and Ni+l, ai+l k P, bi+r k 1P, and MI, N,! are 
copies of Mi, Ni, respectively. 

It should be clear that 

(1) for all i, Mi, ai k A [F(P A XP)] and Ni, ai k 1A [F(P A XP)]. 

We will also show that 

(2) For any B(F, X, U, p, A, 1) formula p there is a B(F, X, U) formula q that is 
equivalent to p over these two sequences of models. That is, for all i and all 
states s in Mi, 

Mi,sEpEq, and similarly for Ni. 

(3) For any B(F, X, U) formula p, if 1 p 1 zz i, then Mi, ai I= p iff Ni, ai E p. 

To see th$ the result follows, suppose that A [F(P A XP)] is equivalent to some 
B(F, X, U, F, A, 1) formula p. Then by (2) above, there is a B(F, X, U) formula 
p’ equivalent to p over these models. Now 1 p’ 1 = i for some i. Then Mi, ai I= 
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A[F(P A XP)], which, by supposition and (2), implies M;, a; l= p’. By (3) this 
implies N;, Ui E p’, which implies, again by supposition and (2), that Ni, ai l= 
A [F(P A XP)]. But this contradicts the fact (1) above that Ni, ai l= 1,4 [F(P A XP)]. 

The details of the proof for (2) and (3) are provided in the Appendix. Cl 

THEOREM 6. cheformula E[((P, U P2) V (Q, U Q2)) U R] is not equivalent to 
any B(L(F, X, U, F, A, 1)) formula. 

PROOF. Left to the Appendix. Cl 

Similar combinatorial techniques can also be used to prove the following 
theorem: 

THEOREM 7. The formula EEP is not equivalent to any B(F, X, U, A, 1) 
formula. 

PROOF. Left to the Appendix. Cl 

Since -UP in linear time corresponds to AGP, the dual of EFP, Theorem 7 
reproves in the R-generable framework Lamport’s result, Theorem 2. We further 
note that Theorem 7 also follows from the results of [7], which depend on recursion- 
theoretic techniques. However, the techniques there do not sufftce to establish, for 
example, Theorem 6. Thus, the combinatorial proof techniques used here seem to 
provide a sharper tool than does recursion theory in applications such as this. (In 
[ 171, similar combinatorial techniques are used to differentiate between PDL-like 
languages (cf. [ 131); they independently established as a corollary that B(F, X, U) 
< CTL*.) 
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We also note the following results: 

THEOREM 8 [9] 

(a) B(F, X, U) = B(F, X, U, A, 1). 
(b) E(P U Q) is not equivalent to any B(F) formula. 

THEOREM 9 [ 161 

(a) (P U Q) is not equivalent to any L(F) formula. 
(b) XP is not equivalent to any L(F, U) formula. 

163 

We now explain how the expressiveness results indicated in the diagram follow 
from the Theorems above. That it is appropriate to label each of the arcs, except 
for arc 6, with (at least) I follows directly from syntactic containment. For example, 
B(F, X, U) is a syntactic sublanguage of B(F, X, U, A, 1). Theorem 4 establishes 
that it is appropriate to label arc 6 with (at least) 5. The label of arc 3 can be 
strengthened to be = by applying Theorem 8. The strengthening of the rest of the 
arcs to < is accounted for in this way: arc 1 follows from Theorem 5, arc 2 from 
Theorem 7, arc 4 from Theorem 8b, arcs 5 and 6 from Theorem 3, arc 7 from 
Theorem 9b, and arc 8 from Theorem 9a. 

It remains to justify the absence of any additional arcs connecting a pair of 
languages in the diagram. By Theorem 3, there is no =-arc from any branching 
time language to any linear time language. By Theorem 7 the dual of EFP, which 
is expressible as AFGP in B(L(F)), is not expressible in any of the B(-) languages 
below and including B(F, X, U, A, 1) in the diagram. This establishes that B(L(F)) 
is incomparable in expressive power to each of B(F, X, U, A, i), B(F, X, U), and 
B(F). To see that B(I&F, X, U)) and B(L(F, U)) are each incomparable to each of 
the logics B(F, X, U, F, A, l), B(F, X, U, A l), B(F, X, U), and B(F), we note that 
the dual of E[((P, U P2) V (Q, U Qz)) U R] 4 expressible in B(L(F, X, U)), but by 
Theorem 7 is not expressible in B(F, X, U, F, A, 1) (or any logic below it in the 
diagram). 

Remark. Although we have focused on a few important sublanguages of CTL*, 
it is easyJo define a host of otherszublanguages, such as B(F, U), B(F, U, A, l), 
B(F, U, F, A, l), and B(F, X, U, F), in an analogous fashion. Using techniques 
similar to those presented here, we can get a complete taxonomy of linear time 
and branching time logics. Since the proofs of these results are quite similar to a 
number of the proofs we have already described, we just briefly mention a number 
of them here, omitting details. 

