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a n  

I n t r o d u c t i o n  

In ([GT D has been addressed the problem of the computation of the square-free decomposition 
for univariate polynomials with coefficients in arbitrary fields. The complete square-free decompo- 
sition can be computed over arbitrary fields of finite characteristic solely assuming that the field 
satisfies the Cond i t ion  P of Seidenberg ([Se]), which has been proven equivalent to the ability of 
computing such decompositions (see also [MRR]). If we assume that the field is only an effective 
field (i.e. a field K where there are constructive procedures for performing rational operations in 
K and for deciding whether or not two elements in K are equal), it is possible to obtain a weaker 
decomposition into powers of relatively prime factors, not necessarily square-free, but such that 
within each factor the roots have constant multiplicity. Although this is a partial decomposition, 
much useful information can be gathered from this result. As an application we present an algo- 
rithm to compute the Jordan form of a matrix over an arbitrary effective field. In particular we 
show how to handle problems of inseparability while splitting invariant factors and constructing a 
symbolic Jordan form. 

The computation of normal forms of a matrix, in particular of the Jordan form, is a" very 
important task and has many useful applications, so it has been widely studied for many years 
and many efficient algorithms, sequential and parallel ([O], [L], [Gill, [Gi2], [O1], [KKS], [RV]), are 
already available for its computation. There are already algorithms which compute the Jordan 
form of a matrix over general fields ([GD], [RV]), but they are based on dynamic evaluation ([D5]) 
and we want to avoid the use of such a scheme, that requires a special computational environment. 
Storjohann ([St]) has given a new algoritlhm for computing the rational canonical form which has 
a deterministic complexity of O(n 3) but he does not compute the transition matrix with the same 
complexity. Steel's (IS]) algorithm for computing generalized Jordan form has a complexity of 
O(n 4) but requires factoring polynomials into irreducibles. Kaltofen et. al. ([KKS]) give fast parallel 
algorithms for canonical forms and make the observation that one could compute a symbolic Jordan 
form from a rational canonical form by splitting the invariant factors using gcd's and square-free 
decompositions. They require the computation of complete square-free decompositions and thus 
also require that K be a perfect field with the ability to compu te /h  roots. They also don't compute 
the transition matrix. Ozello ([O]) presents an algorithm for computing the rational canonical 
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form which is deterministic with complexity (9(n4), and leaves the question of faster probabilitic 
approaches for future work. Giesbrecht ([Gi2]) gives a probabilistic algorithm whose complexity 
is essentially the same as matrix multiplication but requires choosing n "good" random vectors 
simultaneously thus giving only a probability of 1/4 of making a successful choice• 

Our aim is to obtain a general sequential algorithm, of a complexity comparable with most of 
the existing algorithms, that  works in the widest possible setting, without requiring particular com- 
puting resources and hence of easy and straightforward implementation. Because of our hypothesis, 
in general, our algorithm will produce a symbolic Jordan form ([K], [RV]), but the main difference 
with the other available algorithms based on dynamic evaluation is that  our algorithm is a ratio- 
nal algorithm, since all the computations take place in the given field, except for the output and 
eventually the computation of the inverse of the transition matrix. To obtain all the information 
on the symbolic roots of the characteristic polynomial (multiplicities and recognition) we, at first, 
transform the given matrix A into a pseudo-rational form, i.e. a block diagonal matrix, similar 
to A, with companion matrices on the diagonal without requiring any kind of divisibility of the 
associated polynomials. Then we refine the factorization of the characteristic polynomial, given by 
the polynomials whose companion matrices are on the diagonal of the pseudo-rational form, using 
partial square-free decomposition and gcd computations, so that  we can identify the same roots 
in different blocks and also we reduce, as much as possible without factorization, the degree of the 
defining polynomials for the eigenvalues. 

The pseudo-rational form is computed with a probabilistic algorithm of complexity C9(n a) such 
that  each independent random choice is verifiable with probability better than 1 - 1/n of success. 
We derive this probabilistic algorithm from one for the computation of the rational form, which 
has a complexity of O(n4), and is obtained via a straightforward analysis of the properties of the 
minimal polynomial that  leads to a natural way to construct invariant subspaces. 

1. D e f i n i t i o n s  a n d  P r e l i m i n a r i e s  

In this section we recall the main definitions and many results, classical ([G], [W]) and more 
recent ([0]), that  will be used in the following. We will omit most of the proofs and we will give 
only the ones that  seem to be new or that  we think will be useful to clarify the exposition. 

The Jordan Form of a matrix A E M(n, K) is a matrix J(A), similar to A, of the form 

where 
ai 1 ) 

= = ' " M(8 ,R) 

(K is the algebraic closure of the field K). Each block J(ai, si) is called the Jordan block associated 
with the eigenvalue ai of multiplicity si. 

The ai can also be symbolically represented as roots of factors of the characteristic polynomial, 
but in this case we need the ability to identify symbols associated with different polynomials and 
to compute their multiplicities. 
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We will use the following result ([MRR], [GT]): 

T h e o r e m  1.1. Let K be an effective field of characteristic p > 0 and f E K[x]. Then it is possible 
to compute ql , . . .  , q~ E K[x] such that : 

(i) : = llj q/' 
(ii) the qj's are pairwise relatively prime 

(iii) for each j there exists a separable polynomial ~j(x) and an integer ej > 0 such that qj(x) = 
~(x, °'). 

(We recall that a polynomial q is separabi~e iff gcd(q, q' )= 1). 

