
“Sometimes” and “Not Never” Revisited: On Branching
versus Linear Time Temporal Logic

E. ALLEN EMERSON

University of Texas, Austin, Texas

AND

JOSEPH Y. HALPERN

IBM Research Laboratory, San Jose, Cahlornia

Abstract. The differences between and appropriateness of branching versus linear time temporal logic
for reasoning about concurrent programs are studied. These issues have been previously considered by
Lamport. To facilitate a careful examination of these issues, a language, CTL*, in which a universal or
existential path quantifier can prefix an arbitrary linear time assertion, is defined. The expressive power
of a number of sublanguages is then compared. CTL* is also related to the logics MPL of Abrahamson
and PL of Hare& Kozen, and Parikh. The paper concludes with a comparison of the utility of branching
and linear time temporal logics.

Categories and Subject Descriptors: D.2.1 [Software Engineering]: Requirements/Specitications-lan-
guages; F.3.1. [Logics and Meanings of Programs]: Specifying and Verifying and Reasoning about
Programs-assertions; logics of programs; spectjkation techniques

General Terms: Design, Theory

Additional Key Words and Phrases: Concurrent programs, parallelism, temporal logic

1. Introduction
Temporal logic [27, 281 provides a formalism for describing the occurrence of
events in time that is suitable for reasoning about concurrent programs (cf. [24]).
In defining temporal logic, there are two possible views regarding the underlying
nature of time. One is that time is linear: At each moment there is only one possible
future. The other is that time has a branching, treelike nature: At each moment,
time may split into alternate courses representing different possible futures. De-

A preliminary version of this paper was presented at the 1983 ACM Symposium on Principles of
Programming Languages, under the title “Sometimes” and “Not Never” Revisited: On Branching versus
Linear Time.
E. A. Emerson was partially supported by a University of Texas URI Summer Research Award, a
departmental grant from IBM, and National Science Foundation grant MCS 83-02878. Some of this
work was performed while J. Y. Halpern was a visiting scientist jointly at MIT and Harvard, where he
was partially supported by a grant from the National Sciences and Engineering Research Council of
Canada and National Science Foundation grant MCS 80-10707.
Authors’ addresses: E. A. Emerson, Computer Sciences Department, University of Texas, Austin, TX
787 12; J. Y. Halpern, IBM Research Laboratory, San Jose, CA 95 193
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.
0 1986 ACM 0004-541 I/86/0100-0151 $00.75

Journal ofthe Association for Computing Machinery, Vol. 33. No. I. January 1986, pp. 151-178.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F4904.4999&domain=pdf&date_stamp=1986-01-02

152 E. A. EMERSON AND J. Y. HALPERN

pending upon which view is chosen, we classify (cf. [29]) a system of temporal
logic as either a linear time logic in which the semantics of the time structure is
linear, or a system of branching time logic based on the semantics corresponding
to a branching time structure. The modalities of a temporal logic system usually
reflect the semantics regarding the nature of time. Thus, in a logic of linear time,
temporal modalities are provided for describing events along a single time path (cf.
[141). In contrast, in a logic of branching time, the modalities reflect the branching
nature of time by allowing quantification over possible futures (cf. [1, 71).

Some controversy has arisen in the computer science community regarding the
differences between and appropriateness of branching versus linear time temporal
logic. In a landmark paper [191 intended to “clarify the logical foundations of the
application of temporal logic to concurrent programs,” Lamport addresses these
issues. He defines a single language based on the temporal operators “always” and
“sometimes”. Two distinct interpretations for the language are given. In the first
interpretation, formulas make assertions about paths, whereas in the second
interpretation they make assertions about states. Lamport associates the former
with linear time and the latter with branching time (although it should be noted
that in both cases the underlying time structures are branching). He then compares
the expressive power of linear time and branching time logic and finds them
incomparable. On the basis of his comparison and other arguments, he concludes
that, although branching time logic is suitable for reasoning about nondeterministic
programs, linear time logic is preferable for reasoning about concurrent programs.

In this paper, we reexamine Lamport’s arguments and reach somewhat different
conclusions. We first reprove Lamport’s incomparability results in a setting more
appropriate to concurrency by considering R-generable structures (i.e., structures
generated by a binary relation similar to those used in the logics of [131 and [2];
cf. [5]). But we then show that these incomparability results only apply to the two
particular systems he defines. Since Lamport’s arguments, all of which are based
on this one comparison, do not apply in general, sweeping conclusions regarding
branching versus linear time logic are not justified.

We argue that there are several different aspects to the problem of designing and
reasoning about concurrent programs. Although the specific modalities needed in
a logic depend on the precise nature of the purpose for which it is intended, we
can make some general observations regarding the choice between a system of
branching or linear time. We believe that linear time logics are generally adequate
for verifying the correctness of preexisting concurrent programs. For verification
purposes, we are typically interested in properties that hold for all computation
paths. It is thus satisfactory to pick an arbitrary path and reason about it. However,
there are applications where we need the ability to assert the existence of alternative
computation paths as provided by a branching time logic. This arises from the
nondeterminism-beyond that used to model concurrency-present in many
concurrent programs. In order to give a complete specification of such a program,
we must ensure that there are viable computation paths coresponding to the
nondeterministic choices the program might make. (An example is given in Section
6.) Neither of Lamport’s systems is entirely adequate for such applications.

In order to examine these issues more carefully, we define a language, CTL*, in
which a universal or existential path quantifier can prefix an arbitrary linear time
assertion. CTL* is an extension of the Computation Tree Logic (CTL), defined in
[3] and studied in [9]. This language subsumes both of Lamport’s interpretations
and allows us to compare branching with linear time. Moreover, the syntax of

“‘Sometimes” and “Not Never” Revisited 153

CTL* makes it clear which interpretation is intended. We then compare several
sublanguages of CTL* in expressive power. These sublanguages correspond to ones
that have been considered elsewhere in the literature (cf. [2, 3,7-9, 141. By making
such a comparison, we can better understand which of these languages is most
appropriate for reasoning about a given application.

The paper is organized as follows: In Section 2 we summarize Lamport’s
approach and discuss its limitations. In Section 3 we present the syntax and
semantics of CTL*. We also define some natural sublanguages of CTL* and
compare their expressive power in Section 4. In particular, we show (cf. Theorem
4.2) that a language substantially less expressive than CTL* still subsumes both of
Lamport’s interpretations. Section 5 then shows how CTL* can be embedded in
MPL [l] and PL [161. Finally, Section 6 concludes with a comparison of the utility
of branching and linear time logics.

2. A Critique of Lamport’s Approach

For the reader’s convenience we summarize Lamport’s approach here (we do take
the liberty of slightly altering his notation):

2.1 STRUCTURES. A structure M = (S, X, L) where

S is a nonempty set of states,
X is a nonempty set of paths (where a path is a nonempty sequence of states), and
L is a labeling that assigns to each state a set of atomic propositions true in the

state.

We use s, t, s’, t,, . . . to denote states in S and x, y, x’, yl , . . . to denote (finite
or infinite) sequences of states (with repetitions allowed) over S. We think of a
state as being the state of a system during the execution of a concurrent program.
A path is the sequence of states describing one particular (entire) execution of the
program. Thus, X represents a set of possible executions of the concurrent program.

Certain restrictions are often placed on the set of paths X. In order to describe
them, we first need some definitions: A sequence x is of length k, written] x] = k,
if it consists of 1 + k states.’ We use first(x) to denote the first state, SO, of x.
If] x] > 0, we define xsucc = (sr, . . . , sk, . . .); otherwise, xsucc = x. We define the
suffixes of x, x0 = x, xm+’ = (x’~)~“~~. If y # x is a sufftx of x, then y is a proper
sufix of x. The prefixes and proper prefixes of x are defined similarly.

Lamport, in particular, requires that X be suflx closed, that is, if x E X then
X ‘“” E X. (The motivation for this requirement will be discussed subsequently.)

2.2 SYNTAX. Lamport inductively defines the syntax of a class of temporal
formulas :

(1) Any atomic proposition P is a temporal formula.
(2) If p, q are temporal formulas, then so are p A q (“conjunction”) and 1p

(“negation”).
(3) If p is a temporal formula then so are up (meaning “always p”) and -p

(meaning “sometimes p”).

2.3 SEMANTICS. A temporal formula’s meaning depends on whether it is
interpreted as a formula of branching time or a formula of linear time. For the
branching time interpretation, we write M, s l=B p to indicate that formula p is

’ An infinite sequence x = so, s,, s*, . . . is of length w because it consists of 1 + w = w states.

154 E. A. EMERSON AND J. Y. HALPERN

interpreted as true in structure M at state s. We define l=B inductively:

(1) M,sbBPiffPEL@).
(2) M,s~BI)AqiffM,S~BpandM,s~~q;

M, s l=B 1p iff not (M, s l=n p).
(3) M, s kB q p iff t/path x E X with first(x) = s, Vn ~0, M, tirst(x”) l=Bp;

M, s t=~ *p iff Vpath x E X with first(x) = s, 3n I 0, M, lirst(x”) I=B p.

Similarly, for the linear time interpretation we write M, x l=~ p to indicate that
in structure M formula p is true of path x. Again, we define EL inductively:

(1) M, x l==L P iff P E L(Iirst(x)).
(2) M,xKrpAqiffM,xl=:~pandM,xb~q;

M, x l==L 1p iff not (M, x l=L p).
(3) M,x~=LnpiffVIZ~O,M,x”~=Lp;

M,x~L wpiff3nr0,M,x”l=Lp.

For both interpretations, the modality Op (“not never p”) is introduced as an
abbreviation for -KILL and the other logical connectives are introduced as abbre-
viations in the usual way. It can be easily checked that *p is equivalent to Op in
the linear time, but not the branching time interpretation. This justifies Lamport’s
comment that “sometimes” is sometimes (but not always) “not never.”