It is easy to show that the formula AXP is not expressible in any branching 
time language that does not have an explicit X operator. Putting ihis fact 
together with- Theorem 7, we can see that B(F, U, A, 1) < B(F, U, F, A, 1) 
< B(F, X, U, F, A, l), whereas B(F, X, A, 1) and B(F, U, F, A, 1) are incomparable; 
combining it with Theorem 8b, we get that B(F) < B(F, U) < B(F, X, $I). Uzing 
techniques similar to Theorem 6, we zan also show that the formula E(FP A FQ) 
is not equivalent to any B(F, X, U, F) formula (this is actually pro!ed in [lo]). 
From this fack we immediatsly get that B(F, X, U, F) < B(F, X, U, F, A, 1) and 
that B(F, U, F) < B(F, U, F, A,,l). Note that our proof of Theorem 4 actually 
shows that B(L(F)) < B(F, U, F, A, 1) (since we did not use the X operator 
anywhere in the proof). Finally, techniques similar to those used in [9] to 
show B(F, X, U) = B(F, X, U, A 1) can also be used to show B(F, U) = 
B(F, U, A 1). Cl 
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What do these expressiveness results say about branching versus linear time for 
reasoning about concurrency? First, any assertion made in the usual linear time 
logic L(F, X, U) can be trivially formulated in CTL*. We also note that for each 
assertion in Lamport’s restricted linear time language L(F) thgre is a corresponding 
assertion in the restricted branching time language B(F, X, U, F, A, 1). In particular, 
Lamport’s linear time assertionmabout fairness -o~~nabled V -executed directly 
corresponds to the B(F, X, U, F, A, 1) assertion A(Glenabled V Fexecuted). We 
further note that the linear time assertion OP V q ~P not only (as mentioned 
before) corresponds to the B(F, X, U, A, 1) assertion A(FP V GlP), but also 
can be expressed in B(F, X, U) as lE[l P U (P A EGP)] (= lE[GlP A FP] = 
lE1(FP V GlP) = A(FP V GlP)). 

Although the B(F, X, U) formulation is less transparent, it does show that, by 
adding only some additional operators (U and X; actually just U is needed) to 
Lamport’s branching time system B(F) to get B(F, X, U), the principle in question 
can in fact be expressed. Further consequences of the expressiveness results are 
explored in Section 6. 

5. Relation to PL, MPL, and TC 

We assume that the reader is familiar with PL (the reader unfamiliar with PL will 
find a brief sketch of the syntax and semantics of PL in the Appendix). We can 
translate CTL* into PL in the following way: To each CTL* structure M = 
(S, X, L), we associate the PL structure M’ = (S, l=, R), where the set of paths of 
atomic program A, RA, is equal to X, and for any atomic proposition P, M’, s I= P 
iff M, s l= P. We can then give a translation of a CTL* formula p into an equivalent 
PL formula p’. We define the translation inductively, taking the primitive temporal 
connectives of CTL* to be E, X, and U (cf. the remark in Section 3.1): 

P’ = P for atomic propositions P. 
(1P)’ = l(P’). 

(PA q)‘=p’A q’. 
(p u q)’ = q’ v (p’ suf (I’). 

(EP)’ = f((A >P’). 
(Xp)’ = false suf p’. (Note: This is equivalent to the PL formula np’.) 

Then by a straightforward induction on the structure of CTL* formulas we can 
show 

PROPOSITION 5. For all x E X, and all path formulas p, M, x I= p l#M’, x I= p’ 
and for all s E S, and all state formulas q, M, s t= q iffM’, (s) k q’. 

Note ( p U q)’ = q’ V ( p’ suf q’) since the U operator considers the current path 
while the suf operator only depends on proper suffixes. Ep is a state formula; since 
in PL we have only path formulas, we force the truth of the formula to depend 
only on paths starting at the first state. 

Since MPL has not been widely discussed in the literature, we briefly review its 
syntax and semantics here before describing the translation from CTL* into MPL 
(see [I] for more details). To simplify the exposition, we take the liberty of slightly 
altering Abrahamson’s notation. In particular, we use the temporal connectives 0, 
U, and X instead of their duals q , W, and Y, respectively. We also omit the H 
operator and view all paths as simply infinite sequences of states corresponding to 
legal sequences of transitions since blocking will not concern us here. 
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The syntax of MPL is as follows: 

(1) Any atomic proposition is a formula. 
(2) If p, q are formulas, then so are up, p A q, Op, Xp, and p U q. 

We take q p to be an abbreviation forT0lp. 
A structure M is a triple (S, X, L) as before. An MPL formula is true or false of 

a triple M, x, y where M is a structure (S, X, L), x E X, and y is a finite prefix of 
x (called a stage). If y, z are stages or paths, we write y 5 z if y is a prefix of z. We 
define l= inductively as follows: 

(1) M,x,yl=PiffPEL(last(y)). 
(2) M,x,yl=pAqiffM,x,yEpandM,x,yt=q; 

M, x, y I= 7p iff not(M, x, y l= p). 
(3) M,x,yEpUqiff3z(y<z5xandM,x,zEq 

andVw(ysw=z+M,x,wl=p)); 
M,x,yl=Xpiff3z(M,x,zl=pandy=zIxand+w(y<w<z)). 

(4) M, x, y l= Op iff 3x’(x’ E X, y I x’, and M, x’, y l= p). 

