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FORTRAN 77 codes SONEST and CONEST are presented for estimating the l-norm (or the m- 
norm) of a real or complex matrix, respectively. The codes are of wide applicability in condition 
estimation since explicit access to the matrix, A, is not required; instead, matrix-vector products Ax 
and A “‘n are computed by the calling program via a reverse communication interface. The algorithms 
are based on a convex optimization method for estimating the l-norm of a real matrix devised by 
Hager [Condition estimates. SIAM J. Sci. Stat. Comput. 5 (1984), 311-3161. We derive new results 
concerning the behavior of Hager’s method, extend it to complex matrices, and make several 
algorithmic modifications in order to improve the reliability and efficiency. 
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1. INTRODUCTION 

Hager [ll] presents a method for estimating the l-norm of a real matrix B, with 
particular reference to estimating (1 A-’ 11 , and, hence, the matrix condition 
number ~~ (A) = I] A 1) 1 I] A-’ ]I 1. Th e method has the very useful property that its 
dependence on B can be isolated in references to a “black box,” whose defining 
property is that given an input vector x it returns either Bx or B TV. This property 
implies that a single “universal” code can be written that is applicable to any 
matrix, whether it is given explicitly or implicitly; to apply the code to a particular 
matrix, one simply provides a means to evaluate the required matrix-vector 
products. Hence, in the context of condition estimation, one code can serve as a 
condition estimator for all possible factorization routines and linear equation 
solvers. This contrasts with the LINPACK condition estimation algorithm, which 
makes direct access to elements in a factorization of the matrix and thus requires 
specific code to be written for each particular factorization routine. 
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This very attractive feature of Hager’s method, which is not explicitly noted 
in [ll], motivated the present work in which we develop FORTRAN codes based 
on Hager’s method. The codes will be of particular interest in contexts where the 
LINPACK condition estimation algorithm is not available-either because it is 
not applicable or because the algorithm has not yet been implemented. An 
example of the former case is the problem of estimating the norm of a matrix- 
matrix product without forming the product: for example, ABC, or A-‘B (where 
a factorization of A is available). Three applications in which the LINPACK 
algorithm has in some cases not been implemented are as follows: 

(1) sparse matrix packages (though see [2], [6], [lo], and [22]); 
(2) program libraries specially written for solving linear equations on a high- 

performance computer [5, 151; and 
(3) software for solving Sylvester equations AX + Xl3 = C, where A is m x m 

and B is n X n: These linear equations may be expressed in the form Px = c, 
where the Kronecker sum P = I,@ A + BT @ I,,,. As shown in [9] and [13], 
an estimate of a norm of P-l is useful for assessing the accuracy of a computed 
solution. Hager’s method is appropriate for estimating ]I P-l 11 1 since the 
matrix-vector products P-lx and PeTx are the solutions to further Sylvester 
equations, which can be computed using whatever method is used to solve 
the original Sylvester equation (be it a direct matrix factorization method [9, 
131 or an iterative method [ 161). We mention that LINPACK style condition 
estimators for use with Schur methods for solving Sylvester and generalized 
Sylvester equations have recently been developed by Byers [l] and by 
Kdgstrijm and Westin 1171. 

In both (1) and (2), having a single condition estimation routine that is called 
by all the factorization routines yields obvious economy of space and implemen- 
tation effort. Furthermore, the nature of our codes is such that they require little 
or no tailoring for special storage schemes or computer architectures. 

We mention that FORTRAN codes implementing the original version of 
Hager’s method [II] are available in NAPACK; this package is documented in 
[ 123, and individual routines can be obtained from NETLIB [4]. NAPACK 
contains a general-purpose matrix l-norm estimation routine NORM& as well 
as several condition estimation routines geared to particular matrix types, such 
as general real, banded, symmetric, and tridiagonal. 

This paper is organized as follows: In Section 2 we describe Hager’s method 
and derive new results concerning its behavior. In particular, we present several 
“counterexamples” on which the method performs badly. 