Def in i t ion  1.2. We call p - s e p a r a b l e  p o l y n o m i a l  any polynomial q(x) that can be expressed as 
a separable polynomial evaluated in p-th powers of x, (i.e. q(x) = ci(x:), with 4(x) a separable 
polynomial). We call the decomposition of a polynomial f as a product of powers of coprime p -  
separable polynomials described in the previous theorem a p a r t i a l  s q u a r e - f r e e  d e c o m p o s i t i o n  of 

f. 
The representation in Theorem 1.1 can be obtained as follows: 

• A l g o r i t h m  S Q F R E E - P A R T  : P a r t i a l  S q u a r e - F r e e  
I n p u t  : f E K[x] 
O u t p u t  : (ql, el, s l ) , . . .  , (qt, et, st) s.t. f = 1Hqj(xFJ) 8~, qj(x) separable, 

gcd(qi, qj) = 1, for i # j.  
In i t i a l ize  Result:= empty 
S tep  1. 

(P1,. .  •,  Pk, Q) := basicSquareFree(f) 
(P1,. . .  ,Pk are separable, Q s.t. Q'=0, i.e. Q E g or Q(x) -- Ql(xp)) 

Resul t :=( (~ ,  0, i) for i in 1 . . . k )  
if degree(Q) = 0 then return Result 

S t ep  2 
Q1 := divideExponents(Q, p) (Divide by p the exponents of Q) 

S tep  3 
( (q l , e l , s l ) , . . .  , (q~,e~,sr)):= SQFREE-PART(Q1) 
Result := append(((qi, ei + 1, si) for i in 1 . . . r ) ,Resul t )  

• A l g o r i t h m  bas i cSquareFree ( f )  
Input  : f E K[x] 
Output  : (P1, . . .  , Pk, Q) s.t. f = Q I-[ I~ i, P1, . . .  , P~ separable and Q s.t. Q'=O, 
i.e. Q E K or Q(x) = Ql(xp). 

C1 := gcd(f  , f ' )  
B 1 :=  1 / 6 1  

for i in 1.. while Bi # 1 repeat 

Bi+l := gcd(Ci, Bi) 
G+i  := G/B~+i 
Pi := Bi/Bi+l 

C1 := Q P 2 P 3 2  . . . p ~ - i  

S l  :=  P 1 P 2  . . . P k  

C i :=: Q Pi+iPi+2 2... pk k-I 
B~ := PiP~+i... P~ 
Bi+1 := P~+i... P~ 
C~+I := Q Pi+2Pi+32... Pk k-i-1 
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R e m a r k  1.3. All of the roots in K of a p-separable polynomial have the same multiplicity, so 
the partial square-free decomposition allows us to distinguish the multiplicities of the roots of the 
given polynomial: if a is a root of a factor of ff, say qj(x) s~ = ~(xP'~) s~ , then a is a root of f of 
multiplicity pej sj. 

R e m a r k  1.4. In the case of perfect fields, since we can compute p- th  roots of the coefficients, we 
can substitute q(x p) with (~(x)) p, and hence we can obtain a decomposition with ej = 0. 

So any polynomial, with coefficients in any effective field, can be expressed as the product of 
powers of pairwise relatively prime p-separable polynomials. For simplicity of notation, we will 
denote by mj the multiplicity of the roots of each p-separable factor qj, meaning tha t  

(i) mj =pepsi, i f f  = l~Ijqj(xp~) 8~ with ej > 0 (non-perfect field) 

(ii) mj = sj, if f = [ I j  qj(x) ~ (perfect field). 

Let us now fix our notations and recall some classical results (see, for instance, [G] and [W]). 

N o t a t i o n  1.5. Given a matrix A E M(n,  K) and a vector v E K s, we will denote by 

( i )  m A  E g[x] the minimal polynomial off A, i.e. the monic polynomial off minimum degree such 
that mA(A) = 0 

(ii) mv,A E K[x] the minimal polynomial off the vector v with respect to the matrix A, i.e. the 
monic polynomial of minimum degree such that mv,A(A)v = O. 

P r o p o s i t i o n  1.6. For any A E M(n,  K), there exists v E K '~ such that m v , A  = m A .  

If v E K s is a vector such that  mv,A ---- mA and d = deg mA, then the set ,S = {v, A v , . . .  , Ad- lv}  
consists of linearly independent vectors, which generate an A-invariant subspace of K s (also called 
a cyclic subspace). A classical result, that  in Section 4 we will examine again from an algorithmic 
point of view, assures that  it is possible to complete ,S to a basis B of K s in such a way that ,  if N 
denotes the transition matrix from the canonical basis E to the basis B, we have 

0 

where O 0 --Co / 
"*. *** i 

~.n, A 

0 --ad-a 
1 --ad-1/ 

d is the companion matrix of mA -~ ~i=0 a~ x~ and A1 is a square matrix of order n - d. Moreover the 
minimal polynomial of the matrix A1 is a divisor of mA. 

By iterating this process, we eventually find a matrix R(A),  similar to A, such that  
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R(A) Cm~, = .. e M ( n , K )  

CroAk 

where CmA, CmA1,." , CroAk are companion matrices of polynomials mA, such that mA.+l I mA, for 
a n y i = 0 , . . . , k - 1  (we l e t m A = m A 0 ) .  

D e f i n i t i o n  1.7. The matrix R(A) is called the rational canonical form of A and the polynomials 
mA, real , . . . ,  mAk are called the invariant factors of A. 

It is well known that the rational canonical form of a matrix is unique• 

If we drop the divisibility condition on ~Lhe polynomials rni, we get the weaker notion of pseudo- 
rational form: 

D e f i n i t i o n  1.8. A block diagonal matrix 

is a pseudo-rational form of a matrix A if B is similar to A and each block Bi on the diagonal is 
a companion matrix. 

The Jordan form of a companion matrix Cq can be immediately deduced from the partial 
square-free decomposition of q, since the structure and the number of the Jordan blocks of J(Cq) 
are determined by the number and the multiiplicity of the roots of q. However, if we tried to compute 
the Jordan form of a matrix in pseudo-rational form working separately on each of its cyclic blocks 
Cq,, since we don't  have an explicit representation of the roots of the qi's, we would not be able 
to recognize when two symbolic roots correspond to the same root. So we need to improve our 
strategy. 