Note that in the branching-time interpretation, a formula is true or false of a
state whereas in the linear time interpretation, a formula is true or false of a path.
Thus, we cannot directly compare the expressive power of linear time with
branching time. In an attempt to overcome this difficulty, Lamport extends l=~
and eL to entire models:

Definition 1. Given structure M = (S, X, L) temporal formula p is M-valid
under the branching time interpretation, written M I=B p, provided that for every
state s E S, M, s l+, p. Similarly, p is M-valid under the linear time interpretation,
written M l=L p, provided that for every path x E X, M, x l=L p.

Next, Lamport defines his notion of equivalence:

Definition 2. Formula p under interpretation I is strongly equivalent to formula
q under interpretation J (with respect to a class of structures %7), written p =F q,
provided that for every structure M E %‘, M l=i p iff M l=, q. (When %? is understood,
we simply write =,.)

Using this formalism, Lamport argues that linear time and branching time have
incomparable expressive power:

THEOREM 1 [191. OP in branching time is not strongly equivalent with respect
to SUTX closed structures to any assertion of linear time.

THEOREM 2 [191. +++oP in linear time is not strongly equivalent with respect to
sufix closed structures to any assertion of branching time.

We now provide our critique of Lamport’s approach. Although we do have a
few minor criticisms regarding some peculiar technical features and limitations of
Lamport’s formalism, we would like to emphasize, before we begin, that Lamport’s
formal results are technically correct-that is, they follow via sound mathematical
arguments from his definitions. Our main criticisms instead center around

(1) Lamport’s basic definitions and underlying assumptions, and
(2) the informal conclusions regarding the application of temporal logic to reason-

ing about concurrent programs that Lamport infers from his technical results.

“Sometimes “and “Not Never” Revisited 155

First, to make the technical results comparing expressive power relevant to
concurrent programming, the underlying assumptions about the semantics of a
concurrent program as given by the structure should reflect essential properties of
genuine concurrent programs. Lamport correctly observes that “the future behavior
[of a concurrent program] depends only upon the current state, and not upon how
that state was reached.” With this motivation, Lamport requires that the set of
paths X be suffix closed, that is, if x E X then xsucc E X. As observed in [5],
however, suffix closure is not sufficient to guarantee that a program’s future
behavior depends only on its current state. We also need to require that, at least,
X be fusion closed (cf. [26]), meaning that if xl sy, , x2sy2 E X then xl sy2 E X.’
Moreover, there are some additional properties that the set X of all computations
of a concurrent program can be expected to satisfy. We say that X is limit closed
(Cf. [I]) if whenever each Of the infinite sequence Of paths x1 yl , xIx2y2, x1x2x3y3,
. . . is in X, then the infinite path x1 ~2x3 . - . (which is the “limit” of the prefixes
(xl, x1x2,x1x2x3,. . .)) is also in X. We say that a set X of paths is R-generable iff
there exists a total, binary relation R on S such that X consists precisely of the
infinite sequences (so, sI, s2, . . .) of states from X for which (Si, si+l) E R.
R-generability corresponds to the common approach (cf. [2, 7, 9, 13, 211) of
describing a concurrent program via a transition relation (R) on states. It is also
convenient for many applications to assume that every path in X is infinite, thus
identifying a finite execution (so, . . . , sk) with the infinite execution (SO, . . . , Sk,
Sk, Sk, . . .). (Note: This is essentially what is done by our successor operation on
paths.) As shown in [5], a set X of infinite paths is R-generable iff it is suffix closed,
fusion closed, and limit closed. We say that a structure M = (S, X, L) is suffix
closed (respectively, fusion closed, limit closed, R-generable) exactly if the set of
paths X is. Finally, a structure M is state complete if, for all s E S, there is some path
x E X whose first state is s.

As the above remarks indicate, the expressiveness results should be developed
with respect to either R-generable structures or structures that are both suffix closed
and fusion closed. However, Lamport’s proof of Theorem 1 only applies to
structures that are suffix closed but not fusion closed, while his proof of Theorem
2 only applies to structures that are suffix closed but not limit closed (and hence
not R-generable). Nonetheless, as we show in Section 4, Theorems 1 and 2 do
extend to the more relevant types of semantics.

We also have a technical objection concerning the notion of strong equivalence.
By only considering the truth of a formula in a (whole) model, rather than at a
state or path, a great deal of information is lost. For example, in the branching
time interpretation, although there is a model M with state s such that M, s l+
-P A lP, there is no model M such that M l=:B -P A 1P. Similar remarks apply
for the linear time interpretation. Thus, we get

PROPOSITION 1. In linear time or in branching time, -P A 7P =S false.

This suggests that zs is too coarse an equivalence relation for properly comparing
the expressive powers of logics, in that it classifies satisfiable formulas as equivalent
to false.

We are further concerned that, since the same notation is used for both branching
and linear time formulas, it is not clear from the syntax which interpretation is
intended. This has the effect of obscuring an essential difference between the two

* Roughly speaking, when X is fusion closed, if xs is a prefix of some execution of the program and sy
is a suffix of another execution, then XSJJ is also an execution.

156 E. A. EMERSON AND J. Y. HALPERN

interpretations, namely, that linear time formulas make assertions about paths and
branching time formulas make assertions about states. It also causes difficulties
when translating from English into the formalism.

Our chief disagreement is, of course, with Lamport’s conclusion that linear time
logic is superior to branching time logic for reasoning about concurrent programs.
We do not think that sweeping conclusions regarding branching versus linear time
logics in general are justified merely on the basis of the comparison of the two
particular systems that Lamport considers. Indeed, Lamport gives two specific
arguments to justify his conclusion:

(1) To establish certain liveness properties of a concurrent program, it is frequently
necessary to appeal to some sort of fair scheduling constraint such as strong
eventual fairness (which means that if a process is enabled for execution
infinitely often, then eventually the process must actually be executed). This
constraint can be expressed in linear time logic by the formula (- q lenabled)
V -executed. However, by Theorem 2, it is not expressible in branching time
logic.

(2) In proving a program correct, it is often helpful to reason using the principle
that, along any path, either property P is eventually true or is always false. This
amounts to assuming an axiom of the form -P V q ~P, which is M-valid for
all models M under the linear time interpretation, but not under the branching
time interpretation.

The first observation is certainly true for the particular systems that Lamport
has defined. However, by using a branching-time logic with a richer set of modalities
(for example, by allowing the “infinitary” quantifiers used in [7]), these assertions
can be easily expressed. Indeed, by adding enough modalities to a branching time
logic, any assertion of Lamport’s linear time can be expressed as described in
Theorem 4. In regard to the second point, it is true that the given formula is valid
(i.e., true in all models) under the linear time interpretation but not under the
branching time interpretation. However, the formula is not a correct translation of
the principle into the formalism under the branching time interpretation. (We
believe that this is an instance of the confusion caused by the use of the same
syntax for both interpretations.) Again, as shown in Section 3, it is possible to write
a formula in a branching time system that accurately renders the principle.

3. A Unified Approach

In this section we exhibit a uniform formalism for comparing branching with linear
time that avoids the technical difficulties of Lamport’s and allows us to examine
the issues more closely. To illustrate our approach, we describe a language, CTL*,
that subsumes Lamport’s branching and linear time systems, as well as UB [2] and
CTL [3, 91. CTL* is closely related to MPL [11. (CTL* is also used in [4].) In CTL*
we allow a path quantifier, either A (“for all paths”) or E (“for some paths”),
to prefix an assertion p composed of arbitrary combinations of the usual linear
time operators G (“always”), F (“sometimes”), X (“nexttime”), Urn (“until”),
as well as the inlinitary state quantifiers of [7], F (“infinitely often”), G (“almost
everywhere”).

3.1 SYNTAX. We inductively define a class of state formulas (true or false of
states) and path formulas (true or false of paths):

S 1. Any atomic proposition P is a state formula.
S2. If p, q are state formulas, then so are p A q, lp.

“Sometimes “and “Not Never” Revisited 157

S3. If p is a path formula, then Ap, Ep are state formulas.
P 1. Any state formula p is a path formula.
P2. If p, q are path formulas, then so are p A q, 1~.
P3a. If p is a state formula, then Fp is a path formula.
P3b. If p is a path formula, then Fp is a path formula.
P4a. If p is a state formula, then Xp is a path formula.
P4b. If p is a path formula, then Xp is a path formula.
P5a. If p, q are state formulas, then (p U q) is a path formula.
P5b. If p, q are path formulas, then (p U q) is a path formula.
P6a. If p is a state formula, then Ep is a path formula.
P6b. If p is a path formula, then Fp is a path formula.

Remark. The other truth-functional connectives are in@duced as abbrzvia-
tions in the usual way. We also let Gp abbreviate 1Flp and Gp abbreviate 1-p.
In addition, wemcould take the view that Ap abbreviates yelp, Fp abbreviates
(true Up), and Fp abbreviates GFp. Thus, we could give a substantially more terse
syntax and semantics for our language by defining all the other operators in terms
of just the primitive operators E, X, U, 1, and A. We could also consider state
formulas as a special case of path formulas whose truth value depends on the first
state of the path and thus view all formulas as path formulas. This is essentially
what is done in PL (cf. [161) and also leads to a slightly easier formulation of the
syntax and semantics. However, like Abrahamson [I], we consider the distinction
between quantification over states and over paths an important one that should be
maintained. Moreover, this approach makes it easier to give the syntax of each of
the sublanguages that we consider.

The set of state formulas generated by all the above rules forms the language
CTL*. Since we are also concerned with the power of the various modalities, we
also want to consider various sublanguages of CTL*. The set of path formulas
generated by rules Sl, Pl, 2, 3b gives the (linear time) language L(F). By adding
rule 5b we get the language L(F, U) while adding both rules 4b, 5b gives us
L(F, X, U). We get the (branching time) language B(F) by considering the state
formulas generated by rules Sl-3, P3a. Adding rules P4a, P5a gives B(F, X, U),
adding rules P2, P4a, E5a gives B(F, X, U, A, l), and adding rules P2, P4a, P5a,
P6a gives B(F, X, U, F, A, 1). Thus, for example, A[FP A GQ] is a formula of
B(F, X, U, A, 1) but not of B(F, X, U).