In Section 3 we describe extensive numerical experiments with the method 
that give insight into its behavior in practice. Based on this experience, we 
suggest in Section 4 several algorithmic refinements, which help to improve the 
reliability and efficiency. These combine to yield Algorithm 4.1, which forms our 
practical algorithm for l-norm estimation of real matrices. 

In Section 5 we extend Hager’s method to complex matrices. Section 6 contains 
details of the FORTRAN codes and some test results. Finally, in Section 7 we 
discuss the computational cost and reliability of the codes. 
ACM Transactions on Mathematical Software, Vol. 14, No. 4, December 1988. 
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Recall that the l-norm of A E R”“” is given by 

where I] x ]I 1 = Cj ] xj ] , and that the same expressions hold when R is replaced 
by C. Since the m-norm of A E R”“” or C”“” satisfies 11 A 11 m = 11 A ’ 11 1, it follows 
that the algorithms and codes given here can be used to estimate the m-norm by 
applying them to the transposed matrix. 

We note that, although we consider only square matrices here, it is sometimes 
desirable to estimate the l-norm of a rectangular matrix. One approach is to 
work with the square matrix obtained by padding the rectangular matrix with 
zeros. 

In our presentation we will variously consider the problem to be that of 
estimating I] B ]I 1, or I( A-l I] ,-the former notion is the more general, whereas 
the latter reflects the problem of most practical interest. 

2. HAGER’S ALGORITHM 

For B E REX”, I] B 1) 1 is the global maximum of the convex function 

0) = II Bx II I 
over the convex set 

This suggests using an optimization approach to estimate I] B ]I 1 : Iteratively move 
from one point in S to another where F is greater, testing for optimality at each 
stage. Hager [ll] derives such an algorithm by exploiting properties of F and S 
as follows: At points x E S where Bx has no zero components, F is differentiable 
and, in fact, locally linear; so, for y E S with )I y - x I( sufficiently small, 

F(Y) = F(x) + VFblT(y - xl, (2.1) 

where VF is the gradient vector of F. If I] VF(x) I) m I VF(X)~X, then, since 
] VF(X)~Y ] I 1) VF(x) ]I m I] y ]I 1 5 I] VF(x) I] m, it follows from (2.1) that x is a local 
maximum of F over S. 

If (BX)i = 0 for some i, then F is not differentiable at x. However, the convexity 
of F and S ensures that vectors g exist such that 

F(Y) 2 F(x) + gT(y - x) for all y E S. (2.2) 

Vectors g satisfying (2.2) are called s&gradients of F (see, e.g., [B, p. 1791). 
Inequality (2.2) suggests the strategy of choosing a subgradient g and moving 

from x to a point y* E S that maximizes g T( y - x). Since ] g Ty ) 5 I( g (1 m and 
since F(y) = F(-y), it follows that we can take y* = e; , where ] gj ] = I] g ]I m and 
ej is the vector with 1 in the jth position and zeros everywhere else. If ]I g ]I m > 
gTx, then F(y*) > F(x) is assured. Note that by convexity theory, or simply from 
(l.l), the global maximum of F is attained at one of the vertices cj . 
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It is straightforward to show, using (2.2), that the set dF(x) of subgradients of 
F at x is the (convex) set of vectors (Brt }, where 

[; = 

i 

-: 
if (BX)i > 0, 
if (BX)i < 0, 

arbitrary in [-1, l] if (Bx)i = 0. 

Of course, if (Bx)~ # 0 for all i, then dF(x) contains just a single element, VF(x). 
Define the vector valued function 

sign(x) = (si), 1 1 
si = 

if Xi Z 0, 
-1 if Xi < 0. 

Hager’s algorithm can be stated as follows, where we now set B = A-l: 

Algorithm 2.1. Given A E R""", this algorithm computes an estimate y 5 
II A -’ II I. 

