
An Algorithm for the Multiplication of
Symmetric Polynomials

JOHN S. GARAVELLI
NASA Ames Research Center

Although the cycle index polynomial for a permutation group can often be easily determined,
expansion of the figure counting series in a Polya enumeration presents computational difficulties
for object sets with higher degrees of symmetry and more than modest size. An algorithm that does
not require algebraic symbol manipulation is derived for multiplying symmetric polynomials repre-
sented by partitions. Because the repetitive identification and collection of common terms are
eliminated and storage requirements reduced, this algorithm is useful in rapidly expanding the figure
counting series in such Polya enumeration problems as the counting of chemical isomers.

Categories and Subject Descriptors: G.2.1 [Discrete Mathematics]: Combinatorics-combinatorial
algorithm; 1.1.1 [Algebraic Manipulation]: Expressions and Their Representation-representu-
tions (general and polynomial); 1.1.2 [Algebraic Manipulation]: Algorithms-algebraic algorithms

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Cycle index polynomial, integer partitions, Polya enumeration,
symbolic algebra, symmetric polynomials

1. INTRODUCTION

For any permutation group, it is usually possible to determine quickly the
appropriate cycle index polynomial. However, when the object set of the group
has higher degrees of symmetry and more than modest size, substitution of the
figure counting series in the cycle index polynomial and expansion in a Polya
enumeration [6] can present computational difficulties [7]. Manual solution is
unfeasible, and computer programs relying on algebraic symbol manipulation are
neither efficient nor readily accessible.

In most Polya enumeration applications, the figure weights are merely formal
variables, and the desired information is conveyed entirely by the coefficients
and exponents of the formal variables. After substitution and expansion of the
figure counting series in the cycle index polynomial, it is convenient to collect
terms that occur into symmetric polynomials. A symmetric polynomial, which is
the sum of all the terms with the same polynomial form (i.e., terms with the
same set of exponents), can be compactly represented by a partition of the sum

Author’s present address: Biomolecular Analysis Facility, College of Pharmacy (M/C 781), University
of Illinois at Chicago, Box 6998, Chicago, IL 60680.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1988 ACM 0098-3500/88/1200-0337 $01.50

ACM Transactions on Mathematical Software, Vol. 14, No. 4, December 1988, Pages 337-344.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F50063.214385&domain=pdf&date_stamp=1988-12-01

338 l John S. Garavelli

of the exponents, thus eliminating the formal variables. In order to achieve the
economy this representation affords, an algorithm is required that provides the
symmetric polynomials and their coefficients resulting from the multiplication
of two given symmetric polynomials when the symmetric polynomials are repre-
sented by partitions. Such an algorithm could expand the cycle index polynomial
in Polya enumerations without repetitively identifying and collecting redundant
terms, thus saving both computation time and storage. Additional savings in
storage could be realized because there are efficient algorithms for numbering
the partitions of an integer and for finding the partition of an integer correspond-
ing to a given number [8]. By using these algorithms, it would not be necessary
to store the partition representations of any intermediate results, but merely
index numbers corresponding to them.

The formula that will be developed here for the multiplication of symmetric
polynomials is similar to one reported by Lauer [3] with an unpublished proof
attributed to R. Loos. However, the algorithms developed in that report did not
take advantage of the partition representation of symmetric polynomials. In one
case those algorithms employed a double sort procedure, which slowed the
computations considerably, and in another case they failed to produce the correct,
complete result for an example provided in that report.

2. TERMINOLOGY

A symmetric polynomial in v variables will be represented by the set of the
exponents of the variables.

(Cl;, 3;, - * *, 5;; u) = c c a** c xpo . . . xt,

i,=l i,#i, i,#i,,i, ,..., i,-,

such that no term is repeated. The elements in this set are most conveniently
arranged in decreasing order, so that I1 I c2 2 . . . 2 5;. The sum of the elements
in this set will be referred to as the order, 6, of the polynomial, and the ordered
set can be regarded as a partition of 6. The number of elements in this set will
be referred to as the degree of the polynomial, p, so that p 5 u. If 4(z) is the
number of {i’s equal to z with z E [l, 61, then p = X:=1 d(z), and 6 = Et=1 z .
4(z). Let [&‘(z)] represent p!/ntC1 4(z)!, the multinomial of p over the set of
d(z) with z E [l, 61. The number of nonidentical terms in the symmetric
polynomial, which will be referred to as the multiplicity, is

[cU p = O[1 I P 4(z) (u - p)! . un:-, 4(z)! *
When two symmetric polynomials are multiplied, the result can be represented

as follows:
P+2

((Ci)l; ul) x ((ri12; v2) = C Yr * ((filr; ur)-
r=3

The coefficients yr of the symmetric polynomials in the result will be referred to
as the degeneracies. The number of unique symmetric polynomials in the result
ACM Transactions on Mathematical Software, Vol. 14, No. 4, December 1988.