The languages defined here include a number of the linear time and branching
time logics considered in the literature. As we shall see, L(F) and B(F) correspond
precisely to Lamport’s linear time interpretation and branching time inter-
pretation, respectively. L(F, X, U) has been used in many applications
(cf. [14, 221); in [30] the same language is called L(F, G, X, U) (we have omitted
the G here for reazons of brevity). B(F, X, U) is the logic CTL of [3], [S], and [9],’
while B(F, X, U, F, A, 1) is essentially the language studied in [7] for describing
fairness properties.

We use l p] to denote the length of formula p, that is, the number of symbols in
p viewed as a string over the set of atomic propositions union the set of connectives
(A, 1, -4 E, F, (, 1, etc.).

3.2 SEMANTICS. We write M, s l= p (M, x l= p) to mean that state formula p
(path formula p) is true in structure M at state s (of path x, respectively).3 When

3 Note that M may be an arbitrary structure, and that we define the semantics of path formulas relative
to u/l paths over the states of M, not just the paths in X; it is the path quantifiers, A or E, of the state
formulas that restrict quantification to paths in X.

158 E. A. EMERSON AND J. Y. HALPERN

M is understood, we write simply s l= p (x l= p). We define l= inductively:

Sl . s E P iff P E L(s) where P is an atomic proposition.
S2. s l= p A q iff s E p and s l= q where p, q are state formulas.

s l= 1p iff not (s l= p) where p is a state formula.
S3. s l= Ap iff for every path x E X with first(x) = s, x l= p where p is a path

formula.
s l= Ep iff for some path x E X with first(x) = s, x K p where p is a path

formula.
P 1. x K p iff fust(px) l= p where p is a state formula.
P2. x l= p A q iff x l= p and x l= q where p, q are path formulas.

x l= 1p iff not (x l= p) where p is a path formula.
P3a. x l= Fp iff for some i I 0, first(x’) l= p where p is a state formula.
P3b. x l= Fp iff for some i 2 0, xi l= p where p is a path formula.
P4a. x E Xp iff 1 x 1 I 1 and tirst(x’) l= p where p is a state formula.
P4b. x l= Xp iff] x 1 2 1 and x1 l= p where p is a path formula.
P5a. x l= (p U q) iff for some i 2 0, first(x’) l= q and for all j I 0 [j < i implies

fa(x’) I= p].
P5b. x~(~Uq)iffforsomei~O,x’~qandforalljzO[j<iimpliesx~~p].
P6a. x l= Fp iff for infinitely many distinct i, first(x’) E p where p is a state

forrn$a.
P6b. x l= Fp iff for infinitely many distinct i, xi l= p where p is a path formula.

Remarks

(1) It is easy to check that all the equivalences mentioned in the remark in
Section 3.1 hold.

(2) The notions of M-validity and strong equivalence (defined in Definitions 1
and 2, respectively) generalize to apply to arbitrary state and path formulas. El

As mentioned above, Lamport’s linear time and branching time formalisms
correspond to L(F) and B(F), respectively. Let p be a temporal formula as defined
in Section 2.2. Let pL be the path formula that results from replacing each q in p
by G, and each +, by F. Let pB be the state formula that results from replacing
each q in p by AC, and each VC, in by AF. Clearly, pL is an L(F) formula and pB is
a B(F) formula. Moreover, each L(F) (respectively, B(F)) formula_corresponds to
a unique temporal formula via this translation. We then have

PROPOSITION 2

M,.s~P tf M, si=pB;
M,x~P z@ M, xl=pL.

Note that under the linear time interpretation the formula discussed in the
previous section, -P V q lP, corresponds to the L(F) formula FP V GlP, which
is clearly valid. Under the branching time interpretation, it corresponds to AFP V
AGlP, which is not valid. However, the valid B(F, X, U, A, 1) formula A(FP V
GlP) (obtained by simply prefixing the L(F) formula with A) does capture the
intended principle.

Clearly, a direct comparison of linear time (i.e., path) formulas with branching
time (i.e., state) formulas is impossible. As we have seen, Lamport’s approach of
defining a formula as true or false of an entire structure gives us too coarse an
equivalence relation. How then can we compare linear time with branching time?
Since in program verification applications there is an implicit universal quantifi-

“Sometimes ” and “Not Never” Revisited 159

cation over all possible futures when a linear time assertion is used, this suggests
that we associate with every path formula p the state formula Ap and ask whether
this is expressible in a given branching time logic. Thus, we have the following
definition:

Definition 3. Given any language L of path formulas, we define the language
of associated state formulas B(L) = (Ap:p E LJ. (Note that B(L) is not closed
under semantic negation or disjunction (cf. [l]).)

On this basis we can compare any linear time logic L with branching time logic
B by first converting L into the associated branching time logic B(L). This time,
however, equivalence of the branching time formulas is measured by the “usual”
notion:

Definition 4. Given state formulas p, q we say that p is equivalent to q, with
respect to a class g of structures written p =F q, provided that for every structure
M in ‘$7, for every state s of M, M, s l= p iff M, s l= q. When %? is clear from context,
we simply write =.

It is easy to check that = is an equivalence relation on state formulas that refines
=s and avoids the problems of Proposition 1. In fact, we have the following results
which clarify the relation between = and Ed. Let F be the class of all structures
that are both fusion closed and state complete.

PROPOSITION 3. For any path formula p, p =s Ap.

PROOF. Let M = (S, X, L) be an arbitrary structure. We show M l= p iff
M l= Ap. If M l= p, then for all x E X, M, x l= p. So for all s E S, M, s l= Ap
and thus M l= Ap. Conversely, if M l= Ap, then for all s E S, M, s l= Ap and for
all x E X starting at s, M, x l= p. Since each x E X starts at some s E S, M, x l= p
for all x E X. Thus, M l= p. Cl

PROPOSITION 4. For any state formulas p, q, p = f q iffAGp =Y AGq.

PROOF

(+:) Assume p =;J’ q. It will suffice to show that M, s l= AGp implies M, s l=
AGq because, by a symmetric argument, we can then conclude AGp =T AGq. So
suppose M, s l= AGp, where M = (S, X, L) is an arbitrary fusion closed structure
and s E S. Define M’ = (S’, X’, L’) where S’ = 1s’ E S:s’ appears on some
x’ E X with first(x’) = s), X’ = lx’ E X: first(x’) E S’), and L’ = L] S’. Since X
is fusion closed (s” E S:s” appears on some x’ E X’) = S’ and M’ is thus a
structure. Observe that for any state formula r, M, s l= AGr iff M’, s l= AGr iff
Vs’ E S’, (M’, s’ l= r). Taking r = p, we get Vs’ E S’, M’, s’ l= p. Since p =? q,
Vs’ E S’, we have M’, s’ l= q. Now take r = q, to see that M, s l= AGq as desired.

(+:) Assume AGp =Y AGq, that is, M, s l= AGp iff M, s l= AGq for all M and
s in M. It will suffice to show that M l= p implies M l= q, as a symmetric argument
will yield p =f q. Now suppose M l= p, where M = (S, X, L). Then, Vs E S, we
have M, s l= p whence, Vs E S, we also have M, s l= AGp. Since AGp =T AGq,
Vs E S, M, s l= AGq. Since M is state complete, Vs E S, we have M, s l= q. Thus
M l= q as desired. Cl

Remark. Both fusion closure and state completeness are needed for the previous
result. Considering the formulas p = P A EFEXlP and q = false, we see that,
while p ss q, we also have AGp f AGq if we allow structures that are not fusion

160 E. A. EMERSON AND J. Y. HALPERN

closed. Similarly, if we take p = AGEFtrue A EFtrue and q = [AGEFtrue A EFtrue]
V AGfalse, we have AGp = AGq, but also p f, q if we allow structures that are not
state complete.

COROLLARY 1. For any path formula p and state formula q, p =? q if
AGAp =Y AGq.

Finally, we compare the expressive power of two branching time languages as
follows:

Definition 5. As measured with respect to a class of structures 5Z?‘, we say that
L2 is at least as expressive as L,, written L, I’ Lz, provided that for every p E L,
there exists q E Lz such that p =O q. We say that L, is exactly as expressive as Lz,
written L, so Lz, provided L, s@ Lz and Lz s@ L,. Finally, Ll is strictly less
expressive than Lz. written L, <@ Lz, provided Ll 5% LZ and Ll Z@ Lz. (When it
is clear from the context, the superscript g is omitted.)

4. Expressiveness Results
We now compare linear time and branching time logics using the formalism of the
previous section. In line with our criticism of Lamport’s underlying semantic
assumptions, our comparison is done with respect to the class of R-generable
structures. (We leave it to the reader to check that all our proofs hold without
change for the class of suffix closed and fusion closed structures as well.) In this
framework, we reprove Lamport’s incomparability results establishing that the
branching time logic B(F) and the linear time logic B(L(F)) are i%comparable in
expressive power. We also prove that B(L(F)) < B(F, X, U, F, A, l), thus
demonstrating that branching time logic can be more expressive than a linear time
logic4 Moreover, this result is essentially tight. If we add X and U (actually either
Xor U alone suffices) to the lineaLtime logic, the resulting language is incomparable
in expressive power to B(F, X, U, F, A, 1). Indeed, we show that Figure 1 completely
describes the relative expressive power of the languages we have considered, where
any two languages not connected by a chain of 4s and =‘s are of incomparable
expressive power. Such expressiveness results provide important information when
choosing an appropriate logic for reasoning about a particular application.

We first show that no linear time language (i.e., one of the form B(L(-))) can be
more expressive than even B(F). This reproves Lamport’s result (Theorem 1) in
the R-generable framework.

THEOREM 3. The B(F) formula EFP is not equivalent to any B(L(F, X, U))
formula.

PROOF. Suppose EFP = Aq for some linear time formula q over F, X, U.
Consider the R-generable structure M = (S, X, L) where S = (s, , s2 1, X is the set
of paths generated by R = ((si , sl), (si, SZ), (s2, s2)], and L is such that M, SI l= 1P
and M, s2 l= P. The R-generable “substructure” obtained by restricting M to S’ =
(s, 1 is defined as M’ = (S’, X’, L’) where X’ is the set of paths generated by
((s,, sI)) and L’(s,) = L(si). Plainly, M, s1 I= EFP and M’, s1 I= 1EFP. By the
supposed equivalence of EFP and Aq, we have M, s1 l= Aq. But then M’, SI l= Aq
because every path starting at s1 in M’ is also a path starting at sI in M. Again
using the supposed equivalence we get M’, s1 I= EFP, a contradiction. Cl

4 Because we are working in the context of R-generable structures, throughout this section we write just
= for &’ and c for<-+.