Choose x with 11 x 11 1 = 1 
Repeat 

Solve Ay = x 
4 := sign(y) 
Solve A TV = E 

If 11 z 11 m 5 zTx then quit with y = II y II 1 
x:=ej,where lzjl = 11~11, 

The algorithm starts at a point on the boundary of S and then moves between 
vertices {ej ). Since F increases strictly on each step, each of the n vertices ej is 
visited at most once, and so the algorithm terminates in at most n + 1 iterations 
of the main loop. The algorithm computes a particular subgradient, in which any 
arbitrary elements in 5 are set to 1. The theory above guarantees that the point 
x: at which the algorithm terminates is a local maximum as long as y = A-‘z has 
no zero components; if y has a zero component, then x need not be a local 
maximum. Note that on iterations after the first y = A-‘ej is a column of A-‘; 
this vector certainly has zero components when A is triangular and j # 1, n. As 
we will see in Section 3, however, zero components in y do not seem to affect the 
practical performance of Algorithm 2.1. 

In the rest of this section, we investigate theoretically the behavior of Algo- 
rithm 2.1. We begin with a simple lemma: 

LEMMA 2.1. In Algorithm 2.1, the vectors from the kth iteration satisfy 

(i) zhTx” = 11 yk II I, and 
(ii) II yk II 1 5 II zk II- 5 II yk+’ II I 5 II A-l III. 

PROOF. We have zkTxk = tkTA-‘xk = tkTyk = 11 yk 11 1. Then 11 yk 11 1 = zkT3tk 5 
II.z~I~~~~x~II~= II~~llm= IA-T[kjj~ IIA-‘ejII1= IIyktlII1. 0 
ACM Transactions on Mathematical Software, Vol. 14, No. 4, December 1988. 
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The lemma reveals the interesting property that on every iteration the w-norm 
of the subgradient z is an estimate of ]] A-’ ]] 1 that is at least as good as F(x) = 
]] y (] 1. However, on the last iteration the two estimates are the same, since the 
convergence test may be expressed as “if I] z ]I m = ]I y I] 1.” Thus, there is no 
advantage to be gained from using the estimates I( z ]I m (unlike for the LINPACK 
estimator where additional estimates of a similar kind prove to be useful [20]). 

The lemma admits a heuristic interpretation of Algorithm 2.1. On stages after 
the first y is a column of A-‘, the kth, say, and [ is the sign pattern of this 
column. The element zi is the inner product of this sign pattern with the ith 
column of A-‘. If there is equality in I( y (] 1 = ] zk ] I (I z ]I .,,, then it is reasonable 
to assume that the kth column has the largest l-norm and to terminate the 
algorithm; otherwise, thejth column, where ] sj ] = ]I z ]I .,,, has a larger norm than 
the kth and is a likely candidate for being the column with the largest norm, so 
this column should be computed next. 

A natural choice of starting vector, in the absence of any special knowledge 
about A, is n-‘e, where e = (1, 1, . . . , 1)r. This vector is equivalent to any other 
of the form n-ld, di = +l, in the following sense: If the algorithm is applied to A 
with starting vector n-‘e, it produces the same estimate, after the same number 
of iterations, as if it is applied to DAD with starting vector n-ld, where D = 
diag(di). We will assume the starting vector is n-‘e in the rest of this section. 

An interesting special case for Algorithm 2.1 is when A-l 10, as, for example, 
when A is an M-matrix. It is easy to see that on the first iteration (] z (I m = 
IA-‘II,, and so by Lemma 2.1 the algorithm terminates after at most two 
iterations with an exact estimate. Note that if a second iteration is used 
then 4 = e, as on the first iteration, and so Algorithm 2.1 solves the system 
ATz = e twice. We return to this point in Section 4. 

Now we examine some “counterexamples’‘-matrices where Algorithm 2.1 
performs badly; these expand on the single counterexample given in [14]. Con- 
sider first the Pei matrices [21] 

A = crl+ eeT, a 2_ 0. (2.3) 

Using 

A-’ = a-‘I - 1 
eeT, II A-’ II 1 = 

Ly + 2(n - 1) 

a(a + n) cY(a+n) ’ 

we find that, in the first stage of Algorithm 2.1, y = A-‘(n-‘e) = n-‘(a + n)-‘e, 
and thus, 4 = e and z = A-‘e = (cy + n)-‘e. Hence, the algorithm terminates on 
the first stage at a local maximum. The estimate is y = I] y ]I 1 = (a + n)-‘, and 
the underestimation ratio is 

CY 
ff + 2(n - 1) 

-+O as (Y + 0 and/or n + w. 