An Algorithm for the Multiplication of Symmetric Polynomials l 339

is p. The product of the multiplicities of the multipliers is equal to the sum of
the products of the degeneracies and the multiplicities of the resulting symmetric
polynomials; that is,

P-+2
t1 - t2 = x3 Yr - 4r.

In order to determine the general form of the result, a minimum of ~1 + /12
variables must be used, so that vi I p1 + pz for i E [1, p + 21. In the following, it
will be assumed that the required minimum value of Y is being employed and that
its specification will be omitted from the partition representation of symmetric
polynomials.

The partition sets representing the resulting symmetric polynomial exponents
can be produced by selecting k exponents from the partition of each multiplier
in each possible way, adding them together in each possible way, and appending
the remaining exponents from the partition of both multipliers for each k from
0 to min(pl, p2). If pk = k!(T)(T), then the maximum possible value of p is given
by zj$$-+2) Pk.

In this notation, all multiplications with the form (a + b) X (a + b) = a2 + b2
+ 2ab are represented by (1) x (1) = (2) + 2(1, l), and all multiplications with
the form

(a + b + c) x (u’b + u2c + b2u + b*c + c2u + c2b)
= (u3b + u3c + b3u + b3c + c3u + c3b)

+ 2(u2b2 + u2c2 + b2c2) + 2(u2bc + b2uc + c2ub)

are representedby (1) x (2,l) = (3,1) + 2(2,2) + 2(2,1,1). It is for multiplications
such as

(5, 5, 5, 4, 3, 3) x (1, 1)
= (6, 6, 5, 4, 3, 3) + 3(6, 5, 5, 5, 3, 3) + 2(6, 5, 5, 4, 4, 3)

+ (6, 5, 5, 4, 3, 3, 1) + 4(5, 5, 5, 5, 4, 3) + 4(5, 5, 5, 5, 3, 3, 1)
+ 3(5, 5, 5, 4, 4, 4) + 2(5, 5, 5, 4, 4, 3, 1) + (5, 5, 5, 4, 3, 3, 1, 1)

that a rapid and accurate algorithm is needed [3].

3. SYMBOLIC MULTIPLICATION ALGORITHM

An algorithm for the multiplication of symmetric polynomials represented by
partitions must provide the symmetric polynomials, represented by partitions,
and the corresponding coefficients, referred to as the degeneracies, for each
polynomial in the result. Begin with a straightforward procedure for the multi-
plication of symmetric polynomials using symbolic algebra:

Step 1. Calculate the multiplicity of both multipliers.
Step 2. Choose any term from the multiplier with the greater multiplicity, and

multiply it by each term in the other multiplier.
Step 3. Count the terms that have the same ordered set of exponents, or form,

in the result.
Step 4. For each distinct form in the result, divide its count by the multiplicity

of the form, and multiply by the multiplicity of the first multiplier.
ACM Transactions on Mathematical Software, Vol. 14, No. 4, December 1988.

340 l John S. Garavelli

Consider the multiplication (1,l) x (2,&l). The minimum number of variables
that must be used is 2 + 3 = 5, and the multiplicities would be 5!/3! 2! = 10 for
(1, 1) and 5!/2! l! 2! = 30 for (2, 1, 1). Choose the term u’bc from (2, 1, l), and
multiply it by each term in the second multiplier, (1, 1):

2bc x (ab + UC + ud + ue -t bc + bd + be + cd + ce + de).

Count all the terms with the same ordered set of exponents, or form, in the
result:

Form Resulting terms Term count x E2 I 6 = Yr

(3, 2, 1) a3b2c + a3c2b 2 x 30 / 60 = 1

(3, 1, 1, 1) a3bcd + a3bce 2 x 30 / 20 = 3
c&2,2) a2b2c2 1 x 30 / 10 = 3

(2, 2, 1, 1) a’b’cd + a2b2ce + a2c2bd + a’c’be 4 x 30 / 30 = 4
(2, 1, 1, 1, 1) a’bcde 1 x 30 / 5 = 6

Therefore, (2, 1, 1) X (1, 1) = (3, 2, 1) + 3(3, 1, 1, 1) + 3(2, 2, 2) + 4(2, 2, 1, 1) +
6(2, 1, 1, 1,l). As a check, the sum of the term counts must equal the multiplicity
of the second multiplier.

The only step requiring algebraic symbol manipulation in this algorithm is
Step 3, determination of the term counts by identifying the resulting terms that
have the same form. In order to eliminate symbol manipulation, a formula is
required for calculating the degeneracies that does not require determining these
term counts.