‘Sometimes”and “Not Never”Revisited 161

3 III

B(F,X,U)

4 v

B(F)

Our next result shows that Lamport’s linear time system B(L(F)) is expressible
in a branching time logic:

THEOREM 4. B(L(F))s B(F,X, U,F, A,l).

PROOF. This proof involves a complicated induction on the structure of B(L(F))
formulas. Details are left to the Appendix. Cl

However, if we add either the nexttime operator or the until operator, the
situation changes:

THEOREM 5. Theformula A[F(P A XP)] is not equivalent to any B(L(F, X, U,
E, A, 1)) formula.

PROOF. We inductively define two sequences MI, MZ, MS, . . . and N1, N2, N3,
of models as follows. Define MI, Nr to have the graphs shown in Figure 2

where in M,, al i= P, br I= P, d, K 1P and in N,, al I= P, and d, I= 1P.
Suppose we have defined M; and Ni. Then Mi+ 1 and Ni+ 1 have the graphs shown

in Figure 3, where in both Mi+I and Ni+l, ai+l k P, bi+r k 1P, and MI, N,! are
copies of Mi, Ni, respectively.

It should be clear that

(1) for all i, Mi, ai k A [F(P A XP)] and Ni, ai k 1A [F(P A XP)].

We will also show that

(2) For any B(F, X, U, p, A, 1) formula p there is a B(F, X, U) formula q that is
equivalent to p over these two sequences of models. That is, for all i and all
states s in Mi,

Mi,sEpEq, and similarly for Ni.

(3) For any B(F, X, U) formula p, if 1 p 1 zz i, then Mi, ai I= p iff Ni, ai E p.

To see th$ the result follows, suppose that A [F(P A XP)] is equivalent to some
B(F, X, U, F, A, 1) formula p. Then by (2) above, there is a B(F, X, U) formula
p’ equivalent to p over these models. Now 1 p’ 1 = i for some i. Then Mi, ai I=

162 E. A. EMERSON AND J. Y. HALPERN

Ml: Nl :

P

!

81 P

I

81

P bl dl

dl

FIGURE 2

M I+1 :

ai+l
P

bi+1 p-;m N;

n

M;

Mi

FIGURE 3

A[F(P A XP)], which, by supposition and (2), implies M;, a; l= p’. By (3) this
implies N;, Ui E p’, which implies, again by supposition and (2), that Ni, ai l=
A [F(P A XP)]. But this contradicts the fact (1) above that Ni, ai l= 1,4 [F(P A XP)].

The details of the proof for (2) and (3) are provided in the Appendix. Cl

THEOREM 6. cheformula E[((P, U P2) V (Q, U Q2)) U R] is not equivalent to
any B(L(F, X, U, F, A, 1)) formula.

PROOF. Left to the Appendix. Cl

Similar combinatorial techniques can also be used to prove the following
theorem:

THEOREM 7. The formula EEP is not equivalent to any B(F, X, U, A, 1)
formula.

PROOF. Left to the Appendix. Cl

Since -UP in linear time corresponds to AGP, the dual of EFP, Theorem 7
reproves in the R-generable framework Lamport’s result, Theorem 2. We further
note that Theorem 7 also follows from the results of [7], which depend on recursion-
theoretic techniques. However, the techniques there do not sufftce to establish, for
example, Theorem 6. Thus, the combinatorial proof techniques used here seem to
provide a sharper tool than does recursion theory in applications such as this. (In
[171, similar combinatorial techniques are used to differentiate between PDL-like
languages (cf. [131); they independently established as a corollary that B(F, X, U)
< CTL*.)

‘Sometimes “and “Not Never” Revisited

We also note the following results:

THEOREM 8 [9]

(a) B(F, X, U) = B(F, X, U, A, 1).
(b) E(P U Q) is not equivalent to any B(F) formula.

THEOREM 9 [161

(a) (P U Q) is not equivalent to any L(F) formula.
(b) XP is not equivalent to any L(F, U) formula.

163

We now explain how the expressiveness results indicated in the diagram follow
from the Theorems above. That it is appropriate to label each of the arcs, except
for arc 6, with (at least) I follows directly from syntactic containment. For example,
B(F, X, U) is a syntactic sublanguage of B(F, X, U, A, 1). Theorem 4 establishes
that it is appropriate to label arc 6 with (at least) 5. The label of arc 3 can be
strengthened to be = by applying Theorem 8. The strengthening of the rest of the
arcs to < is accounted for in this way: arc 1 follows from Theorem 5, arc 2 from
Theorem 7, arc 4 from Theorem 8b, arcs 5 and 6 from Theorem 3, arc 7 from
Theorem 9b, and arc 8 from Theorem 9a.

It remains to justify the absence of any additional arcs connecting a pair of
languages in the diagram. By Theorem 3, there is no =-arc from any branching
time language to any linear time language. By Theorem 7 the dual of EFP, which
is expressible as AFGP in B(L(F)), is not expressible in any of the B(-) languages
below and including B(F, X, U, A, 1) in the diagram. This establishes that B(L(F))
is incomparable in expressive power to each of B(F, X, U, A, i), B(F, X, U), and
B(F). To see that B(I&F, X, U)) and B(L(F, U)) are each incomparable to each of
the logics B(F, X, U, F, A, l), B(F, X, U, A l), B(F, X, U), and B(F), we note that
the dual of E[((P, U P2) V (Q, U Qz)) U R] 4 expressible in B(L(F, X, U)), but by
Theorem 7 is not expressible in B(F, X, U, F, A, 1) (or any logic below it in the
diagram).

Remark. Although we have focused on a few important sublanguages of CTL*,
it is easyJo define a host of otherszublanguages, such as B(F, U), B(F, U, A, l),
B(F, U, F, A, l), and B(F, X, U, F), in an analogous fashion. Using techniques
similar to those presented here, we can get a complete taxonomy of linear time
and branching time logics. Since the proofs of these results are quite similar to a
number of the proofs we have already described, we just briefly mention a number
of them here, omitting details.

It is easy to show that the formula AXP is not expressible in any branching
time language that does not have an explicit X operator. Putting ihis fact
together with- Theorem 7, we can see that B(F, U, A, 1) < B(F, U, F, A, 1)
< B(F, X, U, F, A, l), whereas B(F, X, A, 1) and B(F, U, F, A, 1) are incomparable;
combining it with Theorem 8b, we get that B(F) < B(F, U) < B(F, X, $I). Uzing
techniques similar to Theorem 6, we zan also show that the formula E(FP A FQ)
is not equivalent to any B(F, X, U, F) formula (this is actually pro!ed in [lo]).
From this fack we immediatsly get that B(F, X, U, F) < B(F, X, U, F, A, 1) and
that B(F, U, F) < B(F, U, F, A,,l). Note that our proof of Theorem 4 actually
shows that B(L(F)) < B(F, U, F, A, 1) (since we did not use the X operator
anywhere in the proof). Finally, techniques similar to those used in [9] to
show B(F, X, U) = B(F, X, U, A 1) can also be used to show B(F, U) =
B(F, U, A 1). Cl

164 E. A. EMERSON AND J. Y. HALPERN

What do these expressiveness results say about branching versus linear time for
reasoning about concurrency? First, any assertion made in the usual linear time
logic L(F, X, U) can be trivially formulated in CTL*. We also note that for each
assertion in Lamport’s restricted linear time language L(F) thgre is a corresponding
assertion in the restricted branching time language B(F, X, U, F, A, 1). In particular,
Lamport’s linear time assertionmabout fairness -o~~nabled V -executed directly
corresponds to the B(F, X, U, F, A, 1) assertion A(Glenabled V Fexecuted). We
further note that the linear time assertion OP V q ~P not only (as mentioned
before) corresponds to the B(F, X, U, A, 1) assertion A(FP V GlP), but also
can be expressed in B(F, X, U) as lE[l P U (P A EGP)] (= lE[GlP A FP] =
lE1(FP V GlP) = A(FP V GlP)).

Although the B(F, X, U) formulation is less transparent, it does show that, by
adding only some additional operators (U and X; actually just U is needed) to
Lamport’s branching time system B(F) to get B(F, X, U), the principle in question
can in fact be expressed. Further consequences of the expressiveness results are
explored in Section 6.

5. Relation to PL, MPL, and TC

We assume that the reader is familiar with PL (the reader unfamiliar with PL will
find a brief sketch of the syntax and semantics of PL in the Appendix). We can
translate CTL* into PL in the following way: To each CTL* structure M =
(S, X, L), we associate the PL structure M’ = (S, l=, R), where the set of paths of
atomic program A, RA, is equal to X, and for any atomic proposition P, M’, s I= P
iff M, s l= P. We can then give a translation of a CTL* formula p into an equivalent
PL formula p’. We define the translation inductively, taking the primitive temporal
connectives of CTL* to be E, X, and U (cf. the remark in Section 3.1):

P’ = P for atomic propositions P.
(1P)’ = l(P’).

(PA q)‘=p’A q’.
(p u q)’ = q’ v (p’ suf (I’).

(EP)’ = f((A >P’).
(Xp)’ = false suf p’. (Note: This is equivalent to the PL formula np’.)

Then by a straightforward induction on the structure of CTL* formulas we can
show

PROPOSITION 5. For all x E X, and all path formulas p, M, x I= p l#M’, x I= p’
and for all s E S, and all state formulas q, M, s t= q iffM’, (s) k q’.

Note (p U q)’ = q’ V (p’ suf q’) since the U operator considers the current path
while the suf operator only depends on proper suffixes. Ep is a state formula; since
in PL we have only path formulas, we force the truth of the formula to depend
only on paths starting at the first state.