Thus, for the Pei matrices the local maximum computed by Algorithm 2.1 can 
be an arbitrarily poor approximation to the global maximum. 

ACM Transactions on Mathematical Software, Vol. 14, No. 4, Dwember 1988. 
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Our next example is the bidiagonal matrix B,: 

(1 1 -1 1 . . . (-1y+l 

1 1 -1 
. 

1 
1 

B, = 1 ** 
, B,l = 1 ** . 

* (2.4) 
*. 

*. 1 -1 

\ 1 1, 

On the first iteration, y = n-l (1, 0, 1, 0, . . . )T if n is odd; else, y = n-l (0, 1, 0, 
1 . . )r. Thus, [ = e and z = BiTe = (1, 0, 1, 0, . . . )? The convergence condition 
ii not satisfied. If we take the smallest j such that ] zj ] = I( z ]I m, then x = el for 
the second iteration, giving y = el, and [ and z as on the first iteration. The 
algorithm now has converged, and it returns y = I] y ]I 1 = 1, so that 

we have a poor estimate unless n is small. Note that the final y has zero elements; 
it is easily confirmed that the stopping vertex x = el is not a local maximum 
point. 

Finally, consider a general class of matrices of the form 

A-’ = I + K’, (2.5) 

where Ce = Cre = 0 (there are many possible choices for C). For any such A, 
Algorithm 2.1 computes y = n-‘e, 5 = e, and z = e; hence, the algorithm terminates 
at the end of the first iteration, and 

*= 
1 

III+ ecl~l -e-1 
as fl+w. 

Here, as for the Pei matrices, the local maximum can differ from the global one 
by an arbitrarily large factor. 

We note that in all three of the above examples the reason for failure is that 
large column sums in A-l are hidden from Algorithm 2.1 by numerical cancella- 
tion in the products y = A-lx and z = A-T[. 

Quantitatively, the set of counterexamples to Algorithm 2.1 has small measure. 
Even for a “bad matrix,” the algorithm may return a good norm estimate in 
practice, because rounding errors may effectively perturb the matrix to one for 
which the algorithm performs well. In the next section, we examine the behavior 
of Algorithm 2.1 empirically. 

3. NUMERICAL EXPERIMENTS 

We have carried out extensive tests with PC-MATLAB [19] and GAUSS [7] 
implementations of Algorithm 2.1 on a PC-AT-compatible machine. Both PC- 
MATLAB and GAUSS employ IEEE-standard double-precision arithmetic, for 
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which the precision is 2-52 = 2.2 X 10-16. We took as the starting vector x = n-‘e, 
and the linear systems were solved by Gaussian elimination with partial pivoting. 
The test matrices include the following types: 

Type 1. Random matrices A := UZ VT, where U and Vare random orthogonal 
matrices and Z = diag(ai), with the singular values (a;) chosen from the distri- 
butions 

(a) Ui = 1 (i 5 n - 1) and cr, = ~g(A)-l (one small singular value); 
(b) u1 = ~~ (A) and u; = 1 (i > 2) (one large singular value); 
(c) ui = K2(A)-(i-l)/(n-1) (exponentially distributed singular values); and 
(d) ui from the N(0, 1) (normal) or Unif [0, l] (uniform) distributions. 

In cases (a)-(c) we took several K~(A) in the range lo3 5 K~(A) 5 1016. 

Type 2. Random full and triangular matrices A with aij chosen from the N(0, 
1) or Unif [0, l] distributions; full A with aii chosen as -1, 0, or 1 with equal 
probability; and random orthogonal matrices. 

Type 3. Nonrandom matrices including Pei matrices, Vandermonde matrices, 
Hilbert matrices, PC-MATLAB’s magic squares, and tridiagonal matrices with 
constant diagonals. 