We intend to show that CTL* interpreted over suffix closed, fusion closed 
structures is embeddable in MPL. These restrictions are necessary since there are 
CTL* formulas that are satisfiable only in structures that are not suffix closed (e.g., 
EGXtrue A TEXEGXtrue) or not fusion closed (e.g., EFEFp A lEFp), whereas 
every MPL formula is satisfiable in a structure that is both suffix closed and fusion 
closed. This latter fact arises from the use of stages in defining the semantics of 
MPL. Indeed, we have 

LEMMA 1. For every structure M = (S, X, L), path x E X, and stage y of x, 
there exists a sufix closed and fusion closed structure M’ = (S’, X’, L’), path 
x’ E X’, and stage y’ of x’ such that for all MPL formulas q, M, x, y l= q iff 
M’, x’, y’ l= q. 

PROOF. Left to the Appendix. q 

If y is a stage of x, write x/y to indicate the suffix of x obtained by deleting all 
but the last state of the prefix y, that is, y - (x/y) = x. Then we get 

LEMMA 2. If M = (S, X, L) and X is sufix closed and fusion closed, then for 
all MPL formulas p and x E X, 

M x, Y t= P UTM, X/Y, .hWy) I= P. 

PROOF. A straightforward induction on the structure of p suffices. Note that we 
need suffix closure to ensure that x/y E X and fusion closure in order to show that 
M, x/y, tirst(x/y) l= Op implies M, x, y l= Op. Details are left to the reader. Cl 

The preceding lemma shows that, in a suffix closed and fusion closed structure, 
we can essentially omit mention of the stages. Thus, we will write M, x l= p as an 
abbreviation for M, x, first(x) l= p. We can then translate a CTL* formula p to an 
MPL formula p” simply by replacing all occurrences of E by 0. We now get 

THEOREM 10. Given a structure M = (S, X, L) where X is suffix closed and 
fusion closed, and path x E X, 

ifp is a CTL* path formula, then M, x K p iff M, x b p” and 
tfp is a CTL* state formula, then M,first(x) k p $M, x t= p”. 
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Finally, it is interesting to observe the close relation between CTL*, MPL, and 
TC, the logic of time and chance introduced by Lehmann and Shelah [20]. The 
system of TC is essentially the same as that of CTL*, except that, instead of A, the 
operator V is used, with the interpretation: for a set of paths of measure 1. It is 
known that TC and MPL have the same complete axiomatizations, and thus the 
same sets of valid and satisfiable formulas. We would thus expect that there is 
translation from CTL* (or MPL) to TC. 

6. Conchsion 

We believe that linear time logics are generally adequate for verifying the correctness 
of preexisting concurrent programs. For manual verification purposes, we do not 
usually care which computation path is actually followed or that a particular path 
exists because we are typically interested in properties that hold of all computation 
paths. It is thus satisfactory to pick an arbitrary path and reason about it. Indeed, 
Owicki and Lamport [23] give convincing evidence of the power of this approach. 
In these situations, the simplicity of linear time logic is a strong point in its favor. 
Nevertheless, we do see a number of advantages in using branching time logic. 

Perhaps the most important is that of model checking. Given a finite state 
concurrent program, the global state graph of such a program can be viewed as a 
CTL* structure (with finitely many states). The problem of checking whether the 
program has a certain property reduces to that of checking whether the formula 
describing that property holds for the CTL* structure corresponding to the program. 
Model checking for large subclasses of CTL* can be done very efficiently, and, in 
general, it seems that model checking is easier for branching time than for linear 
time logics (cf. [4, 111). 

Linear time logic also suffers from the problem that, when we view a linear time 
logic L as the branching time logic B(L) (i.e., all formulas of the form Aq where q 
is a formula of L), it is not closed under negation. Although it may be possible to 
prove that a property holds for all executions of a correct program, if a program is 
incorrect because the property does not hold along some execution, it will be 
impossible to disprove the property for the program as a whole. Thus, it seems to 
us that a logic that cannot express a fact such as “property P does not hold along 
some execution of the program” suffers from a serious disadvantage (cf. [ 11). 

There are also situations for which we want the ability to explicitly assert the 
existence of alternative computation paths and must use some system of branching 
time logic. This arises from the nondeterminism-beyond that used to model 
concurrency-present in many concurrent programs. Consider an instance of the 
mutual exclusion problem where each process P; is functioning as a terminal server. 
At any moment, Pi (nondeterministically) may or may not receive a character. A 
key attribute of a correct solution is that it should be possible for one particular Pi 
to remain in its noncritical section, NC’S;, forever (awaiting but never receiving a 
character from the keyboard), while other Pj continue to receive and process 
characters. It should also be possible for Pi to receive a character and then enter its 
trying region, TRYi. From there it eventually enters the critical section, CSi, where 
the character is processed before returning to NCSi. But, no matter what happens, 
once Pi is in NCS; it either remains there forever or eventually enters TRYi. To 
express this property one can use a branching time logic formula involving a term 
(intended to hold whenever Pi is in NCSi) of the form EG(inNCSi) A EF(inTRYi) 
A A(G(inNCSi) V F(inTRYi)). However, using Theorem 1, this is provably not 
expressible in linear time logic, that is, in a language of the form B(L(-)). The 
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natural candidate formula, A(G(inNCS) V F(inTRY;), allows a “degenerate” 
model, where all paths satisfy F(inTRY;) and no path satisfies G(inNCS). 