Since MPL has not been widely discussed in the literature, we briefly review its
syntax and semantics here before describing the translation from CTL* into MPL
(see [I] for more details). To simplify the exposition, we take the liberty of slightly
altering Abrahamson’s notation. In particular, we use the temporal connectives 0,
U, and X instead of their duals q , W, and Y, respectively. We also omit the H
operator and view all paths as simply infinite sequences of states corresponding to
legal sequences of transitions since blocking will not concern us here.

“Sometimes ” and “Not Never” Revisited 165

The syntax of MPL is as follows:

(1) Any atomic proposition is a formula.
(2) If p, q are formulas, then so are up, p A q, Op, Xp, and p U q.

We take q p to be an abbreviation forT0lp.
A structure M is a triple (S, X, L) as before. An MPL formula is true or false of

a triple M, x, y where M is a structure (S, X, L), x E X, and y is a finite prefix of
x (called a stage). If y, z are stages or paths, we write y 5 z if y is a prefix of z. We
define l= inductively as follows:

(1) M,x,yl=PiffPEL(last(y)).
(2) M,x,yl=pAqiffM,x,yEpandM,x,yt=q;

M, x, y I= 7p iff not(M, x, y l= p).
(3) M,x,yEpUqiff3z(y<z5xandM,x,zEq

andVw(ysw=z+M,x,wl=p));
M,x,yl=Xpiff3z(M,x,zl=pandy=zIxand+w(y<w<z)).

(4) M, x, y l= Op iff 3x’(x’ E X, y I x’, and M, x’, y l= p).

We intend to show that CTL* interpreted over suffix closed, fusion closed
structures is embeddable in MPL. These restrictions are necessary since there are
CTL* formulas that are satisfiable only in structures that are not suffix closed (e.g.,
EGXtrue A TEXEGXtrue) or not fusion closed (e.g., EFEFp A lEFp), whereas
every MPL formula is satisfiable in a structure that is both suffix closed and fusion
closed. This latter fact arises from the use of stages in defining the semantics of
MPL. Indeed, we have

LEMMA 1. For every structure M = (S, X, L), path x E X, and stage y of x,
there exists a sufix closed and fusion closed structure M’ = (S’, X’, L’), path
x’ E X’, and stage y’ of x’ such that for all MPL formulas q, M, x, y l= q iff
M’, x’, y’ l= q.

PROOF. Left to the Appendix. q

If y is a stage of x, write x/y to indicate the suffix of x obtained by deleting all
but the last state of the prefix y, that is, y - (x/y) = x. Then we get

LEMMA 2. If M = (S, X, L) and X is sufix closed and fusion closed, then for
all MPL formulas p and x E X,

M x, Y t= P UTM, X/Y, .hWy) I= P.

PROOF. A straightforward induction on the structure of p suffices. Note that we
need suffix closure to ensure that x/y E X and fusion closure in order to show that
M, x/y, tirst(x/y) l= Op implies M, x, y l= Op. Details are left to the reader. Cl

The preceding lemma shows that, in a suffix closed and fusion closed structure,
we can essentially omit mention of the stages. Thus, we will write M, x l= p as an
abbreviation for M, x, first(x) l= p. We can then translate a CTL* formula p to an
MPL formula p” simply by replacing all occurrences of E by 0. We now get

THEOREM 10. Given a structure M = (S, X, L) where X is suffix closed and
fusion closed, and path x E X,

ifp is a CTL* path formula, then M, x K p iff M, x b p” and
tfp is a CTL* state formula, then M,first(x) k p $M, x t= p”.

166 E. A. EMERSON AND J. Y. HALPERN

Finally, it is interesting to observe the close relation between CTL*, MPL, and
TC, the logic of time and chance introduced by Lehmann and Shelah [20]. The
system of TC is essentially the same as that of CTL*, except that, instead of A, the
operator V is used, with the interpretation: for a set of paths of measure 1. It is
known that TC and MPL have the same complete axiomatizations, and thus the
same sets of valid and satisfiable formulas. We would thus expect that there is
translation from CTL* (or MPL) to TC.

6. Conchsion

We believe that linear time logics are generally adequate for verifying the correctness
of preexisting concurrent programs. For manual verification purposes, we do not
usually care which computation path is actually followed or that a particular path
exists because we are typically interested in properties that hold of all computation
paths. It is thus satisfactory to pick an arbitrary path and reason about it. Indeed,
Owicki and Lamport [23] give convincing evidence of the power of this approach.
In these situations, the simplicity of linear time logic is a strong point in its favor.
Nevertheless, we do see a number of advantages in using branching time logic.

Perhaps the most important is that of model checking. Given a finite state
concurrent program, the global state graph of such a program can be viewed as a
CTL* structure (with finitely many states). The problem of checking whether the
program has a certain property reduces to that of checking whether the formula
describing that property holds for the CTL* structure corresponding to the program.
Model checking for large subclasses of CTL* can be done very efficiently, and, in
general, it seems that model checking is easier for branching time than for linear
time logics (cf. [4, 111).

Linear time logic also suffers from the problem that, when we view a linear time
logic L as the branching time logic B(L) (i.e., all formulas of the form Aq where q
is a formula of L), it is not closed under negation. Although it may be possible to
prove that a property holds for all executions of a correct program, if a program is
incorrect because the property does not hold along some execution, it will be
impossible to disprove the property for the program as a whole. Thus, it seems to
us that a logic that cannot express a fact such as “property P does not hold along
some execution of the program” suffers from a serious disadvantage (cf. [11).

There are also situations for which we want the ability to explicitly assert the
existence of alternative computation paths and must use some system of branching
time logic. This arises from the nondeterminism-beyond that used to model
concurrency-present in many concurrent programs. Consider an instance of the
mutual exclusion problem where each process P; is functioning as a terminal server.
At any moment, Pi (nondeterministically) may or may not receive a character. A
key attribute of a correct solution is that it should be possible for one particular Pi
to remain in its noncritical section, NC’S;, forever (awaiting but never receiving a
character from the keyboard), while other Pj continue to receive and process
characters. It should also be possible for Pi to receive a character and then enter its
trying region, TRYi. From there it eventually enters the critical section, CSi, where
the character is processed before returning to NCSi. But, no matter what happens,
once Pi is in NCS; it either remains there forever or eventually enters TRYi. To
express this property one can use a branching time logic formula involving a term
(intended to hold whenever Pi is in NCSi) of the form EG(inNCSi) A EF(inTRYi)
A A(G(inNCSi) V F(inTRYi)). However, using Theorem 1, this is provably not
expressible in linear time logic, that is, in a language of the form B(L(-)). The

“Sometimes “and “Not Never” Revisited 167

natural candidate formula, A(G(inNCS) V F(inTRY;), allows a “degenerate”
model, where all paths satisfy F(inTRY;) and no path satisfies G(inNCS).

This ability to existentially quantify over paths is particularly useful in applica-
tions such as automatic program synthesis from temporal logic specifications (cf.
[3, 81) where very precise and thorough specifications are needed. Of course, it is
possible to synthesize a class of interesting programs successfully using only linear
time logic (cf. [22, 331); but, as the remarks above demonstrate, some means
external to the logic must be used if we wish to ensure the existence of alternative
computation paths. We also note that explicit path quantification can be helpful
in ensuring that a program exhibits an adequate degree of parallelism (i.e., that it
can follow any one of a number of computation paths and is not a degenerate
solution with only a single path).

In general, our feeling is that one should use the subset of CTL* most appropriate
to the application, where “appropriateness” is measured by expressive power and
complexity of testing satisliability and truth in finite models. We have concentrated
on issues of expressive power in this paper. For results on complexity of CTL* and
its sublanguages, we refer the reader to [6], [9], [121, and [30-321.

Appendix

PROOF OF THEOREM 4. We first define the set of basic fomulas, B, as follows:

(1) Any propositional formula (i.e., Boolean combination of atomic propositions)
is a B formula.

(2) IfPI, **a, p,, are propositional formulas, then pI U (p2 U - - . (p,,-I U Gp,,)
. . .) is a B formula which we abbreviate [pl, . . . , p,]. Intuitively, [pI , . . . , p,,]
means that there is a finite segment (possibly of length 0) where pI holds,
followed by a segment where p2 holds, . . . , followed by a segment where p,,-I
holds, and then p,, holds ever after.

(3) If p is a propositional formula, then GFp is a B formula.
(4) If p is a propositional formula, and [p!, . . . , p”,], . . . , [poM, . . . , pL], Fr,,

Fr,, are B formulas, then F(p A [~8, . . . , p”,] A - - - A [po”, . . . , prm] A
kr; ‘A . . . A Fr,) is also a B formula. (Any of the terms in the conjunction
may or may not be present.)

Let B” be the closure of B under conjunction and disjunction. Note that the
formulas of B+ can be written in conjunctive or disjunctive normal form, where
the literals are formulas of B.

CLAIM. For every linear time formula over F and G, there is an equivalent
formula of B+.

PROOF OF CLAIM. First note that given any linear time formula over F and G,
we can use deMorgan’s laws and duality (e.g., 1Fp = Glp) to drive the negations
inward until only the atomic propositions appear negated. Since B+ contains the
propositional formulas and is closed under conjunction and disjunction, it then
suffices to show that, if p E B+, then Fp and Gp are equivalent to some B+ formula.

For Fp note that, since F(q, V q2) = Fq, V Fq2, it suffices to show Fp is equivalent
to some B+ formula just when p is a conjunction of formulas in B.
This follows directly from (4) above and the observation that F(q, A GFq2) f
Fql A GFq,.

Similarly, since G(q, A q2) = Gq, A Gq2, it suffices to show Gp is equivalent to
some B+ formula just when p is a disjunction of formulas in B. This follows using

168 E. A. EMERSON AND J. Y. HALPERN

the observation below (where p’ and the q; are propositional formulas):

G(P’ V (VJp6, . . - 9 &I) V (VjJ’a) V (V.C GFqi))
E

GP’ V (Vi[P’, P6, * - - 2 &I) V (V/cGFqL) V (VjGFG)
V (Vi,j[F(qj A [@, ~‘1) V F(a A 1% P’, PS, * * * 3 PL~I)I)*

It is easy to check that the right-hand side of the equivalence implies the left-
hand side. To see the converse, note that the first three disjuncts of the right-hand
side take care of the case that no qj is ever true, and the fourth disjunct covers the
case that some 8 is true infinitely often (or at the last state of a finite path). The
last disjunct corresponds to the last possibility: all G being true only finitely often
(and not at the last state of a finite path). In this case, the last time any Q is true,
either Gp’ or one of the [qj, p’, ~6, . . . , pii] will be true at the next state. This
would be a B+ formula except that @ in some GFqi may not be a propositional
formula.