These test matrices include most of the types that have been used in previous 
testing of condition estimators. Each type of matrix was used for several values 
of n in the range 10 5 n 5 90. 

For further variety, A-‘, rather than A, was chosen from some of the above 
matrix types-in fact, to do this we defined A as above and used a modified 
version of Algorithm 2.1 that computes y = Ax and z = AT.$. 

For each of the over 1000 test matrices, we recorded Kl (A), the underestimation 
ratio y/ ]] A-l ]] 1, the relative error ] y - jIA-‘II1(/(IA-‘II,, the number of 
iterations, p, and the 2p values ( ]I y I] 1/ I] A-’ )I 1, I( z )I -/ II A-’ II 1 ). The purpose of 
the tests was to gain insight into the behavior of Algorithm 2.1 in practice, and 
to identify strong and weak points of the algorithm. We present the results in 
summary form as follows. Note that in a different computing environment 
different results may be obtained, but the same broad features will persist. 

(1) Approximately three-fifths of the estimates were exact (i.e., the computed 
relative error was of the order of the unit roundoff). The proportion of exact 
estimates varies greatly with the type of matrix. For example, the estimate is 
usually exact for matrices of type l(a), but rarely exact for ones of type l(b). 

(2) Over the matrices of types (1) and (2), the smallest underestimation ratio 
was .47. For Vandermonde matrices (cyj-‘) based on equispaced points olj E [0, 
11, with 2 5 n I 20, the three smallest underestimation ratios were 1.3 X lo-l2 
(n = 16), 1.9 X 10e2 (n = 4), and .13 (n = 3). On most of the Pei matrices we 
tried, including all those with CY < 1, rounding errors caused the algorithm to 
take two iterations, leading to an exact estimate (since each column of the inverse 
has the same l-norm). 

(3) The algorithm converged in two iterations in over 90 percent of the cases. 
For one matrix the algorithm failed to converge (we discuss this example further 
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in the next section.) Otherwise, the maximum number of iterations was five (one 
instance), with only three matrices requiring four iterations. Convergence in one 
step was observed only for certain Pei matrices. Vandermonde matrices based on 
points 1, 2, . . . , n produced exceptional behavior: Three iterations were required 
for all 3 5 n I 20. 

(4) We have not found any correlations in the results between the underesti- 
mation ratio, the number of iterations, n, and K~(A). 

(5) In most cases the vector y from the first iteration satisfied 11 y 11 l I 
lo-’ 11 A-’ 11 i. For three classes of (ill-conditioned) Vandermonde matrix 11 y 11 1 - 
II A 11 1 on the first iteration, with a big increase on the next to give 11 y 11 I - 
IIA-lll~. 

(6) The performance of the algorithm on triangular matrices was similar in all 
respects to that on full matrices. 

(7) The results are consistent with those of the more limited tests in [ll J and 
D41. 

These test results provide a clear picture of the behavior of Algorithm 2.1 with 
x = n-‘e as the starting vector. The algorithm performs badly on certain 
nonrandom matrices; these include some, but not all, of the counterexamples of 
Section 2, the others being mitigated by the effect of rounding errors. However, 
the algorithm performs extremely well on random matrices: It rarely takes more 
than two iterations, and it provides an estimate of 11 A-l 11 1 which in all our tests 
has been correct to within a factor 10; this behavior seems to be independent of 
both n and K~(A), the only notable variation being with the singular value 
distribution, which can affect the frequency of exact estimates. The theoretical 
shortcoming that the stopping point may not be a local maximum if there are 
many subgradients there (as is usually the case when A is triangular) appears to 
be of no practical significance. 

4. PRACTICAL ALGORITHM 

Several refinements can be made in order to enhance the reliability and efficiency 
of Algorithm 2.1. 