We will show that the ability to perform ]partial square-free decompositions and gcd's is sufficient 
to overcome this difficulty and to compute the Jordan form and a transition matrix. 

The paper is organized as follows: 

• In Section 2 we describe a way to compute the Jordan form and a transition matrix for the 
companion matrix of a polynomial q, if a decomposition of q in powers of relatively prime 
p-separable polynomials of has been previously computed. 

• Section 3 is the core of the algorithm: we transform a matrix already in pseudo-rational 
form into a block diagonal matrix such that the blocks are companion matrices of powers 
of p-separable polynomials, with different symbolic roots recognized, so that the algorithm 
described in Section 2 can be applied to each block separately. 

• In Section 4 we present, as preparatory material for the next section, an algorithm to compute 
the rational canonical form and a transition matrix, whose complexity is O(n4). Many algo- 
rithms for the computation of the rational canonical form are already known, but the one we 
present here will be used in Section 5 and adapted to obtain an algorithm for the computation 
of a pseudo-rational form. 
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• In Section 5, in order to complete the procedure,  we present an a lgor i thm that ,  wi th  O ( n  3) 
field operations,  t ransforms a mat r ix  into pseudo-ra t ional  form and computes  a t rans i t ion 
matrix.  

2. J o r d a n  F o r m  o f  a c o m p a n i o n  m a t r i x  A = Cq 

In this section we will find the Jordan  form and a t ransi t ion mat r ix  for Cq, the  companion  mat r ix  
of a polynomial  q, in three steps: 
Case 1: Companion  mat r ix  of a power of a p-separable  polynomial ,  with only one eigenvalue 
Case 2: Companion  mat r ix  of a power of a p-separable  polynomial  
Case 3: Companion  mat r ix  of a general polynomial.  

The  only work required in Case 1 and 2 is the computa t ion  of the t ransi t ion mat r ix  and, even 
though the construct ion is known ([O],[W]), we prefer to recall it for completness.  We are not  aware 
of any descriptions in the l i terature of the construct ion of the t ransi t ion mat r ix  in Case 3. 

C a s e  1. Assume tha t  q is a power of a p-separable  polynomial  and tha t  A = Cq has only one 
eigenvalue. In this case q = (x - o0 8 or q -- (x pe - ~)8, and its only root  a = o~ (resp. a -- oL 1/¢) 

has mult ipl ici ty m = s (resp. m = pes). Then the Jordan  form of A is 

el i) ° ,  ° °  

J =  g ( a , m )  = " " • M ( m , K ) .  
a 

If e l , . . .  ,em are the vectors of the canonical basis E of K m, then q is the min imal  polynomial  of em 
w.r.t .  J ,  the  vectors era, Jem, J 2 e m , . . .  , J m - l e m  are linearly independent  and form a cyclic basis ,S 
of Km. An easy induct ion on k E N proves tha t  

.~. a i + k - m  e i  

i=1 i + k - m  
(1) 

(here the binomial  coefficient (~) is 0 when j < 0). Hence, the mat r ix  

M = M ( a , m ) =  

(0 . . .  1 

J 
, ,  , 

: 1 

1 2a 
1 a a 2 . . .  a m - 1  

is such tha t  M A M  -1 = J ,  since its columns are precisely the coordinates of the vectors era, Jem,  
. . .  , j m - l e  m w.r.t  E (hence it represents the t ransi t ion mat r ix  from the basis ,S to the  basis C of 
Km). 

C a s e  2. Let A = C a and assume tha t  q is a power of a p-separable  polynomial  having r dist inct  
roots, o~1,. • • , o~r, all with the same multiplicity, say m. The roots ai  can either be given as explicit 
elements of K or as new symbols representing the distinct roots of q. Then  J is formed by r Jo rdan  
blocks J1 = J(O~l, m ) , . . .  , Jr = J(o~r, m)  of order m associated respectively to the roots of q 
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J = ".. E M(rm,  K). 
JT 

As for a transition matrix from A to J, one can easily see that the minimal polynomial of the 
vectoP 

KTm y := E 

with respect to J is q, so that the vectors y, J y , . . . ,  J ~ - ~ y  form a cyclic basis S of K rm. As before 
the transition matrix M is precisely the matrix expressing the vectors of the basis 8 in terms of g. 
Since we have 

j k y  = ... = i , 

it follows from (1) that the matrix M is formed by r strips m × rm, one for each root as, where as 
1 / p e  \ 

before as = c~i (resp. ai = ol s ): 

To be precise, the (i, j )  - th element of M is given by 

j - 1 ~ [~ . . ~ r ( i - - l , r a ) + j - - m  

M ( i , j )  = r ( i -  1, m ) , + j - r n )  ~q(s-l'm)+l) 

where r(i - 1, m) and q(i - 1, m) denote respectively the remainder and the quotient of the division 
o f i -  1 by m. 

Case  3. Consider now the case when A is the companion matrix of a general polynomial q and 
assume that  a decomposition q = I~j qj(x) 83 of q into p-separable and coprime factors is known (for 
instance a partial square-free decomposition). Then the matrix A is similar to a block diagonal 
matrix of the form 

S ~ " °  , 

~ r a r  

as both A and B have only one invariant factor, that is their minimal polynomial q. So 

J(A) = J(B)  = ( J(Cql"l ) 

"'" J(Cq. .r))  ' 

which can be computed as in Case 2. 
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As for the transition matrix from A to B, we have the following: 

L e m m a  2.1. Let A be a matrix in M ( n , K )  and let w E K n be a vector such that row, A ~- mA. 
Suppose that mA = gh and let d~ = deg g, d2 = deg h. I f  we set wl = h (A)w  and w2 = g(A)w,  then 

mwl,A -~ g and mw2,A ---- h 

i f  (g, h) -- 1, the vectors {Wl, A w l , . . .  , Ad' - lWl ,  w2, A w 2 , . . .  , Ad2-1w2} are linearly indepen- 
dent. 