If q in GFq is not a propositional formula, note that q still must be in the form
of (4) above since it is the argument to F. Note also the equivalence below:

GF(p A [p$, . . . , pi01 A - - . A [pb”, . . . , prm] A Fr, A . - . A Fr,,)

s

GFp A F([p& . . . , ~$1) A . - . A F([po”, . . . , pYm]) A GFr, A - - - A GFr,.

By repeatedly applying this equivalence, we can get down to the case where GF
only takes a propositional formula as an argument. This completes the proof of
the claim. Cl

It rema@ to show that if p is a B+ formula, then Ep is equivalent to a
B(F, X, U, F, A, 1) formula. Since E(q V q’) = Eq V Eq’, it suffices to prove the
result in the case where p is a conjunction of B formulas. We proceed by induction
on the number of subformulas ofp of the form Fr (corresponding to rule 4 above).

If p has no F’s, then it is of the form

q A [pz, . . . , pi01 A * * - A [PO”, . . . , pYm] A Ai GFri

where q is propositional. We first show that a conjunction of formulas of the form
pn] is equivalent to a disjunction of such formulas. Given [PO, . . . , p,], p;:/
q,,,], we say that the ordering of terms in [pO A qo, . . . , pi, A qik, . . . ,

pn A q,ij is consistent provided that, if pi, A qjk appears before pi,, A qj,,, then ik I ih
and j, I j,,. Now observe that

[PO, . . . , pn] A [qo, -. ., qml E V([PO A 40, * * * 3 Pi, A qjk, . . .v pn A qm]
with consistent ordering of terms).

Thus, we can assume (if p has no F’s) that p is of the form q A [PO, . . . , pn] A
A; GFri by again using the fact that E[q V q’] = Eq V Eq’. But

E[q A [PO, . . . , PHI A Ai GFril
= q A E[po U E[p, U . . . E[p,-1 U E[Gp, A Ai GFri]]- * *I].

This is an B(F, X, U, F, A, 1) formula as desired since GF = p.
In general, p has the form

q A [PO, . . . , p,,] A Fr, A - + . A Fr,,, A A, GFs,,,

“Sometimes “and “Not Never” Revisited 169

where q is propositional. Observe that

EP E 4 A vi,jf;j.,

where Jj =

E[po U E[p, U * * * E[pj U E([pj, . . . , pn] A ri A A,+i Frk A Al, GFSh)] * * -11.

(Intuitively, we are disjuncting over which ri gets satisfied first and in which
segment pj this OCCURS.) E([pjy . . . , pn] /\ ri A A/+i Frk A l\h GFsh) has one fewer
F, so we can apply the induction hypothesis. This completes the proof of
Theorem 4. Cl

PROOF OF THEOREM 5 (continued). Recall that we must prove that

(2) for any B(F, X, U, F, A 1) formula p there is a B(F, X, U) formula q that is
equivalent to p over these two sequences of models-that is, for all i and all
states s in Mi,

Mi,sEpEq, and similarly for Ni;

(3) for any B(F, X, U) formula p, with 1 p 1 5 i, Mi, ai I= p iff Ni, ai K p.

We first prove (3), arguing by induction on 1 p 1, that for all B(F, X, U) for-
mulas p,

(*) if 1 p 1 5 i, then (Mi, ai l= p iff Ni, ai L p).

Note that (*) trivially implies that, if 1 p 1 5 i, then (Mi+, , a, I= p iff Ni+, , ai l= p),
which in turn can be seen to imply that

(**) if IpI 5 i, then(Mi+l, bi+l LpiffNi+l, bi+r Lp).

We take EXq, E[q U r] and A[q U r] as our primitive operators in the induction,
since any B(F, X, U) formula is equivalent to one using only these modalities. The
argument proceeds in cases based on the structure of the B(F, X, U) formulas p.
The cases in which p is an atomic proposition, a conjunction q A r, or a negation
lq are easy and left to the reader.

If p is of the form EXq then,

Mi+l, ai+l I= EXq

if and only if

Mi+l, bi+l I= q or Mi,aikq or Ni, ai I= 4

if and only if

Ni+l, bi+l I= q (by **) or Mi, ail= q or Ni, ai I= 4

if and only if

Ni+ I , ai+ I I= EXq.

Ifp = E[q U r] then,

Mi+ ,, ai+ I E E[q U r] if and only if

(1) Mi+l, ai+l I= ror
(2) Mi+l, ai+l I= 4, Mi+l, bi+l I= r or
(3) Mi+l, ai+l I= 4, Mi, ai I= E[q U t-1 or
(4) Mi+ 1, ai+ 1 t= 4, Nip ai t= E[q U rl

170 E. A. EMERSON AND J. Y. HALPERN

if and only if

(1) N+I, ai+l I= r(by (*)) or
(2) Ni+l, ai+l I= 4, Ni+l, bi+, E r (by (*), (**), respectively) or
(3) Ni+l, Qi+l I= 4 (by (*)I, Mi, Ui != E[q U r] or
(4) Ni+lp Ui+l I= 4 (by (*I), Ni, Ui I= E[q U r]

if and only if

Ni+ly ui+l C= E[q U r].

In the last case, if p = A [q U r] then

Mi+,, ai+, kA[q ur] ifand only if

(1) Mi+l, ui+l I= r or
(2) M+l, ui+l I= 4, Mi+l, bi+l I= r,

Mi, Ui I= A[q U r], Ni, ai I= A[q U r] or
(3) Mi+l, G+l I= 4, Mi+l, &+I I= 4,

Mi,UikA[qUr],Ni,aikA[qUr]

if and only if

(1) Ni+l, ui+l I= r(by (*)) or
(2) Ni+l, ui+l I= 4, Ni+l, h+l I= r(by (**)),

Mi, Ui I= A [q U r], Niy ai I= A [q U r] or
(3) Ni+lv ui+l t= 4, Ni+l, bi+l I= 4 (by (**)),

Mi,aikA[qUr],Ni,aigA[qUr]

if and only if

Ni+l, ai+l bA[q Url.
It remains to establish our claim that B(F, X, U) and B(F, X, U, p, A, 1) are of

guivalent expressive power on the two sequences of models. For any B(F, X, U,
F, A, 1) formula Eq, 9 can be placgd in disjunctive normal form. Since E(q’ V
4”) = Eq’ V Eq” ani Gp’ A Gp” = G(p’ A p”), it suffices to shzw the equivaJence
@ any B(F, X, U, F, A, 1) formula of the form p, = E[p A Fq, A . . . A Fqn A
Gr] where Ep, q,, . . . , q,, are B(F, X, U, A, 1) formulas. To show this, we observe
that every path in one of the structures Mi or Ni ends in a self-loop at the state d.
Using c to denote either Ui or bi, we thus have that Mi, c E p, iff Mi, c L Ep and
Mi, d I= q, A *a * A q,, A r. Moreover, Mi, d I= q, A - - - A q,, A r iff Miy c I=
EFAG(q, A . . . Aq,Ar).Thus,Mi,cbp,iffMi,cLEpAEFAG(q,A **- Aq,,
A r) and similarly, for Ni. The latter formula is in B(F, X, U, A, 1). By Theorem
9, we know that, for any B(F, X, U, A, 1) formula q’, there exists an equiva-
lent B(F, X, U) formula q. So we are done. (This completes the proof of
Theorem 5). Cl

PROOF OF THEOREM 6. We inductively define two sequences M, , Mz, M3, . . .
andN,,N2,N3,... of models as follows. Define Ml, N, to have the graphs shown
in Figure 4 where in M,, a, l= P, A ‘P2 A 19, A -Q2 A TR, b, I= ip, A 7P2 A
lQ, A lQ2 A TR, c, I= 1P, A -Pz A Q, A 1Qz A TR, d, I= lP, A -,P2 A lQ, A
QZA~R,~~~~,~=~P,A~P~A~Q,A~Q~AR~~~~~N,,~,I=P,/\~P~A
lQ, A 1Qz A ‘R, b, t= lP, A ~Pz A Q, A 1Qz A -R, c, I= lP, A Pz A lQ, A
1Q2 A -R, d, I= lP, A 7P2 A lQ, A Q2 A TR, and e, I= lP, A 7P2 A lQ, A
-7Q2 A R.

“Sometimes “and ‘Not Never” Revisited

Ml:

171

FIGURE 4

FIGURE 5

N i+1:

p1

p2

A
ai+l

Q
i+1

Q2 Ci+l

di+l

n

A

n Ni

M;

Ni

Suppose we have defined Mi and Ni. Then Mi+I and Ni+l have the graphs shown
in Figure 5 where in both Mi+r and Ni+r , ai+l I= PI A 7P2 A 1QI A lQ2 A lR,
bi+l I= 1PI A P2 A 1Qr A lQ2 A TR, ci+l E SPI A 7P2 A QI A lQ2 h TR, and
di+l I= lPI A lP2 A lQI A Q2 A lR, and finally M/, N,! are copies of M/p Ni,
respectively.

It should be clear that

(1) for all i, Mi, ai I= E[((PI U P2) V (Qr U Qz)) U R] and
Ni, ai I= ~E[((PI U P2) V (QI U Q2)) UR].

We can also show that

(2) For any B(F, A’, U, F, A, 1) formula p, there is a B(F, X, U) formula q, which
is equivalent to p over these two sequences of models. That is, for all i and all
states s in Mi,

Mi, s I= p = q, and similarly for Ni.

(3) For any B(F, X, U) formula p, with 1 p 1 I i, Mi, ai I= p iff Ni, ai I= p.