THEOREM. The coefficient of each symmetric polynomial in the result of the
multiplication of two symmetric polynomials is given by

Yr = c, * I? dbb)!
2-1 41(z)! h?(z)! ,

where C, is the number of ways the game ordered set of exponents can be produced
when the exponents of the multipliers are combined in all possible ways.

Given two symmetric polynomials being multiplied, the degeneracies, y,., are
directly calculated by choosing one term from the multiplier with the greater
multiplicity, multiplying it by each term in the other multiplier, counting the
terms that have the same form in the result, and dividing that count by the
multiplicity of the form and multiplying by the multiplicity of the first multiplier.
In order to count all the terms with the same form in the result, determine the
k-term count, the number of terms in the second multiplier that have k variables
in common with the chosen term of the first multiplier. Multiply that number
by the form count, the number of ways the same set of ordered exponents can be
produced when the exponents of the multipliers are combined in all possible
ways, and divide by Pk, the number of ways the exponents of the multipliers can
be combined when k of them are added.

To illustrate using the last example, there are three terms in the second
multiplier that have two variables in common with the chosen term of the first
ACM Transactions on Mathematical Software, Vol. 14, No. 4, December 1988.

An Algorithm for the Multiplication of Symmetric Polynomials 341

multiplier, six terms that have one variable in common, and one term that has
no variables in common:

a’bc X (ab + UC + bc + ad + ae + bd + be + cd + ce + de).
L / \ Y Y I y

k=2 k=l k=O

Form k-Term count X Form count / pk = Term count

k=2
(3,2, 1) 3 X 4 6 = 2
(292, 2) 3 X 2

:
6 = 1

k=l

(3, 1, 1, 1) 6 X 2 6 = 2
(2,2,1, 1) 6 X 4

:
6 = 4

k=O
(271, 1, 1, 1) 1 X 1 / 1 = 1

The &term count, the number of terms in the second multiplier that have k
variables in common with the chosen term of the first multiplier, is given by

Using an identity from Gould [2], this reduces to

Therefore, if C, is the form count, the degeneracy is given by

which, upon substituting for pk, k, &, and &, reduces to

An algorithm that forms all the sets of exponents that can be produced when
the sets of exponents of the two multipliers are combined and 0 through
min(pl, p2) from each set are added in all possible permutations will also provide
the required form counts, and thus the degeneracies, using this formula.

4. COMBINATORIC ALGORITHM

Using this last formula and the combinatorial subroutines “NEXKSB” and
“NEXPER” from Nijenhuis and Wilf [5] to find the next selection of elements
from a set and to permute the order of those elements, and “parttonum” and
“numtopart” from Wells [B] to find the index corresponding to a partition and
the partition corresponding to a number, it is possible to write an algorithm that
will take two partition representations of symmetric polynomials and give the

ACM Transactions on Mathematical Software, Vol. 14, No. 4, December 1988.

342 l John S. Garavelli

results that would be obtained if those symmetric polynomials were multiplied
symbolically.

Step 1. Determine the order of the result: N = a1 + 6,.
Step 2. P(N) = number of partitions of N.
Step 3. Zero the counting array: C(i) = 0 for i = 1 to P(N).
Step 4. Loop 1: for k = 0 to min(pl, pz).
Step 5. Pick the first subset of k exponents from the set of g1 exponents in

the first multiplier.
Step 6. Pick the first subset of k exponents from the set of p2 exponents in

the second multiplier.
Step 7. Pick the first permutation of the k exponents in the second subset.
Step 8. Add the k exponents from each subset together in order, and append

the remaining exponents in both multipliers.
Step 9. Sort the resulting set of exponents, (rr), in decreasing order.
Step 10. Determine the partition index, i, of the resulting set: i = “partto-

num”WD.
Step 11. Increment the count for the partition index: C(i) = C(i) + 1.
Step 12. Pick the next permutation of the k exponents in the second subset,

and return to Step 8 otherwise.
Step 13. Pick the next subset of k exponents from the second multiplier, and

return to Step 7 otherwise.
Step 14. Pick the next subset of k exponents from the first multiplier, and

return to Step 6 otherwise.
Step 15. Continue Loop 1.
Step 16. Loop 2: for i = 0 to min(pl, p2).
Step 17. Calculate the degeneracy: If C(i) > 0 then C(i) = C(i) .

rIB=l [db(zV/(dh(zY 42bY)l.
Step 18. Continue Loop 2.