Proof. (1) Since g(A)wl  = g (A)h (A)w  = 0 and mA = gh, it is clear that  g is the minimal polynomial 
of wl with respect to A, so that  {wl,  A w l , . . .  , Ad~-lwl}  is a set of independent vectors. The same 
holds for w2 and h. 

dl " d2 (2) Let g = ~ = o  aix~ and h = ~ = o  bi xi" Since by hypothesis mw,A has degree d~ ÷ d2, the set 
S ~- {W, A w , . . .  ,Adl+d2-1W} consists of linearly independent vectors which generate an A-invariant 
subspace < ,S >. It is easy to check that  the vectors {Wl, A w l , . . .  , Ad l - lw l ,  w2, A w 2 , . . .  , Ad2-lw2} 
belong to the subspace < 8 > and that  the square matrix of order d~ -t- d2 having as columns the 
coordinates of such vectors w.r.t the basis 3 is 

( b0 

bl 

b2 

S =  ba2 

0 

0 

bo "'. 

bl " ' .  

52 "" 

bd2 " " 

" °  °° 

Q 

0 

ao 0 

a l  ao 

a2 a l  

0 : a2 

Do : : 

bl adl : 

b2 0 adl 
: *° ,  

bd2 0 

0 

a 0  

a l  

a 2  

adl  

So S = S(h,  g) is the Sylvester matrix of the polynomials h and g; since they are coprime and 
consequently without common roots, S is invertible, which proves the thesis. [] 

From the proof of the previous lemma it follows immediately : 

C o r o l l a r y  2.2. Let A = Cq be a companion matrix in M(n ,  K) and suppose that q = gh where 
dl " g = ~i=o ai xz and h = ~ o  bi x~, and (g, h) = 1. Let S=S(h,g) the Sylvester matrix of h and g. 

Then 0) 
where C 9 and Ch are the companion matrices of g and h respectively. 

Proof. Since A = Cq, we have that  mA = q = mel,A (where el is the first vector of the canonical 
basis). With respect to the proof of Lemma 2.1, we have the additional information that  n -- dl +d2, 
so that  K n is the direct sum of the two cyclic A-invariant subspaces generated respectively by 
wl = h (d )e ,  and w2 = g(A)el .  [] 
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The previous corollary, applied recurs:ively to the factors of q, easily yields a t rans i t ion ma t r ix  
from A to the block diagonal  mat r ix  B int roduced above. Finally, a t ransi t ion ma t r ix  from B 
to J = J ( B )  is evidently given by a block diagonal mat r ix  having on the diagonal  the  t rans i t ion 
matr ices from Cq,,, to J(Cqj,) determined in Case 2. 

3. Jordan  form of  a m a tr ix  in p s e u d o - r a t i o n a l  form 

As we remarked earlier, the  results of the previous section cannot  be direct ly applied to the 
blocks Cq, of a pseudo-ra t ional  form, unless all the roots are explicitly known, because in this way 
we would not  be able to identify roots tha t  appear  in different blocks. In this section we give 
a lgor i thms tha t  will t ransform the given pseudo-ra t ional  matr ix ,  spli t t ing the blocks so tha t  each 
corresponds to a power of a p-separable  polynomial  and if two blocks have a root  in common  then 
they have exact ly  the same roots, i.e. the corresponding p-separable  polynomials  are copr ime or 
identical.  

1 e M(3, Q). 
A = \ O  0 

E x a m p l e  3.1.  Consider the mat r ix  

This mat r ix  is in rat ional  form and has x 2 - x, x - 1 as invariant factors. The  invariant  factors 
are square-free,  so if we apply the a lgor i thm described in Section 2 we obtain  

where a, b are roots of x 2 - x. 

J ~  b , M =  b , 
0 0 

It is clear from this example tha t  the ibrm obta ined is unsatisfactory: we in t roduce two "un- 
necessary" symbols, and we don ' t  explicitely "identify" one of the roots with one of the  eigenvalues 
a l ready found. But,  if we take into account the fact tha t  x 2 - x, x - 1 are the invariant  factors and 
hence tha t  x - 1 is a factor of x 2 - x, by division we obtain x 2 - x = x ( x  - 1) and so a = 0 and 
b = l .  

The following procedure  refines a part ial  square-free decomposi t ion of the qi's, spl i t t ing as much 
as possible the p-separable  factors into dist inct  and relatively pr ime factors, via gcd computa t ions .  

• r e f i n e P o l y S e p ( h ,  q) 
I n p u t  : 

- h a separable polynomial  

- q any polynomial  

O u t p u t  : 

- ( [g l , . . .  ,gk],q) where: [gl, .--  ,ga] is a list o fpa i rwi se  relatively p r ime  and separable poly- 
nomials  such that h = [ I j  gj and ~ is a polynomial  such that q = q lH g ( ' ,  with ri ~_ 0 and 
(gi, q) = 1 for  each i. 
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b e g i n  

h = 1 = >  return ([],q) 
q = 1 = >  return ([hi,q) 
d := gcd(h, q) 
(finaIList, q) := r e f i n e P o l y S e p ( d ,  d ~) 
if -~ ¢ 1 then finaIList := [~, finaIList] 
re turn (finalList, q) 
e n d  

P r o o f  o f  t h e  a l g o r i t h m .  First  of all we remark tha t  all the recursive calls are legi t imate since 
the first argument  is always a factor of a separable polynomial  and hence separable itself. 
If h = 1 the thesis is true vacuously. 
We assume inductively tha t  the recursive call to r e f i n e P o l y S e p ( d ,  ~d) is correct: this means tha t  
finalList = [gl, • • • , gs] is a list of pairwise relatively prime and separable polynomials  s.t. d = lI]j gJ 
and ~ is a polynomial  s.t. ~ = ~ l~I gi r~ and (gi, q) = 1 for each i. We have to show that :  

(i) -h d is coprime with  each element of finalList. This follows from the fact tha t  h is separable and 
all the elements in finalList are divisors of d. 