This ability to existentially quantify over paths is particularly useful in applica- 
tions such as automatic program synthesis from temporal logic specifications (cf. 
[3, 81) where very precise and thorough specifications are needed. Of course, it is 
possible to synthesize a class of interesting programs successfully using only linear 
time logic (cf. [22, 331); but, as the remarks above demonstrate, some means 
external to the logic must be used if we wish to ensure the existence of alternative 
computation paths. We also note that explicit path quantification can be helpful 
in ensuring that a program exhibits an adequate degree of parallelism (i.e., that it 
can follow any one of a number of computation paths and is not a degenerate 
solution with only a single path). 

In general, our feeling is that one should use the subset of CTL* most appropriate 
to the application, where “appropriateness” is measured by expressive power and 
complexity of testing satisliability and truth in finite models. We have concentrated 
on issues of expressive power in this paper. For results on complexity of CTL* and 
its sublanguages, we refer the reader to [6], [9], [ 121, and [30-321. 

Appendix 

PROOF OF THEOREM 4. We first define the set of basic fomulas, B, as follows: 

(1) Any propositional formula (i.e., Boolean combination of atomic propositions) 
is a B formula. 

(2) IfPI, **a, p,, are propositional formulas, then pI U (p2 U - - . ( p,,-I U Gp,,) 
. . .) is a B formula which we abbreviate [ pl, . . . , p,]. Intuitively, [ pI , . . . , p,,] 
means that there is a finite segment (possibly of length 0) where pI holds, 
followed by a segment where p2 holds, . . . , followed by a segment where p,,-I 
holds, and then p,, holds ever after. 

(3) If p is a propositional formula, then GFp is a B formula. 
(4) If p is a propositional formula, and [p!, . . . , p”,], . . . , [poM, . . . , pL], Fr,, 

Fr,, are B formulas, then F( p A [ ~8, . . . , p”,] A - - - A [ po”, . . . , prm] A 
kr; ‘A . . . A Fr,) is also a B formula. (Any of the terms in the conjunction 
may or may not be present.) 

Let B” be the closure of B under conjunction and disjunction. Note that the 
formulas of B+ can be written in conjunctive or disjunctive normal form, where 
the literals are formulas of B. 

CLAIM. For every linear time formula over F and G, there is an equivalent 
formula of B+. 

PROOF OF CLAIM. First note that given any linear time formula over F and G, 
we can use deMorgan’s laws and duality (e.g., 1Fp = Glp) to drive the negations 
inward until only the atomic propositions appear negated. Since B+ contains the 
propositional formulas and is closed under conjunction and disjunction, it then 
suffices to show that, if p E B+, then Fp and Gp are equivalent to some B+ formula. 

For Fp note that, since F(q, V q2) = Fq, V Fq2, it suffices to show Fp is equivalent 
to some B+ formula just when p is a conjunction of formulas in B. 
This follows directly from (4) above and the observation that F(q, A GFq2) f 
Fql A GFq,. 

Similarly, since G(q, A q2) = Gq, A Gq2, it suffices to show Gp is equivalent to 
some B+ formula just when p is a disjunction of formulas in B. This follows using 
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the observation below (where p’ and the q; are propositional formulas): 

G(P’ V (VJp6, . . - 9 &I) V (VjJ’a) V (V.C GFqi)) 
E 

GP’ V (Vi[P’, P6, * - - 2 &I) V (V/cGFqL) V (VjGFG) 
V (Vi,j[F(qj A [@, ~‘1) V F(a A 1% P’, PS, * * * 3 PL~I)I)* 

It is easy to check that the right-hand side of the equivalence implies the left- 
hand side. To see the converse, note that the first three disjuncts of the right-hand 
side take care of the case that no qj is ever true, and the fourth disjunct covers the 
case that some 8 is true infinitely often (or at the last state of a finite path). The 
last disjunct corresponds to the last possibility: all G being true only finitely often 
(and not at the last state of a finite path). In this case, the last time any Q is true, 
either Gp’ or one of the [qj, p’, ~6, . . . , pii] will be true at the next state. This 
would be a B+ formula except that @ in some GFqi may not be a propositional 
formula. 

If q in GFq is not a propositional formula, note that q still must be in the form 
of (4) above since it is the argument to F. Note also the equivalence below: 

GF( p A [p$, . . . , pi01 A - - . A [ pb”, . . . , prm] A Fr, A . - . A Fr,,) 

s 

GFp A F([p& . . . , ~$1) A . - . A F([po”, . . . , pYm]) A GFr, A - - - A GFr,. 

By repeatedly applying this equivalence, we can get down to the case where GF 
only takes a propositional formula as an argument. This completes the proof of 
the claim. Cl 

It rema@ to show that if p is a B+ formula, then Ep is equivalent to a 
B(F, X, U, F, A, 1) formula. Since E(q V q’) = Eq V Eq’, it suffices to prove the 
result in the case where p is a conjunction of B formulas. We proceed by induction 
on the number of subformulas ofp of the form Fr (corresponding to rule 4 above). 

If p has no F’s, then it is of the form 

q A [pz, . . . , pi01 A * * - A [PO”, . . . , pYm] A Ai GFri 

where q is propositional. We first show that a conjunction of formulas of the form 
pn] is equivalent to a disjunction of such formulas. Given [PO, . . . , p,], p;:/ 
q,,,], we say that the ordering of terms in [pO A qo, . . . , pi, A qik, . . . , 

pn A q,ij is consistent provided that, if pi, A qjk appears before pi,, A qj,,, then ik I ih 
and j, I j,,. Now observe that 

[PO, . . . , pn] A [qo, -. ., qml E V([PO A 40, * * * 3 Pi, A qjk, . . .v pn A qm] 
with consistent ordering of terms). 