First, note that although in practice Algorithm 2.1 nearly always converges 
within five iterations, the theory guarantees only that no more than n + 1 
iterations are required. As mentioned in Section 3, we found one matrix for which 
Algorithm 2.1 failed to converge; this matrix was singular to working precision, 
and the algorithm “cycled,” choosing the same point x = ej on each iteration. In 
theory, Zj > 0 in Algorithm 2.1, but the computed .z vector was so inaccurate that 
its jth component was negative, and so the convergence test “if II z 11 m 5 zTx = 
Zj ” was not satisfied. An effective way to deal with the (very remote) possibility 
of cycling is to test whether the current estimate 11 y I( 1 is strictly larger than the 
previous one (it must be larger in exact arithmetic). If the test is failed, the 
iteration is terminated. To guarantee reasonable efficiency of the algorithm, it is 
desirable also to impose a limit on the number of iterations; a limit of five 
iterations seems appropriate in view of our tests. 
ACM Transactions on Mathematical Software, Vol. 14, No. 4, December 1988. 
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We choose also not to test for convergence at the end of the first iteration, and 
thus to force a minimum of two iterations. Our reasoning is as follows: First, 
further iteration leads to an estimate that is no smaller, and is potentially much 
larger. For example, for the Pei matrices our modification forces the algorithm 
to jump from a local maximum reached at the end of the first iteration straight 
to a global maximum point. A second reason is that for the starting vector n-le 
the first convergence test is unduly sensitive to rounding errors, for the test is 
effectively “if 2 is a nonnegative multiple of e”, * thus, our modification makes the 
performance of the algorithm less dependent on the machine arithmetic. 

The reliability of Algorithm 2.1 can be improved further by using the following 
device, which is designed to counteract the weakness that large elements in A-’ 
can pass undetected because of numerical cancellation. Assume the starting 
vector is n-le. Our idea is to solve one further linear system Ax = b, where 

bi = (-1) ‘+‘(l+s), i=l,..., n, /b((1=$ 

and to take as the final estimate the larger of the original one and 2 (1 x. 11 J(3n). 
Heuristically, the alternating signs and slowly varying magnitudes of the elements 
of b ensure that cancellation is very unlikely to occur in the product A-lb in 
cases where there is serious cancellation on the first iteration in A-le. 

We mention in passing that Hager [ll] discusses an alternative idea for 
obtaining improved estimates; this consists of restarting the iteration once it has 
converged, constraining it to explore the subspace of R” spanned by the vertices 
ej that were not visited on the first main iteration. 

Finally, we consider the possibility that Algorithm 2.1 may waste computational 
effort by solving the same linear system A rz = f twice; this is very likely when 
A is an M-matrix, as noted in Section 2. It is easy to show that the same E vector 
can occur on two different iterations only if they are the last two iterations. In 
the tests of Section 3, there were several tens of instances of repeated 4s on the 
last two iterations (the incidence depends on the type of matrix and is most 
frequent when the final estimate is exact). Clearly, then, it is worthwhile to 
include a test for repeated Es; if the test is positive, the algorithm may be 
terminated immediately, with a computational saving of “one linear system.” 
This test has the minor inconvenience of requiring an extra n-vector of storage 
for the “old” [. 

The refinements described above are incorporated in the following algorithm, 
which forms the “pseudocode” base for an implementation in a specific program- 
ming language. Here, we switch to the viewpoint of estimating 11 B 1) 1. 

Algorithm 4.1. Let B E R”““. This algorithm requires as input 

-a means for computing the matrix-vector products Bx and BTx; 
-a real n-vector u; 
-work space: a real n-vector x and an integer n-vector F. 

The algorithm computes an estimate y I (1 B 11,. On output u = Bw, where 
y = 11 u I( 1/ll w 11 1 (w is not returned). If B = A-’ and y is large, then u is an 
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approximate null vector for A. 

u := B(n-‘e) 
If n = 1, quit with y := 1 u1 1 
-I:= Ilull 
[ := sign(u) 
x:=BT[ 
k := 2 
Repeat 

j:=min(i: l.lcil = 11~11~) 
u Z= Bej 
y:= y 
Y := Ilull 
If sign(u) = t or y 5 7, got0 (*) 
[ := sign(u) 
x := BT( 
k:=k+l 

until(llx,~~:%“~~i=l,...,n 
(*) x; := (-1) 

x:=Bx 
If 2 11 x 11 1/(3n) > y then 

u :=x 
y := 2ii~ii~i(3n) 