(ii) (9, ~) = 1. If f = (9, ~) then by inductive hypothesis  f 191 and hence f I (~d, ~) = 1. 

(iii) h = ~ I~j gj and q = ~ I ]  g~S,. We have h -- ~ d = ~ I-Ij gJ, since we assumed tha t  d = 1-Ij gj, 
and also q = d ~d = qlTIg ( '+1, since d ~ = ~ [ I g i  r~. 

[] 

R e m a r k  3.2. In practice all the non- t r iv ia l  quotients (-hd, d d~-i ds) appear  in finalList, where ~ , ' " ,  ds ' 
di+l =(di ,  ~ )  and do = d. Hence it is clear that ,  when h is separable, any common factor (not 

necessarily irreducible) tha t  appears in h and q with different multiplicit ies will be discovered by 
the algori thm. 

E x a m p l e  3.3. Suppose h = fof l fa and q : (flf2)2f33f4 (the f[s are not necessarily irreducible). 
Then  r e f i n e P o l y S e p ( h ,  q) = ([fo, f l ,  fa], f22f4). 

R e m a r k  3.4. Let h(x) and q(x) e K[x], then 

(h(x),q(x)) = 1 < > (h(xk) ,q(xk))= 1 

L e m m a  3.5. Let q(x) = f (x)g(x)  be a p-separable polynomial and ( f ,g)  = 1. Then f and g are 
p-separable. 

Proof. We have q(x) = ~(xP°), with ~(x) a separable polynomial ,  because q(x) is p-separable;  we 
proceed by induct ion on e. 
If e = 0, then q(x) is separable and the thesis is t r ivial ly satisfied. 
If e > 0, write q(x) ---- c~(x p°) = ql(x p) = f (x)g(x) .  By differentiating we obtain f ' (x)g(x)  + 
f (x)g ' (x)  = 0 and so, since ( f ,g)  = 1 , f ' =  g' = 0 and there exist f l  and gl such tha t  f (x )  = 
f l ( x  p) and g(x) = gl(x p) and ql(x) = f l(x)gl(x) .  By the previous remark ( f l , g l )  = 1; moreover 
ql(x) = c~(x pc-l) is p--separable, hence the thesis follows from the inductive hypothesis.  [] 

23 



C o r o l l a r y  3.6. Let ([gl,. • •, gk], q) = r e f inePo lySep(h ,  q). I f  q is a p-separable polynomial, then 
is p-separable. 

Proof. Since (gi,~) = 1 for each i, q = iT(I-Ig~") is a decomposition of a p-separable polynomial 
which satisfies the hypothesis of the previous lemma. [] 

• r e f i n e P o l y P - S e p ( h ,  q) 
I n p u t  : 

- h and q which are p-separable polynomials 

O u t p u t  : 

- ( [gl , . . .  ,gk],q) where: [gl,.. .  ,gk] is a list of pairwise relatively prime and p-separable 
polynomials such that h = l~Ij gj s¢, and ~ is a p-separable polynomial s.t. q = ~ Fi gi r,, with 
ri > 0 and (gi, q) = 1 for each i. 

b e g i n  
(hi ,e)  := insDeg(*)(h) 
(ql, r ) : =  insDeg(q)  
if e _< r then 

H := hi(x) 

Q :=  ql(x pr-e) 

else 

H := ql i x) 
Q :-- hl(Xp e-r) 

(rlist, Q) := r e f i n e P o l y S e p ( H ,  Q) 
e < r = >  return( power  (**)(e, rlist), power  (e,Q)) 
hlist := {g E rlist  : g l Q} 
hlist := [Q, hlist] 

:= NgErlist-hlist g 
Mist := power( r ,  hlist) 

: :  power(r ,  ~) 
return (hlist, ~) 
e n d  

(.) The function insDeg(h)  returns the separable polynomial hi(x) and the exponent e such that  
h(x) = hl(x p°) in characteristic p > 0, h(x) and 0 otherwise. 

(**) The function power(e,  pol) (resp. power(e,  listPol)) substitutes x p~ for x in the polynomial 
pol (resp. in all the polynomials of the list listPol). 

P r o o f  of  t h e  a l g o r i t h m .  By definition of insDeg, H is separable and hence the arguments for 
the call of r e f i n e P o l y S e p  are valid. Let (rlist, Q) = ( [ g l , . . . ,  gk],Q) be the returned result from 
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that  call. Then we have that  the gi's a r e  separable and pairwise relatively prime and H -~ I~I gi and 
Q = Q yl gi r'. 
Case e _< r: In this case h(x) = H(x p°) = 1Yigi(x p°) and q(x) = Q(x p~) I]gi(xPe) ~'. Since the 
function power transforms a separable polynomial into a p-separable one, and by the previous 
remark it preserves relative primality, the result satisfies the required properties. 
Case e > r: In this case rlist contains divisors of both h(x) = Q(x p,) and q(x) = U(x  p~) while 
Q(x pr) is a divisor of h(x). As the function power transforms separable polynomials into p-separable 
ones and preserves relative primeness, the gi(x pr) are p-separable and relatively prime and also 
relatively prime with Q(xpr). Moreover Q(x p~) is p-separable by the previous corollary. Hence it is 
enough to select the right factors among the elements of rlist in order to obtain the thesis. [] 

• r e f i n e ( [ h i , . . . ,  hs], q) 
I n p u t  : 

- [ h i , . . . ,  hs] a list of pairwise relatively prime and p-separable polynomials 

- q any polynomial 

O u t p u t  : 

- [ g l , . . . ,  gk] a list off pairwise relatively prime and p-separable polynomials s.t. hi = l~j gjS,,~ 
and q = 1Nj g7 ~- 

beg in  
hlist := [h l , . . .  ,hs] 
factq := [] 
sqlist := p a r t i a l S q f r F a c t o r s  (*)(q) 
finalList := [] 
for gg in sqlist repeat 

~ : =  gg 
for hh in hlist repeat 

(newList, ~) := r e f i n e P o l y P - S e p ( h h ,  y) 
finaIList := [finalList, newList] 

if ~ ~ 1 then factq := [~, factq] 
hlist :-- f inalLis t  

return [f inalList, f actq] 
end  

(.) The function par t i a lSqf rFac tors (q)  returns the list of the p-separable factors of q, i.e. a list 
[ql,... , qk] of pairwise coprime and p-separable polynomials s.t. q = [ I i  qi ~', where qi(x) = ~i(x p~') 
with qi separable polynomial in the case of non perfect fields or qi square-free otherwise. 

