Susan Obermeyer now works in product line
management in the Digital Switching Division of
Northern Telecom. She earned her bachelor’s degree in
electrical engineering from McMaster University,
Hamilton, Ontario; and her master’s degree in computer
science from the University of Waterloo, Ontario.

THE EFFECTS OF FREQUENCY
AND LENGTH OF COMMANDS AND TRAINING
TRANSFER ON TEXT EDITING PERFORMANCE

VIRGINIA A. L. GUNTHER, ALEXIS GROSOFOSKY,
OANIEL J. BURNS, DAVID G. PAYNE

The nature of the command terms used by
computer systems is an important issue affecting
human computer interaction. As such, this area
has received considerable attention recently
(e.g., Ehrenreich, 1982, 1985; Grudin &
Barnard, 1984; Landauer, Galotti, & Hartwell,
1983; Landauer & Galotti, 1984; Ledgard,
Whiteside, Singer, & Seymour, 1980; Scapin,
1981, 1982). The issues addressed by these
researchers are particularly important in light
of the larger number of computer users who
have litlle or no knowledge of the underlying
logic of either the hardware or the software that
they are using. As a group, these users often
believe that the system should be "fast and easy
to use". One area in which this expectation is
especially widespread is that of wordprocessing
packages. Although wordprocessing packages
generally share the same basic functional
purposes, the specific command terms that each
uses for a particular function are generally not
the same or even similar. There are even
instances where different versions of the same
wordprocessing package have different commands
and/or functions than previous versions.
Therefore, not only is the issue of the ease of
learning and use of commands important, but
also the issue of how these commands might be
changed (either across different levels of user
expertise or different versions of the software)
so that there is maximum transfer of training
from old commands to new commands.

Previous research in this area has been
concerned with transfer of training between
different wordprocessing packages (e.g., Karat,
Boyes, Weisgerber, & Schafer, 1986). Since
there are inherent differences between
wordprocessing packages that include more than
just command name changes it was felt that
examining transfer of training within the same

SIGCH]I Bulletin

wordprocessing environment would isolate the
issue of transfer of training for command terms.
Therefore, the present study was concerned with
addressing transfer of training issues related to
command length changes within the same
wordprocessing package.

Method
Subjects. Design. and Procedure, Forty students

enrollled in an introductory psychology course
participated in four sessions spread over two
consecutive days. In each session subjects were
given hardcopy versions of eight paragraphs each
containing eight errors noted by standard
copyediting marks. Subjects were instructed to
use the text editor to correct the errors in each
paragraph, store that paragraph, and then
retrieve the next paragraph. Different
paragraphs were used for each session but the
paragraphs were the same across subjects for
each session. The length of the commands used to
accomplish the text editing was manipulated
within-subjects. On Day 1 subjects used either
whole word comands or single letter commands
and on Day 2 they were switched to the other
command type (i.e., words on Day 1 with letters
on Day 2 or vice versa). In all cases the single
letter was the first letter of the whole word.
Half the subjects used words that were high
frequency and the other half used low frequency
commands. Subjects were not informed that they
would be switching command lengths. Therefore,
the design was a 2 (Length-of Command: words
vs. letters) x 2 (Frequency: high vs. low) x 4
(Session: 1-4) mixed-factor design.

Resdults

A variety of performance measures related to
speed and accuracy were obtained from each
session. In addition, data regarding subjects'
experience with computers, word processors,
and typing was also collected. Due to space
limitations we will only discuss the variables of
the total time to complete each session and total
errors for a session. Not surprisingly, for each
of the four between subjects conditions the total
time required to complete each session decreased
across the four sessions. Furthermore, this task
completion time was greater for low frequency
commands than for high frequency commands.
Subjects in the letter-to-word condition showed
an increase in task completion time on the third
session, regardless of the relative frequency of

January 1988 Volume 19 Number 3

http://crossmark.crossref.org/dialog/?doi=10.1145%2F49108.1046354&domain=pdf&date_stamp=1988-01-01

the whole word command. These results clearly
indicate a negative transfer of training from
letters to words with respect to the time
required to complete a word processing task.

The error rates were higher in the letter-to-
word conditions than in the word-to-letter
conditions. Also, high frequency commands
showed fewer errors than low frequency
commands. When errors were classified
according to the commands' overall functional
purpose (e.g., deleting, adding, changing) we
found that for high frequency commands errors
were more likely to be due to the use of another
command that was within the appropriate
commands' functional purpose (e.g., deleting a
word rather than a letter). The error
classifications showed that for the letter-to-
word condition most mistakes were made outside
the functional grouping during sessions one and
two, while the opposite was true for the word-
to-letter conditions during those sessions.

Conclusions

These results suggest that relative word
frequency and command type (letter vs. word)
are relevant and important issues in assessing
transfer of training within software packages.
We would also argue that related findings in
basic cognitive and learning psychology can be
used to assess performance when design
changes are contemplated for software
packages. Finally, further research is needed
to assess transfer of training issues with other
aspects of the software interface such as
functionality within the scope of computer
aided design packages.

References

Ehrenreich, S. L. (1985). Computer
abbreviations: Evidence and synthesis.

Human Factors, 27, 143-155.

Grudin, J. and Barnard, P. (1984). The
cognitive demands of learning and
representing command names for text editing.

Human Factors. 26, 407-422.

Landauer, T. K., Galotti, L. M. and Hartwell, S.
(1983). Natural command names and initial
learning: A study of text editing terms.

Communications_of the ACM, 26, 495-503.