Thus, we can assume (if p has no F’s) that p is of the form q A [PO, . . . , pn] A 
A; GFri by again using the fact that E[q V q’] = Eq V Eq’. But 

E[q A [PO, . . . , PHI A Ai GFril 
= q A E[po U E[ p, U . . . E[p,-1 U E[Gp, A Ai GFri]]- * *I]. 

This is an B(F, X, U, F, A, 1) formula as desired since GF = p. 
In general, p has the form 

q A [PO, . . . , p,,] A Fr, A - + . A Fr,,, A A, GFs,,, 
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where q is propositional. Observe that 

EP E 4 A vi,jf;j., 

where Jj = 

E[po U E[p, U * * * E[pj U E([pj, . . . , pn] A ri A A,+i Frk A Al, GFSh)] * * -11. 

(Intuitively, we are disjuncting over which ri gets satisfied first and in which 
segment pj this OCCURS.) E([ pjy . . . , pn] /\ ri A A/+i Frk A l\h GFsh) has one fewer 
F, so we can apply the induction hypothesis. This completes the proof of 
Theorem 4. Cl 

PROOF OF THEOREM 5 (continued). Recall that we must prove that 

(2) for any B(F, X, U, F, A 1) formula p there is a B(F, X, U) formula q that is 
equivalent to p over these two sequences of models-that is, for all i and all 
states s in Mi, 

Mi,sEpEq, and similarly for Ni; 

(3) for any B(F, X, U) formula p, with 1 p 1 5 i, Mi, ai I= p iff Ni, ai K p. 

We first prove (3), arguing by induction on 1 p 1, that for all B(F, X, U) for- 
mulas p, 

(*) if 1 p 1 5 i, then (Mi, ai l= p iff Ni, ai L p). 

Note that (*) trivially implies that, if 1 p 1 5 i, then (Mi+, , a, I= p iff Ni+, , ai l= p), 
which in turn can be seen to imply that 

(**) if IpI 5 i, then(Mi+l, bi+l LpiffNi+l, bi+r Lp). 

We take EXq, E[q U r] and A[q U r] as our primitive operators in the induction, 
since any B(F, X, U) formula is equivalent to one using only these modalities. The 
argument proceeds in cases based on the structure of the B(F, X, U) formulas p. 
The cases in which p is an atomic proposition, a conjunction q A r, or a negation 
lq are easy and left to the reader. 

If p is of the form EXq then, 

Mi+l, ai+l I= EXq 

if and only if 

Mi+l, bi+l I= q or Mi,aikq or Ni, ai I= 4 

if and only if 

Ni+l, bi+l I= q (by **) or Mi, ail= q or Ni, ai I= 4 

if and only if 

Ni+ I , ai+ I I= EXq. 

Ifp = E[q U r] then, 

Mi+ ,, ai+ I E E[q U r] if and only if 

(1) Mi+l, ai+l I= ror 
(2) Mi+l, ai+l I= 4, Mi+l, bi+l I= r or 
(3) Mi+l, ai+l I= 4, Mi, ai I= E[q U t-1 or 
(4) Mi+ 1, ai+ 1 t= 4, Nip ai t= E[q U rl 
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if and only if 

(1) N+I, ai+l I= r(by (*)) or 
(2) Ni+l, ai+l I= 4, Ni+l, bi+, E r (by (*), (**), respectively) or 
(3) Ni+l, Qi+l I= 4 (by (*)I, Mi, Ui != E[q U r] or 
(4) Ni+lp Ui+l I= 4 (by (*I), Ni, Ui I= E[q U r] 

if and only if 

Ni+ly ui+l C= E[q U r]. 

In the last case, if p = A [q U r] then 

Mi+,, ai+, kA[q ur] ifand only if 

(1) Mi+l, ui+l I= r or 
(2) M+l, ui+l I= 4, Mi+l, bi+l I= r, 

Mi, Ui I= A[q U r], Ni, ai I= A[q U r] or 
(3) Mi+l, G+l I= 4, Mi+l, &+I I= 4, 

Mi,UikA[qUr],Ni,aikA[qUr] 

if and only if 

(1) Ni+l, ui+l I= r(by (*)) or 
(2) Ni+l, ui+l I= 4, Ni+l, h+l I= r(by (**)), 

Mi, Ui I= A [q U r], Niy ai I= A [q U r] or 
(3) Ni+lv ui+l t= 4, Ni+l, bi+l I= 4 (by (**)), 