P r o o f  of  t h e  a l g o r i t h m .  Clearly the gi's are pairwise relatively prime and p-separable; the last 
two conditions follow from the properties of the output of the previous algorithms. [] 

R e m a r k  3.7. In the case of a perfect field the partial square-free factorization in ref ine  can be 
deleted, so only one .for-loop is required. At the end the square-free factors of the remaining ~ must 
be added to the list. Moreover in this case the function r e f i n e P o l y P - S e p  can be eliminated and 
r e f i neP o lySep  can be directly called. 
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• r o o t s B a s i s ( [ m l , . . . ,  mkD 
I n p u t  : 

- [ m l , . . . ,  ink] a list of polynomials 

O u t p u t  : 

- [[fi, lroots(i), [nil,. . .  ,nik]],i = i , . . . s ]  where for every i: 

fi is a p-separable polynomial with []j f~." = rni and (fi, f j)  = 1 for all 

i ¢ j  
lroots(i) is the list of the distinct roots of fi, 

[n i l , . . . ,  nik] are integers representing the multiplicity (possibly zero) of 

each fi as a factor of mj. 

b e g i n  
factors := [] 
for i in 1 . . .  k repeat factors :-- refine(factors, mi) 
result := [] 
for fact  in factors repeat 

lroots := allRoots(*)(f  act) 
lexp := exponents(**)(fact ,  [ml, .... , ink]) 
result := ([fact, Iroots, lexp], result) 

return result 
e n d  

(.)  The function a l l R o o t s ( f ) ,  with f p-separable, returns the list of all the distinct roots of f .  More 
precisely if f ( x )  = f l (x  pe) with f l  separable polynomial of degree s, a l l R o o t s ( f )  = Ice1,... , o~], 
where the c~i's either belong to K or are symbols representing the roots. 

(**) The function e x p o n e n t s ( f ,  [ml , . . .  , ink]) returns the list of the multiplicities of f as a factor 
of mi. 

At this point if we apply the function r o o t s B a s i s  to the list of the polynomials mi's whose 
companion matrices are on the diagonal of a pseudo-rational B form of a matrix A (to the invariant 
factors, in the case of the rational form), the information returned allows us to apply to each block of 
B the procedure described in Case 3 of the previous section. Using the factorizations 1Hi f ~ '  = mi 
we construct a block diagonal matrix similar to B, and hence to A, (and a transition matrix) such 
that  the blocks are the companion matrices of the powers of p-separable factors fi 's  returned by 
roo t sBas i s .  In this way we avoid the possible double-naming of the roots and reduce as much 
as possible the degree of the defining polynomials for the eigenvalues. In order to complete the 
process, compute the Jordan form and a transition matrix, we can apply the algorithm described 
in Case 2 of Section 2 to each block separately. 

4. C o m p u t a t i o n  o f  t h e  r a t i o n a l  c a n o n i c a l  f o r m  

The procedure described so far applies to a matrix already in pseudo-rational form, so what is 
lacking is a procedure to transform by similarity a matrix into a pseudo-rational form. This will 
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be done in Section 5 by adapting the algorithm for the computation of the rational canonical form 
that we are going to present in this section. 

The first step is to find an A-invariant subspace: this will be done constructing a vector v whose 
minimal polynomial with respect to A is equal to the minimal polynomial of A. This construction 
is based on the following propositions. 

P r o p o s i t i o n  4.1. Let A E M(n ,K) .  Given v E K n, it is possible to compute the minimal  
polynomial mv,A of  v with respect to A. I f  we let d -- deg my,A, then this computation requires at 
most  O(dn  2) arithmetic operations over K .  

Proof. For any given v vector in K n, the minimal polynomial rnv,A can be found by iteratively 
computing the vectors v, Av,  A 2 v , . . .  , Akv and looking for a monic relation of linear dependence 
among them. The first time such a relation 

boy + b~Av + b2A2v + . . .  + Akv = 0 

is found by means of a Gaussian elimination, the polynomial bo + b~x + b 2 x 2 + . . .  + x ~ is the minimal 
polynomial of v w.r.t A. [] 

At this point if the polynomial mv,A is such that mv,A (A) = 0 then mv,A ---- mA, otherwise we propose 
to use the vector v and the polynomial mv,A to complete the construction. If m v , A ( A )  ~ 0 there 
exists a vector w e K ~ such that mv,A(A)w ¢ 0 (for instance any non zero row of mv,A(A)).  Also, 
if w is such a vector,  mu,,A does not divide mv,A, (otherwise m v , A ( A ) w  = 0), hence the polynomial 
Icm(mv,A, row,A) has degree strictly bigger that the degree of mv,A. Moreover we will show how to 
construct a vector y E K n such that my,A = lcm(mv,A, row,A) and hence, since deg my,A > deg my,A,  

a vector z such that mz,A : mA, after at most d = deg(mA) steps. 

L e m m a  4.2. Let f ,  g E K[x]. It is possible to construct polynomials Pl,P2, ql, q2 E K[x] such that: 

(i) f = PIP2, g = qlq2, 

(ii) (Pl ,P2)= 1, (ql,q2)-~ 1, 

(iii) fern(f, g) = P2q2. 