Landauer, T. K. and Galotti, L. M. (1984}, What

SIGCHI Bulletin

makes a difference when? Comments on
Grudin and Barnard. Human Factors, 26,
423-429,

Ledard, H. , Whiteside, J., Singer, A., and
Seymour,W. (1980). The natural language
of interactive systems. Communications of
the ACM, 23, 556-563.

Scapin, D.L. (1981). Computer commands in
restricted natural language: Some aspects of
memory of experience. Human Factors, 23,

365-375.

Scapin, D.L. (1982). Generation effect,
structuring and computer commands.

Behavior and Information Technology, 1.

401-410.
About the Authors

Virginia A. L. Gunther is a graduate student
in both the Psychology and Systems
Science Departments at the State University
of New York at Binghamton. She earned her
M.A. degree from Towson State University in
Experimental Psychology. Prior to
attending SUNY Binghamton she taught
psychology at the University of Maryland
(European Division) and Hartford
Community College. She has also been
involved with research at the Kennedy
Institute, Johns Hopkins Medical School.
Virginia's interests include basic and
applied research in the areas of human
memory and attentional processes,

artificial intelligence (connectionist), and
human computer interface design.

Alexis Grosofsky is a graduate student in the
Psychology Department at the State
University of New York at Binghamton. She
received her M.A. degree from SUNY
Binghamton in 1985. Alexis' masters work
was in the area of ecological perception.
Currently Alexis is finishing her
dissertation in the area of human memory.
Alexis' research interests are in the areas
of human memory and cognition, ecological
perception, and human factors.

Daniel J. Burns received his M.A. and Ph.D.
degrees in Experimental Psychology from
the State University of New York at
Binghamton. Dan's primary research
interests are in the area of human memory.

January 1988 Volume 19 Number 3

Dan is currently an Assistant Professor in
the Psychology Department at Creighton
University in Omaha, Nebraska.

David G. Payne received his Ph.D. in
Cognitive Psychology from Purdue
University. David's current research
interests include the design of person-
machine interfaces, eyewitness memory,
memory improvement, attentional
processes and mental workload. David
recently spent a summer as a NASA/ASEE
faculty fellow at the NASA Langley Research
Center where he conducted research
concerning manual and voice control of
remote video cameras. He is currently an
Assistant Professor and Associate Chairman
in the Psychology Department of the State
University of New York at Binghamton.

A NATURAL LANGUAGE SHELL
MANTON M. MATTHEWS

This paper describes a natural language interface, that
models users and maintains a knowledge base of how
users are using the system. The system is developed
under Unix using a combination of Prolog and C code.
The natural language processing partis being implement-
ed in UNSW Prolog with extensions to facilitate efficient
processing of dictionaries and frame hierarchies.

Natural language has been viewed as overkill in many
of the applications of today and rightly so. Direct
manipulation techniques are much more natural and
efficient in most domains than typing in "natural
language." Rich however points out that natural
language is a powerful communication mechanism and
that in sufficiently complex domains the cost of
processing natural language is justified [1]. Note that
the cost of natural language is two-fold: the user must
generate the natural language and the system must then
"understand” it. The user must formulate his request
and then currently in most cases type it into the system.
However, in a few years speech processing systems will
become more effective and then spoken natural
language will be a viable input mechanism. Spoken
natural language will be much more effective than
relying totally on typed input, or totally on mouse or
other pointer input. The most effective interfaces in the
future will probably allow combinations of spoken
natural language and pointing devices.

Our system does not attempt to incorporate all of these
features into the current version, but lays a foundation
that will accommodate these features. It currently uses
a language that is a mixture of command language,
natural language (typed) and mouse input. In this both
of

SIGCHI Bulletin

69

mv paper /fac/matthews

move paper to my home directory
cause the system to move the specified file "paper" to
the user’s home directory. The system also allows the
use of the natural constructs, to simplify
communication. For instance assuming that the file
"paper "had recently been referenced, perhaps by editing
or viewing it, then the commands could be simplified to
"move it to my home directory”. The mouse input is
primarily used for selecting commands and for
dereferencing words or phrases, such as the words "it"
or "here” in "move it here".

The system maintains a model of how the software on
the system can and is being used. This knowledge base
is incrementally created by the system observing
commands, and trying to model what is going on. If it
has a sequence of commands that it is not capable of
handling it makes a note in a log. The system developer
uses this log to extend the knowledge base with the
assistance of the system. Extensions that commonly
occur are additions to the dictionary, additions of new
commands, additions of options to commands, etc.

In addition to the general knowledge base there is a
model of the individual user that represents how the
user has been using the system. This model is used in
several ways, but the most important are (1) to provide
a measure of sophistication with various picces of
software on the system and (2) as a memory extender
(or extended C-shell history). The measure of
sophistication is used in tailoring responses to the
individual users as well as in processing queries. The
“extended history" aspect allows the system to respond
to

"What was the font that I used to print the ACM

paper in November?"
Note that the system could ask the user for help in
disambiguating this query if it were necessary. Using
this model of the system can understand and respond to
user queries about the software.

References

(1) Elaine Rich, "Natural Language Understanding;
How natural can it be?," Proc. of Second
Conference on Artificial Intelligence

Applications, pp. 372-377 (1985).

About the Author

Manton M. Matthews is Director of Graduate Studies
for the Computer Science Department of the University
of South Carolina. He earned his doctorate in
mathematics from the University of South Carolina and
spent a postdoctoral year at the University of North
Carolina at Chapel Hill working in functional
programming. Since 1981 he has been a member of the
faculty at South Carolina. He has published papers on
user modeling, knowledge-based systems, user
interfaces, functional programming and graph theory.

January 1988 Volume 19 Number 3