Mi,aikA[qUr],Ni,aigA[qUr] 

if and only if 

Ni+l, ai+l bA[q Url. 
It remains to establish our claim that B(F, X, U) and B(F, X, U, p, A, 1) are of 

guivalent expressive power on the two sequences of models. For any B(F, X, U, 
F, A, 1) formula Eq, 9 can be placgd in disjunctive normal form. Since E(q’ V 
4”) = Eq’ V Eq” ani Gp’ A Gp” = G(p’ A p”), it suffices to shzw the equivaJence 
@ any B(F, X, U, F, A, 1) formula of the form p, = E[p A Fq, A . . . A Fqn A 
Gr] where Ep, q,, . . . , q,, are B(F, X, U, A, 1) formulas. To show this, we observe 
that every path in one of the structures Mi or Ni ends in a self-loop at the state d. 
Using c to denote either Ui or bi, we thus have that Mi, c E p, iff Mi, c L Ep and 
Mi, d I= q, A *a * A q,, A r. Moreover, Mi, d I= q, A - - - A q,, A r iff Miy c I= 
EFAG(q, A . . . Aq,Ar).Thus,Mi,cbp,iffMi,cLEpAEFAG(q,A **- Aq,, 
A r) and similarly, for Ni. The latter formula is in B(F, X, U, A, 1). By Theorem 
9, we know that, for any B(F, X, U, A, 1) formula q’, there exists an equiva- 
lent B(F, X, U) formula q. So we are done. (This completes the proof of 
Theorem 5). Cl 

PROOF OF THEOREM 6. We inductively define two sequences M, , Mz, M3, . . . 
andN,,N2,N3,... of models as follows. Define Ml, N, to have the graphs shown 
in Figure 4 where in M,, a, l= P, A ‘P2 A 19, A -Q2 A TR, b, I= ip, A 7P2 A 
lQ, A lQ2 A TR, c, I= 1P, A -Pz A Q, A 1Qz A TR, d, I= lP, A -,P2 A lQ, A 
QZA~R,~~~~,~=~P,A~P~A~Q,A~Q~AR~~~~~N,,~,I=P,/\~P~A 
lQ, A 1Qz A ‘R, b, t= lP, A ~Pz A Q, A 1Qz A -R, c, I= lP, A Pz A lQ, A 
1Q2 A -R, d, I= lP, A 7P2 A lQ, A Q2 A TR, and e, I= lP, A 7P2 A lQ, A 
-7Q2 A R. 
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Suppose we have defined Mi and Ni. Then Mi+I and Ni+l have the graphs shown 
in Figure 5 where in both Mi+r and Ni+r , ai+l I= PI A 7P2 A 1QI A lQ2 A lR, 
bi+l I= 1PI A P2 A 1Qr A lQ2 A TR, ci+l E SPI A 7P2 A QI A lQ2 h TR, and 
di+l I= lPI A lP2 A lQI A Q2 A lR, and finally M/, N,! are copies of M/p Ni, 
respectively. 

It should be clear that 

(1) for all i, Mi, ai I= E[((PI U P2) V (Qr U Qz)) U R] and 
Ni, ai I= ~E[((PI U P2) V (QI U Q2)) UR]. 

We can also show that 

(2) For any B(F, A’, U, F, A, 1) formula p, there is a B(F, X, U) formula q, which 
is equivalent to p over these two sequences of models. That is, for all i and all 
states s in Mi, 

Mi, s I= p = q, and similarly for Ni. 

(3) For any B(F, X, U) formula p, with 1 p 1 I i, Mi, ai I= p iff Ni, ai I= p. 

The details of the remainder of the proof follow along exactly the same lines as 
that of Theorem 5. Details are left to the reader. El 
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PROOF OF THEOREM 7. We inductively define two sequences,of models MI, 
M2, M3, . . . and N,, N2, N3, . . . such that for all i, M;, ai I= EFP and N;, ci I= 
1EpP. We show that B(F, X, U) is unable to distinguish between the two sequences 
of models; that is, for all B(F, X, U,) formulas p with 1 p 1 5 i, M;, ai I= p iff Ni, Ci 
I= p. The result follows since, if EFP were equivalent to some B(F, X, U, A, 1) 
formula p, by Theorem 8 it would also be equivalent to some B(F, X, U) formula 
p’ of length i. But Mi, a; I= p’ iff Ni, ci t= p’, contradicting the fact that M;, a; I= 
EFP and Ni, ci I= 1EFP. (Since a;, bi appear only in Mi and q, di in Ni, we omit 
the models from our assertions.) 

We define MI, N, to have the graphs shown in Figure 6 where UI I= P, bl I= lP, 
cl I= P, and d, E 1P. Assume that Mi, Ni are defined. The M;+r and N;+l have the 
graphs shown in Figure 7 where a;+, I= P, b;+, I= 1P, c;+ I I= P, and d/+1 I= 1P. 

Remark. We see that if we unwind the inductive definitions, the models have 
the form depicted in Figure 8. 

We first argue by induction on 1 p 1, that for any B(F, X, U) formula p, 

(*) Wz Ipl qt=pP)iff(Vjz I~I,q~~)land 
[(3jr IPI d,~p)iflO’j~ IPI,4~PP)l* 
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The basis case when ] p ] = 1 is obvious, since all cj agree on the atomic propositions 
as do all dj. For the induction step, we assume (*) for formulas of length Z and try 
to show it for I + 1. Note that the + direction is obvious. To establish the Ed 
direction, it suffices to show that, if p is of length Z + 1 and j I Z + 1, then 

(i) Cj L p implies Cj+l L p, 
(ii) cjEpandj>Z+ 1 implycj-,Ep, 

(iii) dj C= p implies d,+, E p, 
(iv) djl=pandj>Z+ 1 implydj-,Ep. 