(P2, q2) = 1 

Proof. Let d = (f, g) and let h, k be polynomials such that f = dh and g = dk. Evidently (h, k) = 1, 
while d and h may not be coprime. Set 5 = (d, h), we can write f = ~ (hh) with (hh, k) = 1. Iterating 
this procedure, after a finite number of steps we find a polynomial a(x) E K[x] dividing d such that 
(~, ah) = 1 and every prime dividing a divides h. 

dk. We have: Define Pl = ~, P2 = ah, ql = a and q2 =- a 

- = a h )  = 1 ,  

- (ql,q2) ---- (a, d ~k) = (a, k) = 1, since each prime dividing a divides h, which is relatively 
prime with k, 

- ( P 2 ,  q 2 )  ---- ( a h ,  d ~k) = (ah, k) = (h,k) = 1, 

(dh)(dk) = dhk = (ah)(~k) -- P2q2. - l c m ( f , g )  = = d 

[] 
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C o r o l l a r y  4.3. Let A E M ( n ,  K) and v, w E K n. I f  mv,A ---- f and mw,A = g, then there exists 
y E K ~ such that my,A = lcm(f ,  g). 

Proof. If f and g are coprime, one can easily check that it is enough to take y = v + w. Otherwise, 
let Pl,P2, ql, q2 E K[x] be the polynomials obtained by applying Lemma 4.2 to .f and g. If we set 
V l  = p l (A)v ,  by Lemma 2.1 we have mvl,A = P2; similarily, if wl = q l (A)w,  then mwl,A = q2. Since 
(p2, q2) = 1, by the same argument used at the beginning of the proof we have that mvl+Wl,A = 

P2q2 =lcm(f ,  g). It is so enough to take y = vl + wl. [] 

P r o p o s i t i o n  4.4. It  is possible to construct a vector z E K n such that mA = mz ,A .  I f  we let 
d = deg mA,  then this computation requires at most  O(dn  3) arithmetic operations over K .  

Proof. Let v be a vector in K n. I f m , , A ( A )  = 0, then mv,A ---- mA; otherwise consider a vector w such 
that  mv,A ( A ) w  ~ O, (any non zero row of mv,A (A )  will suffice). By iterating the construction of the 
previous corollary we complete the proof. The complexity is dominated by the cost of computing 
mv,A(A) which is O(dn3). [] 

Assume therefore that we have computed a vector v such that mA = mv,A and let deg mA = d. 
So the set ,.~ = {v, A v , . . .  , A d - l v }  is linearly independent and generates an A-invariant subspace 
< ,.9 >. It is clear that completing the set 8 to a basis B allows to convert A by similarity to a 
block-upper-triangular form. 

Using the properties of the dual space (Kn) * consisting of all linear transformations from K n to 
K, it is however possible to complete B to a basis in such a way that the subspace generated by 
the added vectors is itself A-invariant. In this way the matrix A will be transformed by similarity 
into a block diagonal matrix. 

For any basis/3 = {vl,. • • , vn} of K n, we will denote by/3* = {vl*, • .. , v~*} the basis of (Kn) *, 
called the dual basis of/3, consisting of the functionals defined by wi*(wj) = 5i,j (where 5i,j denotes 
the Kronecker delta). 

Let us finally recall that: 
- if M denotes the transition matrix from the canonical basis C to a basis /3 of K n, then the 
transition matrix from the basis/3* to basis g* in (Kn) * is tM 
- if A* : V* ~ V* is the linear map defined by A* (T) = T o A, then the matrix associated to A* 
with respect to the basis g* is tA. 

Our use of dual basis is explained by the next: 

P r o p o s i t i o n  4.5.([J]) Let A C 
Let 13 = {wl  = v, w2 = A v , . .  
ing to a basis the independent 
Wd*, A*wd*, . . .  , (A*)d-lWd * are 

W =  { x e K n  I 

M ( n ,  K) and v be a vector such that mA = m,,A with deg mA = d. 
• , Wd = A'~-lV, W d + l , . . . ,  Wn} be a basis of  K n obtained complet- 
set {wl  = v, w2 = A v , . . . , w d  = A d - l v } .  Then the functionals 
linearly independent and the set 

Wd*(X) = O, A*w * = d (X) 0 , . . .  , (A*)d-lwd*(X) = 0} 

is a vectorial subspace which is A- invar ian t  and such that 

K n = Span(v,  A v , . . .  , Ad- lv )  @ W. 

In order to construct the set W of the previous proposition we prove the following results: 
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P r o p o s i t i o n  4.6. Let A E M(n,  K) and v be a vector such that mA = mv,A with deg m A  : d. It 
is possible to complete the independent set S = (wl  = v, w2 = Av, . . . , Wd = Ad- l v )  to a basis ]3 of 
K n and compute the transition matrix M.from the canonical basis E to the new basis B with O(n2d) 
.field operations. 

Proof. The construction we describe will complete ,S to a basis and simultaneously compute the 
corresponding transition matrix M, i.e. the inverse of the matrix whose columns are the coordinates, 
with respect to ,~, of the vectors of the basis B. 

We consider the 2n × d matrix R obtained by stacking the vectors of the coordinates of the 
vectors wi E S, with respect to C, and the first d columns of the n × n identity matrix. Call R1 
the matrix obtained from R via a complete stepwise Gaussian elimination by columns. R1 is such 
that each column contains a pivot element rk, i = 1, with 1 < i < d and 1 <_ ki <_ n, and r k j  ---- 0 
if j ¢ i. Call P = ( k l , . . .  , kd) the set of indexes corresponding to the rows which contain a pivot 
element. With this information we can complete the independent set 8 to a basis of Kn: we add 
those vectors ei E E such that i ¢~ P, call them ei l , . . .  , ei(._~). 