The details of the remainder of the proof follow along exactly the same lines as
that of Theorem 5. Details are left to the reader. El

172

M,:

P
FIGURE 6

81

bl

FIGURE I

M i+1:

P

d

%+1

%+1

Ni

b i+1
*

E. A. EMERSON AND J. Y. HALPERN

n,:
P

I

5

dl

P Cl+1

d 1+1

P Cl+1

d
+ 1+1

P C2

FIGURE 8

d2

PROOF OF THEOREM 7. We inductively define two sequences,of models MI,
M2, M3, . . . and N,, N2, N3, . . . such that for all i, M;, ai I= EFP and N;, ci I=
1EpP. We show that B(F, X, U) is unable to distinguish between the two sequences
of models; that is, for all B(F, X, U,) formulas p with 1 p 1 5 i, M;, ai I= p iff Ni, Ci
I= p. The result follows since, if EFP were equivalent to some B(F, X, U, A, 1)
formula p, by Theorem 8 it would also be equivalent to some B(F, X, U) formula
p’ of length i. But Mi, a; I= p’ iff Ni, ci t= p’, contradicting the fact that M;, a; I=
EFP and Ni, ci I= 1EFP. (Since a;, bi appear only in Mi and q, di in Ni, we omit
the models from our assertions.)

We define MI, N, to have the graphs shown in Figure 6 where UI I= P, bl I= lP,
cl I= P, and d, E 1P. Assume that Mi, Ni are defined. The M;+r and N;+l have the
graphs shown in Figure 7 where a;+, I= P, b;+, I= 1P, c;+ I I= P, and d/+1 I= 1P.

Remark. We see that if we unwind the inductive definitions, the models have
the form depicted in Figure 8.

We first argue by induction on 1 p 1, that for any B(F, X, U) formula p,

(*) Wz Ipl qt=pP)iff(Vjz I~I,q~~)land
[(3jr IPI d,~p)iflO’j~ IPI,4~PP)l*

“‘Sometimes “and ‘Not Never” Revisited 173

The basis case when] p] = 1 is obvious, since all cj agree on the atomic propositions
as do all dj. For the induction step, we assume (*) for formulas of length Z and try
to show it for I + 1. Note that the + direction is obvious. To establish the Ed
direction, it suffices to show that, if p is of length Z + 1 and j I Z + 1, then

(i) Cj L p implies Cj+l L p,
(ii) cjEpandj>Z+ 1 implycj-,Ep,

(iii) dj C= p implies d,+, E p,
(iv) djl=pandj>Z+ 1 implydj-,Ep.

We break the argument into cases depending on the form of p. If p is of the form
q A r, or 1 q the argument is straightforward and left to the reader.

Case 1: p = EXq. Assume cj L p. Note that cj E p iff Cj L q or dj I= 4. By the
induction assumption twice, Cj+, l= q or d,,, l= q. Similarly, if j >] p I = I + 1 so
thatj- l>Z>IqI,wealsoseethatcj-,~qordi-,~q.Thus,cj+,~p((i))and
Cj-1 b p ((ii)).

Now assume 4 C= p. Note that 4 l= p iff

(1) c$l=qor
(2) Cj-I I= 4.

By the induction assumption twice, (1) implies dj+, E q and (2) implies Cj l= q
whence dj+ , l= p ((iii)). If j >] p] = I + 1 then j - 1, j - 2 B] q] so by the induction
assumption twice, dj-, K q and cj-2 E q. We conclude that 4-I l= p ((iv)).

Case 2: p = E[q U r]. Assume cj l= p. NOW Cj E p iff

(1) CjEror
(2) CjFq,l$brOr

(3) Cj I= 43 4 I= 4, Cj-I I= P-

This implies

(1’) cj+, l= I (by the induction assumption) or
(2’) cj+, L q, d,+, L r (by the induction assumption twice) or
(3’) cj+, l= q, dj,, E q, Cj l= p (by the induction assumption twice and the assumption

Cj k PI-

It follows that cj+, l= p ((i)). If we assume that j > Z + 1, then we can also argue
that

(1”) cj-, l= Y (by the induction assumption) or
(2”) c,-~ l= q, dJ l= r (by the induction twice) or
(3”) Cj-1 E p (as a special case of (3)).

Thus, in all cases, we have cj-, E p ((ii)).
Next assume that 4 l= p. Note that 4 l= p iff

(1) djbror
(2) djkq,Cj-,brOOr

(3) Cj I= 4, CJ- I I= 4,4-I I= P-

By repeated application of the induction hypothesis it follows that

(1’) d+,l=ror
(2’) dj+lFq,CjbrOr

(3’) dj+, K q, Cj E q, 4 E p (4 l= p follows by our assumption).

Thus d,,, l= p ((iii)).

174 E. A. EMERSON AND J. Y. HALPERN

If we also assume that j > I + 1, then we can use the induction assumption to
argue that

(1”) dj-1 I= ror
(2”) d,-l I= 4, Cj-2 I= r or
(3”) 4-r l= p (d,-, l= p follows directly from (3)).

Thus, in all cases, we get 4-r l= p ((iv)).

Case 3: p = A [q U r]: Assume Cj E p. NOW Cj I= p iff

(1) CjbrOr
(2) Cj F 4, dj I= r.

By the induction hypothesis, it follows that

(1’) Cj+l I= ror
(2’) Cj+l I= 49 d,+l I= r3

whence cj+r l= p ((i)).
Assuming j > I + 1, we also get that

(1”) Cj-1 l= r or
(2”) cj-1 t= q, 4-l t= r,

and we conclude that Cj-1 L p ((ii)).
Next assume that dj E p. Note that 4 l= p iff dj l= r. By the induction hypothesis,

it follows that dj+l L r and (assumingj > I + 1) dj-1 E r. We conclude that dj+l E
p ((iii)) and d,-r K p ((iv)).

This completes the proof of (*). Cl

We now argue by induction on 1 p 1 that

(**) i 2 1 p 1 implies (ai I= p iff Ci E p) and (bil=piffdiEp).

We break the argument into cases depending on the structure of p. The cases in
which p is an atomic proposition, a conjunction q A r, or a negation lq are easy
and left to the reader. We present the cases where p is of the form EXq, E[q U r],
orA[q Ur].

Case 1: p = EXq. We first note that ai L p iff

(1) ait=qOrbiKq,
(2) ci l= q or di l= q (by the induction hypothesis twice),
(3) CibPp.

We next note that bi I= p iff

(1) cZil=qOr
(2) bi I= q or
(3) G-1 t= 4,

and that di k p iff

(4) -d; I= q or
(5) Ci-I I= 4.

Now (1) implies ci l= q (by induction hypothesis) which in turn (by (*)) implies
(5). Also, (2) implies (4) (by induction hypothesis) and (3) coincides with (5). Thus,
bi l= p implies di l= p. For the converse, note that (4) implies (2) (by the induction
hypothesis) and (5) coincides with (3).

“Sometimes ” and “Not Never” Revisited

Case 2: p = E[q U r]. Note that ai k p iff

(1) aikror
(2) ai E 4, bi I= r or
(3) ai~q,bi~GCi-l~P

and that ci I= p iff

(4) Ci F r or
(5) Ci I= q, di I= r or
(6) G I= 4, 4 I= 4, Ci-1 I= P.

175

By repeated application of the induction hypothesis we see that ai l= p iff ci l= p.
Next note that bi k p iff

(1) biErOr
(2) bi I= 4, C.Zi I= r, or
(3) bikq, Ci-I FP

and that di I= p iff

(4) di I= r or
(5) 4 I= 4, Ci-1 EP-

Observe that (2) implies (3) since ai E r implies ci l= r (by induction hypothesis),
ci l= r implies ci-, I= r (by (*)), and Ci-, E r implies ci- I l= p. By repeated application
of the induction hypothesis we also see that (1) iff (4) and (3) iff (5). We conclude
thatbikpiffdikp. q

Case 3: p = A[q U r]. First note that ai Fp iff

(1) ail=rOr
(2) ai I= 4, bi E r

and that ci I= p iff

(3) Ci E r or
(4) Ci I= q, di I= r.

By repeated application of the induction hypothesis we see that

ai I= p iff Ci I= p.

Next note that

and that

bi bp iff bi I= r

di I= p iff di I= r.

Again by repeated application of the induction hypothesis, we see that bi I= p iff
di I= p.

This completes the proof of (**) and of the Theorem 7.

SUMMARY OF PL. For the reader’s convenience, we summarize the syntax and
semantics of PL here. (The reader should consult [161 for additional details.) The
first and last states of a path x are denoted by first(x) and last(x), respectively
(last(x) does not exist for infinite paths). If x, y are two paths such that last(x) =
first(y), then x-y denotes the fusion of x and y.’ For example, if x = (s,, s2, sj)

’ This was called simply the concatenation of s and y in [161.

176 E. A. EMERSON AND J. Y. HALPERN

and y = (~3, ~4, SS), then x . y = (si, SZ, $3, s4, SS). If last(x) # lirst(y), then x . y is
undefined.

All formulas in PL are path formula. The language of PL, however, is the same
as (test-free) PDL [131 augmented with two additional operators f and suf. Intui-
tively, fp means that p holds in the unique initial prefix of length 0 (i.e., at the first
state) of a path while suf is analogous to the ordinary until operator of temporal
logic.

PL fomulas are interpreted over a path model M = (S, l=, R) where S is a set of
states, l= is a satisliability relation for atomic propositions, and R is an assignment
of sets of paths to atomic programs. A path satisfies an atomic proposition iff its
first state does. We write x C= P if path x satisfies atomic proposition P, and x E R,
if x is a member of the set of paths assigned to atomic program a. We then
inductively extend l= and R to compound formulas and programs as follows:

RmB= (x. y]xER,andyERB);
plc=“yRu R,;

a’ ,h;

xl=pV qiffx~porx~qq;
xl=ipiffnot(xKp);
xl=(cu)piff3yER,x. yl=p;
x I= fp iff first(x) l= p;
x l= p suf q iff there exists a path y such that

(i) y is a proper suffice of x and y l= q, and
(ii) V z, if z is a proper suffix of x and y is a proper suffix of z, then

z I= p.