We break the argument into cases depending on the form of p. If p is of the form 
q A r, or 1 q the argument is straightforward and left to the reader. 

Case 1: p = EXq. Assume cj L p. Note that cj E p iff Cj L q or dj I= 4. By the 
induction assumption twice, Cj+, l= q or d,,, l= q. Similarly, if j > ] p I = I + 1 so 
thatj- l>Z>IqI,wealsoseethatcj-,~qordi-,~q.Thus,cj+,~p((i))and 
Cj-1 b p ((ii)). 

Now assume 4 C= p. Note that 4 l= p iff 

(1) c$l=qor 
(2) Cj-I I= 4. 

By the induction assumption twice, (1) implies dj+, E q and (2) implies Cj l= q 
whence dj+ , l= p ((iii)). If j > ] p ] = I + 1 then j - 1, j - 2 B ] q ] so by the induction 
assumption twice, dj-, K q and cj-2 E q. We conclude that 4-I l= p ((iv)). 

Case 2: p = E[q U r]. Assume cj l= p. NOW Cj E p iff 

(1) CjEror 
(2) CjFq,l$brOr 

(3) Cj I= 43 4 I= 4, Cj-I I= P- 

This implies 

( 1’) cj+, l= I (by the induction assumption) or 
(2’) cj+, L q, d,+, L r (by the induction assumption twice) or 
(3’) cj+, l= q, dj,, E q, Cj l= p (by the induction assumption twice and the assumption 

Cj k PI- 

It follows that cj+, l= p ((i)). If we assume that j > Z + 1, then we can also argue 
that 

(1”) cj-, l= Y (by the induction assumption) or 
(2”) c,-~ l= q, dJ l= r (by the induction twice) or 
(3”) Cj-1 E p (as a special case of (3)). 

Thus, in all cases, we have cj-, E p ((ii)). 
Next assume that 4 l= p. Note that 4 l= p iff 

(1) djbror 
(2) djkq,Cj-,brOOr 

(3) Cj I= 4, CJ- I I= 4,4-I I= P- 

By repeated application of the induction hypothesis it follows that 

(1’) d+,l=ror 
(2’) dj+lFq,CjbrOr 

(3’) dj+, K q, Cj E q, 4 E p (4 l= p follows by our assumption). 

Thus d,,, l= p ((iii)). 
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If we also assume that j > I + 1, then we can use the induction assumption to 
argue that 

(1”) dj-1 I= ror 
(2”) d,-l I= 4, Cj-2 I= r or 
(3”) 4-r l= p (d,-, l= p follows directly from (3)). 

Thus, in all cases, we get 4-r l= p ((iv)). 

Case 3: p = A [q U r]: Assume Cj E p. NOW Cj I= p iff 

(1) CjbrOr 
(2) Cj F 4, dj I= r. 

By the induction hypothesis, it follows that 

(1’) Cj+l I= ror 
(2’) Cj+l I= 49 d,+l I= r3 

whence cj+r l= p ((i)). 
Assuming j > I + 1, we also get that 

(1”) Cj-1 l= r or 
(2”) cj-1 t= q, 4-l t= r, 

and we conclude that Cj-1 L p ((ii)). 
Next assume that dj E p. Note that 4 l= p iff dj l= r. By the induction hypothesis, 

it follows that dj+l L r and (assumingj > I + 1) dj-1 E r. We conclude that dj+l E 
p ((iii)) and d,-r K p ((iv)). 

This completes the proof of (*). Cl 

We now argue by induction on 1 p 1 that 

(**) i 2 1 p 1 implies (ai I= p iff Ci E p) and (bil=piffdiEp). 

We break the argument into cases depending on the structure of p. The cases in 
which p is an atomic proposition, a conjunction q A r, or a negation lq are easy 
and left to the reader. We present the cases where p is of the form EXq, E[q U r], 
orA[q Ur]. 

Case 1: p = EXq. We first note that ai L p iff 

(1) ait=qOrbiKq, 
(2) ci l= q or di l= q (by the induction hypothesis twice), 
(3) CibPp. 

We next note that bi I= p iff 

(1) cZil=qOr 
(2) bi I= q or 
(3) G-1 t= 4, 

and that di k p iff 

(4) -d; I= q or 
(5) Ci-I I= 4. 

Now (1) implies ci l= q (by induction hypothesis) which in turn (by (*)) implies 
(5). Also, (2) implies (4) (by induction hypothesis) and (3) coincides with (5). Thus, 
bi l= p implies di l= p. For the converse, note that (4) implies (2) (by the induction 
hypothesis) and (5) coincides with (3). 
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Case 2: p = E[q U r]. Note that ai k p iff 

(1) aikror 
(2) ai E 4, bi I= r or 
(3) ai~q,bi~GCi-l~P 

and that ci I= p iff 

(4) Ci F r or 
(5) Ci I= q, di I= r or 
(6) G I= 4, 4 I= 4, Ci-1 I= P. 
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By repeated application of the induction hypothesis we see that ai l= p iff ci l= p. 
Next note that bi k p iff 

(1) biErOr 
(2) bi I= 4, C.Zi I= r, or 
(3) bikq, Ci-I FP 

and that di I= p iff 

(4) di I= r or 
(5) 4 I= 4, Ci-1 EP- 

Observe that (2) implies (3) since ai E r implies ci l= r (by induction hypothesis), 
ci l= r implies ci-, I= r (by (*)), and Ci-, E r implies ci- I l= p. By repeated application 
of the induction hypothesis we also see that (1) iff (4) and (3) iff (5). We conclude 
thatbikpiffdikp. q 

Case 3: p = A[q U r]. First note that ai Fp iff 

(1) ail=rOr 
(2) ai I= 4, bi E r 

and that ci I= p iff 

(3) Ci E r or 
(4) Ci I= q, di I= r. 