Endif 

Note that Algorithm 4.1 can still be “defeated”: It returns an estimate 1 for 
matrices B of the form 

B = I + BP, where P = PT, Pe = 0, Pel = 0, Pb = 0. (4.1) 

(P can be constructed as I - Q where Q is the orthogonal projection onto 
span(e, el, b].) Indeed the existence of counterexamples is intuitively obvious 
since Algorithm 4.1 samples the behavior of B on less than n vectors in R”. 

5. COMPLEX MATRICES 

In this section we extend Hager’s algorithm to complex matrices. Let B E C”““. 
As in the real case, 11 B 11 1 can be expressed as the global maximum of the convex 
function F(x) = 11 Bx II 1 over the convex set 5’ = (x E R”: 11 x 11 1 5 1); the 
restriction to real x: is valid since the maximum over the complex unit ball is 
attained at a real vector e; . Because of the convexity, at any point x subgradients 
g exist that satisfy 

F(Y) 2 F(x) + gT(y - xl for all y E S. (5.1) 

As in the real case, we can formulate an iterative algorithm that chooses a 
particular subgradient g at the current point x, and moves from x to the point 
y* = ej E S (where 1 g, 1 = 11 g 11 m) that maximizes the right-hand side of (5.1). 
The subgradients are characterized in the following lemma. Here, B* denotes the 
complex conjugate transpose of B. 
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LEMMA 5.1. dF(x) is the set of vectors (Se B*[), where, withy = Bx, 

ti = 
-I 
YilIYiI if ~ifo, 
arbitrary z E C with 1 z 1 5 1 if yi=O. 

PROOF. We will prove the lemma for the case where y has no zero components, 
so that dF(x) = (VF(x) 1; the general case can be proved using the subgradient 
definition (5.1), or from a limit argument. 

Let B = C + iD, where C and D are real, and let c,r and djT denote the jth rows 
of C and D, respectively. Then yj = (Bx)j = C,?X + idjTx # 0 by assumption, and 
so 

F(x) = II Bx II 1 = i: J(c,Tx)” + (djTx)‘, 
j=l 

n (C,‘x)Cj + (djTX)dj 
VF(x) = C 

i=l ~(c,!‘x)~ + (d,Tx)’ 

(5.2) 

(5.3) 

The expression for the gradient given in the statement of the lemma is 

Se B*[ = 9e i [j(Cj - idj) 
j=l 

=cJpe+L 
j=l 1 yj 1 (cj - idj ) 

=L%?e i 
(c,?; + id]Tx) 

j=l J(c,?x)~ + (djTx)’ 
(cj - idj ) 

which equals VF(x), by (5.3). Cl 

We can use the same stopping criterion as in Algorithm 2.1, the motivation 
being to stop when (5.1) does not predict any possible increase in F. Note that F 
is nonlinear when B is nonreal, as is clear from (5.2); therefore, the technique 
used in Section 2 to prove that the stopping point is a local maximum is not 
applicable here. It may be possible to prove a local maximum property under 
suitable assumptions, using results from the theory of nondifferentiable optimi- 
zation; however, such a result is not essential to the derivation of the algorithm. 

The algorithm for complex matrices is as follows: 

Algorithm 5.1. Given A E C”“” this algorithm computes an estimate y 5 
IIA-l III. 

Choose x E R” with 11 x 11 1 = 1 
Repeat 

Solve Ay = x 

Form C; where 5i = if yi f 0, 
if yi = 0. 

Solve A*z = 4 
2 := real(z) 
If I( z 11 m 5 zTx then quit with = 11 y y 1 11 
x:=cj,where lzjl = 11~11, 
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We make several comments: 

(1) Lemma 2.1 holds without change for Algorithm 5.1, and provides a heuristic 
interpretation of the algorithm similar to the one discussed in Section 2 for 
Algorithm 2.1. 