Note that the operator np defined as (false suf p) is analogous to the next time
operator Xp of linear temporal logic.

PROOF OF LEMMA 1. Suppose M = (S, X, L). Fix a path x E X, and a
stage y of x. Let Xi = (z E X 1 y I z) and Mr = (S, Xi, L). It is easy to check that
M,, x, y l= p iff M, x, y l= p. To simplify the notation, assume for now that Xi is
countable (the case where X, is uncountable is considered below) and consists of
the distinct paths x = x0, XI, x2, x3, We now unwind M, into a “treelike”
model. Define a set T = (tij] i, j 2 0) of “fresh” states distinct from the states in S.
We inductively define a set of paths X’ = (yo, yl, y2, . . .) over T which is fusion
closed along with a mapping h: T + s as follows: Suppose x0 = (SO, SI, . . . , Sk,

. . .) (which could be finite or infinite). Then deline yo = (too, to,, . . . , tOk, . . .) and
h(toj) = Sj for all j. We can extend h SO that if y = (~0, . . . , urn, . . .) then h(y) =
h(uo), . . . , h(u,n), . . .). Note that h(yo) = x0. Now suppose we have constructed
the paths yj for all j < i so that h(yj) = x,. We now define y; = (tk,,j), where, for all
j < 1 + 1 x,1, k, is the least k such that the length j stage of xk is also a stage of x;.
Now, extend h so that h(y;) = xi. Let T’ consist of those states of T that occur in
yi for some i. Also let L’ be a labeling of states in T’ such that L’(t) = L(h(t)).
Now define M’ = (T’, X’, L’). Then we can show, by a straightforward in-
duction on the structure of formulas, that for any formula q, if] w 1 1] y 1, then
M’, z, w l= q iff M, h(z), h(w) I= q.

Next define X” = (zi 1 z E X’). Using the observations that no state occurs twice
along any path, and that two paths have a state in common iff they have a common
prefix including the state, it is easy to check that X” is fusion closed and sufftx

‘Sometimes”and “Not NeveYRevisited 177

closed. Let M” = (T’, X”, L’). Then we can argue by induction on the length of
formula q that, for z E X’, M’, z, w I= q iff M”, z, w I= q. Thus, M” is a fusion-
closed and suffix-closed model of p. Note that our original path x E X”. The above
argument shows that for all MPL formulas q, M, x, y I= q iff M”, x, y t= q.

If X, is not countable, a similar argument goes through (although we seem to
need the well-ordering principle-which is equivalent to the axiom of choice-to
order the paths first). Cl

ACKNOWLEDGMENT. We wish to thank the referees for their careful reading of the
paper and their helpful criticisms which led to improvements over the earlier
version. We also thank C. L. Lei for helpful comments.

REFERENCES

I. ABRAHAMSON, K. Decidability and expressiveness of logics of processes. Ph.D. dissertation, Univ.
of Washington, Seattle, 1980.

2. BEN-ARI. M., MANNA, Z., AND PNUELI, A. The temporal logic of branching time. In Proceedings
of the 8th Annual ACM Symposium on Principles of Programming Languages (Williamsburg, Va.,
Jan. 26-28). ACM, New York, 1981, pp. 164-176.

3. CLARKE, E. M., AND EMERSON, E. A. Design and synthesis of synchronization skeletons using
branching time temporal logic. In Proceedings ofthe IBM Workshop on Logics of Programs. Lecture
Notes in Computer Science, vol. I3 I. Springer-Verlag, New York, 198 I, pp. 52-7 I.

4. CLARKE, E. M., EMERSON, E. A., AND SISTLA, A. P. Automatic verification oftinite-state concurrent
systems using temporal logic specifications: A practical approach. In Proceedings ofthe 10th Annual
ACM Symposium on Principles of Programming Languages (Austin, Tex., Jan. 24-26). ACM, New
York, 1983, pp. 117-126.

5. EMERSON, E. A. Alternative semantics for temporal logics. Theor. Comput. Sci. 26 (l983),
121-130.

6. EMERSON, E. A. Automata, tableaux, and temporal logics. In Proceedings of the Brooklyn College
Conference on Logics of Programs 1985. Lecture Notes in Computer Science, vol. 193. Springer-
Verlag, New York, 1985, pp. 79-87.

7. EMERSON, E. A., AND CLARKE. E. M. Characterizing correctness properties of parallel programs
as fixpoints. In Proceedings of the 7th International Colloquium on Automata. Languages, and
Programming. Lecture Notes in Computer Science, vol. 85. Springer-Verlag. New York, 1980,
pp. 169-181.

8. EMERSON, E. A., AND CLARKE, E. M. Using branching time logic to synthesize synchronization
skeletons. Sci. Cornput. Prog. 2 (1982). 24 I-266.

9. EMERSON, E. A., AND HALPERN, J. Y. Decision procedures and exprqssiveness in the temporal
logic of branching time. In Proceedings of the 14th Annual ACM Symposium on Theory of
Computing (San Francisco, Calif., May 5-7). ACM, New York, 1982, pp. 169-180.

IO. EMERSON, E. A., AND HALPERN, J. Y. “Sometimes” and “not never” revisited: On branching vs.
linear time. Res. Rep. RJ 4197, IBM Research, San Jose, Calif., 1984 (Also Tech. Rep. 84-01,
Comput. Sci. Dept., Univ. of Texas, Austin, Tex. 1984).

I I. EMERSON, E. A., AND LEI, C. L. Modalities for model checking: Branching time strikes back. In
Proceedings of’ the 12th Anmral ACM Symposium on Principles of Programming Languages (New
Orleans. La., Jan. 14-16). ACM, New York, 1985, pp. 84-96.

12. EMERSON, E. A., AND SISTLA. A. P. Deciding full branching time logic. In/: Control 61, 3 (1984),
175-201.

13. FISCHER, M. J., AND LADNER. R. E. Propositional dynamic logic of regular programs. J. Cumput.
Syst. Sci. 18 (1979), 194-2 I I.

14. GABBAY, D., PNUELI, A., SHELAH, S., AND STAVI, J. On the temporal analysis of fairness. In
Proceedings of the 71/r Annual ACM Symposium on Principle7 of Programming Languages (Las
Vegas, Nev.. Jan. 28-30). ACM, New York, 1980, pp. 163-173.

15. HAILPERN, B., AND OWICKI, S. Modular verification ofconcurrent programs using temporal logic.
Tech. Rep.. Stanford Univ. Stanford, Calif.. I98 I.

16. HAREL, D.. KOZEN, D., AND PARIKH, R. Process logic: Expressiveness, decidability, and complete-
ness. J. Comput. Syst. Sri. 25 (1982), 144-I 70.

17. HAREL, D.. AND SHERMAN, R. Looping vs. repeating in dynamic logic. InJ: Control 55 (1982),
175-192.

178 E. A. EMERSON AND J. Y. HALPERN

18. KAMP, H. Tense logic and the theory of linear order. Ph.D. dissertation, UCLA, Los Angeles,
1968.

19. LAMPORT. L. “Sometime” is sometimes “not never”-On the temporal logic of programs. In
Proceedings of the 7th Annual ACM Symposium on Principles of Programming Languages (Ias
Vegas, Nev., Jan. 28-30). ACM, New York, 1980, pp. 174-185.

20. LEHMANN, D., AND SHELAH, S. Reasoning with time and chance. InJ Control 53 (1982),
165-198.

2 I. MANNA, Z., AND PNUELI, A. The modal logic of programs. In Proceedings of the 6th International
Cofloyuirrm on Automata, Languages, and Programming. Lecture Notes in Computer Science, vol.
7 I. Springer-Verlag. New York, 1979, pp. 385-408.

22. MANNA, Z., AND WOLPER, P. Synthesis of communicating processes from temporal logic specili-
cations. ACM Trans. Prog. Lung. Syst. 6, I (Jan. l984), 68-93.

23. OWICKI, S., AND LAMPORT, L. Proving liveness properties of concurrent programs. ACM Trans.
Prog. Lang. Syst. 4, 3 (July l982), 455-495.

24. PNUELI, A. The temporal logic of programs. In Proceedings of the 19th Annual Symposium on
Foundations of Computer Science. IEEE, New York, 1977, pp. 46-57.

25. PNUELI, A. The temporal semantics of concurrent programs. Theor. Comput. Sci. 13 (1981), 45-
60.

26. PRATT, V. R. Process logic. In Proceedings of the 6th Annual ACM Symposium on Principles of
Progrumming Langwges (San Antonio, Tex., Jan. 29-3 I). ACM, New York, 1979, pp. 93-100.

27. PRIOR, A. Time and Modality. Oxford Univ. Press, London, 1957.
28. PRIOR, A. Pust, Present, and Future. Oxford Univ. Press, London, 1967.
29. RESCHER, N., AND URQUHART, A. Temporal logic. Springer-Verlag, Berlin, I97 I.
30. SISTLA. A. P., AND CLARKE, E. M. The complexity of propositional linear temporal logic. J. ACM

32,3 (1985), 733-749.
3 1. VARDI, M., AND STOCKMEYER, L. Improved upper and lower bounds for modal logics of programs.

In Proceedings of the 17th Annual ACM Symposium on Theory of Computing (Providence, R. I.,
May 6-8). ACM, New York, 1985, pp. 240-25 I.

32. VARDI, M., AND WOLPER, P. Yet another process logic. In CMU Workshop on Logics ofprograms.
Lecture Notes in Computer Science, vol. 164. Springer-Verlag, New York, 1953, pp. 501-512.

33. WOLPER, P. Specification and synthesis of communicating processes using an extended temporal
logic (preliminary version). In Proceedings of the 9th Annual ACM Symposium on Principles of
Progrumming Lunguuges (Albuquerque, N. M., Jan. 25-27). ACM, New York, 1982, pp. 20-33.

34. WOLPER, P. Temporal logic can be more expressive. Inf: Control 56, l/2 (l983), 72-99.

RECEIVED NOVEMBER 1983; REVISED MAY 1985; ACCEPTED JUNE 1985

Journal of the Association for Computing Machinery, Vol. 33. No. I. January 1986.