By repeated application of the induction hypothesis we see that 

ai I= p iff Ci I= p. 

Next note that 

and that 

bi bp iff bi I= r 

di I= p iff di I= r. 

Again by repeated application of the induction hypothesis, we see that bi I= p iff 
di I= p. 

This completes the proof of (**) and of the Theorem 7. 

SUMMARY OF PL. For the reader’s convenience, we summarize the syntax and 
semantics of PL here. (The reader should consult [ 161 for additional details.) The 
first and last states of a path x are denoted by first(x) and last(x), respectively 
(last(x) does not exist for infinite paths). If x, y are two paths such that last(x) = 
first(y), then x-y denotes the fusion of x and y.’ For example, if x = (s,, s2, sj) 

’ This was called simply the concatenation of s and y in [ 161. 
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and y = (~3, ~4, SS), then x . y = (si, SZ, $3, s4, SS). If last(x) # lirst( y), then x . y is 
undefined. 

All formulas in PL are path formula. The language of PL, however, is the same 
as (test-free) PDL [ 131 augmented with two additional operators f and suf. Intui- 
tively, fp means that p holds in the unique initial prefix of length 0 (i.e., at the first 
state) of a path while suf is analogous to the ordinary until operator of temporal 
logic. 

PL fomulas are interpreted over a path model M = (S, l=, R) where S is a set of 
states, l= is a satisliability relation for atomic propositions, and R is an assignment 
of sets of paths to atomic programs. A path satisfies an atomic proposition iff its 
first state does. We write x C= P if path x satisfies atomic proposition P, and x E R, 
if x is a member of the set of paths assigned to atomic program a. We then 
inductively extend l= and R to compound formulas and programs as follows: 

RmB= (x. y]xER,andyERB); 
plc=“yRu R,; 

a’ ,h; 

xl=pV qiffx~porx~qq; 
xl=ipiffnot(xKp); 
xl=(cu)piff3yER,x. yl=p; 
x I= fp iff first(x) l= p; 
x l= p suf q iff there exists a path y such that 

(i) y is a proper suffice of x and y l= q, and 
(ii) V z, if z is a proper suffix of x and y is a proper suffix of z, then 

z I= p. 

Note that the operator np defined as (false suf p) is analogous to the next time 
operator Xp of linear temporal logic. 

PROOF OF LEMMA 1. Suppose M = (S, X, L). Fix a path x E X, and a 
stage y of x. Let Xi = (z E X 1 y I z) and Mr = (S, Xi, L). It is easy to check that 
M,, x, y l= p iff M, x, y l= p. To simplify the notation, assume for now that Xi is 
countable (the case where X, is uncountable is considered below) and consists of 
the distinct paths x = x0, XI, x2, x3, . . . . We now unwind M, into a “treelike” 
model. Define a set T = (tij ] i, j 2 0) of “fresh” states distinct from the states in S. 
We inductively define a set of paths X’ = ( yo, yl, y2, . . .) over T which is fusion 
closed along with a mapping h: T + s as follows: Suppose x0 = (SO, SI, . . . , Sk, 

. . . ) (which could be finite or infinite). Then deline yo = (too, to,, . . . , tOk, . . .) and 
h(toj) = Sj for all j. We can extend h SO that if y = (~0, . . . , urn, . . .) then h(y) = 
h(uo), . . . , h(u,n), . . .). Note that h( yo) = x0. Now suppose we have constructed 
the paths yj for all j < i so that h( yj) = x,. We now define y; = (tk,,j), where, for all 
j < 1 + 1 x,1, k, is the least k such that the length j stage of xk is also a stage of x;. 
Now, extend h so that h( y;) = xi. Let T’ consist of those states of T that occur in 
yi for some i. Also let L’ be a labeling of states in T’ such that L’(t) = L(h(t)). 
Now define M’ = (T’, X’, L’). Then we can show, by a straightforward in- 
duction on the structure of formulas, that for any formula q, if ] w 1 1 ] y 1, then 
M’, z, w l= q iff M, h(z), h(w) I= q. 

Next define X” = (zi 1 z E X’). Using the observations that no state occurs twice 
along any path, and that two paths have a state in common iff they have a common 
prefix including the state, it is easy to check that X” is fusion closed and sufftx 
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closed. Let M” = (T’, X”, L’). Then we can argue by induction on the length of 
formula q that, for z E X’, M’, z, w I= q iff M”, z, w I= q. Thus, M” is a fusion- 
closed and suffix-closed model of p. Note that our original path x E X”. The above 
argument shows that for all MPL formulas q, M, x, y I= q iff M”, x, y t= q. 

If X, is not countable, a similar argument goes through (although we seem to 
need the well-ordering principle-which is equivalent to the axiom of choice-to 
order the paths first). Cl 
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