5. COMPUTATION TIMES AND RESULTS

An analysis of the theoretical order of computation time for this algorithm
indicates that it should proceed in times given by

mi;gr’ ($[a + (;) [T, + k![(k + l)Tz + Ts + T4 + Ts]] 1 ,

where the component computation times are Tl for “NEXKSB,” forming the
next subset of k items from either p1 or pz items; T2 for integer addition; T3 for a
sort of CL1 + CL2 - k items; T4 for “parttonum,” determination of the index of a
partition; and T5 “NEXPER,” forming the next permutation of k items. In the
worst case, p, = pz = p and the computation time would be proportional to

B

[2’ + (7r/~)-~‘~2~“TJ + & ; ; k![(k + 1)T2 + T3 + T4 + T5],
00

If the components in the innermost loop were not dependent on k, the compu-
tation time for the dominating inner sum would be proportional to

p!(2aez)-1’2eZ where z = 2~~‘~
ACM Transactions on Mathematical Software, Vol. 14, No. 4, December 1988.

An Algorithm for the Multiplication of Symmetric Polynomials l 343

Table 1. Computation Time for Multiplication Algorithm

Order Time Number of Average time
of result (CPU set) multiplications per multiplication

2 0.040 1 0.040
3 0.010 2 0.005
4 0.050 7 0.007
5 0.080 11 0.007
6 0.220 26 0.008
7 0.380 40 0.010
8 1.050 83 0.013
9 1.970 120 0.016

10 6.090 223 0.027
11 13.130 320 0.041
12 47.080 566 0.083
13 112.950 784 0.144
14 451.400 1,310 0.345
15 1,175.780 1,802 0.652
16 5,065.670 2,922 1.734
17 14,027.621 3,938 3.562
18 64,063.473 6,180 10.366

asymptotically as p tends to infinity [4]. However, that is not the case, and
the order of computation time can be expected to be slightly worse. Unlike the
multiplication algorithm of Lauer, a double sort of terms is not required in
the inner loop, and the computation time and results are entirely independent
of v, the total number of variables in the symmetrical polynomials.

This algorithm has been implemented as a FORTRAN subroutine MULPOL
[l] in a program POLYA, which completely enumerates the permutation isomers
of chemical compounds. Because of the savings in storage afforded by this
subroutine, it was possible to enumerate the permutation isomers of compounds
with more than four different substituents and with up to 20 substitution sites.
Among the compounds whose permutation isomers were enumerated was
dodecahedrane. Determination of the permutation isomer counts for the 637
different substituent compositions of dodecahedrane is equivalent to the problem
of counting all the possible colorings of the vertices of the dodecahedron.

Table I provides the average computation times on a VAX 111785 in batch
operation for this algorithm for symmetric polynomial multiplication imple-
mented in the FORTRAN subroutine MULPOL. The average computation time
for polynomial multiplication with results from orders 2 through 18 were deter-
mined by recording the CPU time in seconds for all possible polynomial multi-
plications with results of each order and by dividing by the number of multipli-
cations. The peak working set size did not exceed 962 pages of 512 bytes. For
these calculations the output of multiplication results was eliminated, and only
one record was output for each order with the summary information.

ACKNOWLEDGMENT

The author wishes to thank Uri N. Peled for helpful discussions in estimating
the order of computation time.

ACM Transactions on Mathematical Software, Vol. 14, No. 4, December 1988.

344 l John S. Garavelli

REFERENCES

1. GARAVELLI, J. S., AND LEONARD, J. E. Improvements in the computer enumeration of permu-
tation isomers. Comput. Chem. 9, 2 (1985), 133-147.

2. GOULD, H. W. Combinatorial Identities, Revised Edition. Morgantown, W.V., 1972, p. 27,
eq. 3.38.

3. LAUER, E. Algorithms for symmetrical polynomials. In SYMSAC 76: Proceedings of the 1976
ACM Symposium on Symbolic and Algebraic Computation, R. D. Jenks, Ed. ACM, New York,
1976, pp. 242-247.

4. LIFSCHITZ, V., AND PITTEL, B. The number of increasing subsequences of the random permu-
tation. J. Comb. Theory Series A 31, 1 (July 1981), l-20.

5. NIJENHUIS, A., AND WILF, H. S. Combinatorial Algorithms. Academic Press, New York, 1975,
pp. 21-34,49-59.

6. P~LYA, G. Kombinatorische anzahlbestimmungen fiir gruppen, graphen und chemische verbin-
dungen. Acta Math. 68 (1937), 145-254. (Note: Since the submission of this work, a translation
of this reference has appeared in P~LYA, G., AND READ, R. C. Combinatorial Enumeration of
Groups, Graphs and Chemical Compounds. Springer-Verlag, New York, 1987, pp. l-95.)

7. READ, R. C. The enumeration of acyclic chemical compounds. In Chemical Applications of Graph
Theory, A. T. Balaban, Ed. Academic Press, London, 1976, Chap. 4, pp. 25-61.

8. WELLS, M. B. Ehments of Combinatorial Computing. Pergamon, Oxford, 1971, p. 152.

Received December 1985; revised July 1988; accepted July 1988

ACM Transactions on Mathematical Software, Vol. 14, No. 4, December 1988.