At this point we concatenate the matrix R1 and the 2n × (n - d) matrix whose columns are the 
vectors t(eis, ed+s), 1 < j < (n -- d) and we obtain a 2n × n matrix R2. We can now continue our 
stepwise Gaussian elimination by columns on R2, however due to the zero structure of the added 
columns, no additional multiplications are required and we can complete the work with the same 
overall complexity. Everytime we use a pivot element to zero out an element in the top half of R2, 
the only required operation is to negate the element and place it in the corresponding position of 
the bottom half of R2, i.e. given an element rij8 in R2 such that ri~s ¢ 0 with 1 < ij _< n, 1 < j _< 
n - d, 1 _< s <_ d and ij ~ P,ments we set r (n+d+j ) s  ---- --r~s 8 and then we set rijs -~ O. We make a 
permutation of the columns of R2 in order to obtain an identity matrix in the first n rows and then 
extract the submatrix consisting of the last n rows as our resulting transition matrix M. [] 

We use the matrix M to complete our construction. We have that the d- th  row of M is precisely 
the vector C of the coordinates of wd* with respect to E* (the transition matrix from B* to E* is 
tM). Moreover the coordinates of the functionals A * W d * , . . .  , (A*)d-lwd * are given by the vectors 
tAC, (tA)2 C , . . .  , ( tA )d -1  C ,  and we have: 

Coro l l a ry  4.7. In order to compute the A-invariant subspace W of Proposition 4.5 it is enough 
to solve the d × n linear system 

tAC 

I ( t A ) 2 C I  X = O !  

c) 
whose complexity is O(dn2). 

Coro l l a ry  4.8. I f  the set of vectors v, A v , . . .  , Ad-lv is completed to a basis off K n by means of a 
basis of W,  N is the matrix having the vectors of this basis of K n as columns and M = N -1 is the 
matrix computed in Proposition 4.6, then we have 
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with B a square matr ix  o f  order n - d. 
It is evident that  the procedure described here above, applied recursively, after a finite number 

of steps leads to compute the rational canonical form R ( A )  of a matrix A and a transition matrix. 
The complexity is dominated by the c, ost of finding cyclic vectors associated with the invariant 

factors. As explained above the cost of th!is step is O(dina),  where di = deg mi (mi are the invariant 
factors of A). Since ~ i  di = n the overall complexity is O(n4). 

5. C o m p u t a t i o n  o f  a p s e u d o - r a t i o n a l  fo rm In this section we propose a probabilistic algorithm 

to construct a pseudo-rational form of a matrix A, which requires O ( n  3) field operations. 
The basic idea is to find a vector v such that  A can be transformed by similarity into the form 

and therefore, after a finite number of steps, into a pseudo-rational form. 
Instead of constructing a vector whose minimal polynomial coincides with the minimal polyno- 

mial of the matrix, we are able to decide if a randomly chosen vector can be used to split K ~ into 
the direct sum of two A-invariant subspaces. This construction is based on the following result, 
obtained by modifying the hypothesis of Proposition 4.5. 

P r o p o s i t i o n  5.1. Let  A E M ( n ,  K) and v E Kn;  let d = deg mv,A. A s s u m e  B = {wl  = v, w2 = 
A v , . . .  , Wd = A d - l v ,  Wd+i,... , Wn} is a basis o f K  ~ obtained completing to a basis the independent  
set {Wl = v, w2 = Av,  . . . , wd = A g - l v } .  Let  F be the subspaee of(Kn) * generated by the func t ionals  
Wd*, A*wd*,.  .. , (A*)d-tWd * and let 

W =  {x  E K n I Wd*(X) ~() ,A*wd*(X)  -~0,... ,(A*)d-lwd*(X) ~-0) .  

I f  F is A*- invar ian t ,  then W is an A- inw~riant  subspace o f  K n such that: 

K n = Span(v ,  A v , . . .  , Ad - l v )  • W. 

This result can be proved exactly as :Proposition 4.5 (see [J]), observing only that  the A*- 
invariance of F holds here by hypothesis, not as a consequence of the dropped hypothesis that  
mv,A = mA.  

Thus a random vector v can be used to split the space if F as above is A*-invariant, which can 
be easily tested as follows. 

If we denote with M the transition matrix from the canonical basis C to the basis B in Proposition 
5.1 and if C is the d- th  row of M, then we have: 

P r o p o s i t i o n  5.2. With the notat ions o f  the proposit ion above, F is A* - invar ian t  i f  and only i f  

C 

/ 
\(ui c] 
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If this is the case, in order to compute the subspace W it is enough to solve the linear system 

c 
tAC 

(tA)2C 

(tA)d-1 C 

X = 0 .  

This proposition gives us a procedure for testing whether or not a particular vector allows us to 
split the space. We need to examine the probability that  a randomly chosen vector will pass the 
test. If in fact the randomly chosen vector happens to have the same minimal polynomial as the 
matrix, then by Proposition 4.5 F as above will be A*-invariant and the vector will yield a direct 
sum decomposition into A-invariant subspaces. This condition is stronger than we need, but it 
allows us to use the following result of Giesbrecht: 

L e m m a  5.3. ([Gi2]). Let L be a subset of K containing at least n 2 elements. Then 

ProbveL~ {mA = rn~,,A} > 1 -- 1/n 

If K has fewer than n 2 elements then we can make a small algebraic extension of K. Giesbrecht 
needs to simultaneously find a complete family of successful vectors and thus arrives at an overall 
probability of success of 1/4. The previous corollary allows us to check each vector separately with 
probability greater than (1 - 1/n) of success. 

The complexity of testing the random vector and then using it to generate a direct sum splitting 
K n is OO(dn 2) field operations where d = deg mv,n. By repeating this construction on the comple- 
mentary matrix A1, we eventually arrive at a pseudo-rational form of A and a transition matrix. 
Since the sum of the degrees of the minimal polynomials of the blocks in the pseudo-rational form 
is n, we arrive at the overall complexity of O(n3). 
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