(2) When A is real, Algorithm 5.1 reduces to Algorithm 2.1. Therefore, the 
counterexamples of Section 2 are applicable to Algorithm 5.1. 

(3) All but one of the refinements to Algorithm 2.1 discussed in Section 4 are 
desirable in Algorithm 5.1 too. Since f in Algorithm 5.1 is complex, with generally 
noninteger real and imaginary parts, it is unlikely that the same 4 vector will 
occur twice-particularly in finite-precision arithmetic. Therefore, a test for 
repeated [s is not worthwhile in Algorithm 5.1. 

(4) The LINPACK condition estimation routines for complex matrices use 
the matrix “norm” 

II A II i = max C ( l9e aij I + I Ym aij I), A E C”““, 
j i 

which is subordinate to the vector norm 

llzlli = C (Ize &I + lym &I, 2 E C”. 

In fact, (1 . 11 i is not a true norm since the norm condition “ 11 cyz 11 ,= 1 (Y 1 11 z 11 for 
all a E C, 2 E C”” is not satisfied. The motivation for using the l-norm is that 
it is less expensive to compute than the l-norm and less prone to underflow or 
overflow during evaluation. It is possible to derive another generalization of 
Algorithm 2.1 that applies to the I-norm on C”. We omit the details, but mention 
the interesting property that, as for the l-norm in the real case, F(x) = 11 Bx 11 i 
(B E Cnx”) is locally linear on R” near points where F is differentiable. 

6. FORTRAN IMPLEMENTATION 

We have written FORTRAN 77 implementations of Algorithm 4.1 and Algo- 
rithm 5.1 (with the enhancements discussed in Section 5 and expressed in terms 
of estimating 11 A 11 1). The main issue in the design of the routines is how to 
implement the computation of the matrix-vector products. One possibility is to 
require the user to write a subprogram of fixed specification for computing Ax or 
ATx; this subprogram is passed as a parameter to the norm estimation routine. 
We have chosen instead to use reverse communication, as is employed in various 
codes for root-finding, quadrature, and ODES. Thus, our estimator returns control 
to the calling program whenever a matrix-vector product is to be computed. 
Reverse communication has several advantages over the use of a fixed-specifi- 
cation subprogram: It simplifies the call sequence of the estimator (there is no 
need to pass A, or work space for the Ax/ATx routine); it is more flexible-for 
example, the user can put the code that handles the reverse communication in 
the main program or in a subprogram; and it can be much easier to use, since it 
avoids the need for COMMON and EXTERNAL statements. 
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6.1 Real Version 

The specification of the subprogram for real matrices is as follows: 

SUBROUTINE SONEST (N, V, X, ISGN, EST, KASE) 
INTEGER N, ISGN(N), KASE 
REAL V(N), X(N), EST 

In the opening call to the routine, the user must set N and enter with KASE 
= 0; the other parameters need not be set. On intermediate returns, KASE has 
been set to 1 or 2, and a vector x is returned in X. X must be overwritten by Ax 
(if KASE = 1) or ATx (if KASE = 2), and SONEST must be called once again 
with the other parameters unchanged. 

The final return is indicated to the user by KASE = 0. The norm estimate is 
returned in EST, thus EST 5 ]] A ]] i, and V contains a vector u such that u = 
Aw, where EST = ]I u ]I ,/ ]I w ]I 1 (w is not returned). 

Only straightforward editing changes are needed to produce a double-precision 
version “DONEST” of SONEST. 

The following fragment of code illustrates the use of SONEST in conjunction 
with the LINPACK routines SGEFA (which factors a real matrix by Gaussian 
elimination with partial pivoting) and SGESL (which uses the factors to solve a 
linear system involving the matrix or its transpose). This code factorizes B of 
order N, dimensioned REAL B(LDA, N), and, if the factors are nonsingular, 
estimates ]I B-’ (] 1. 

CALL SGEFA(B, LDA, NJPIVOT, INFO) 
IF (INFO. EQ. 0) THEN 

KASE = 0 
10 CALL SONEST (N, V, X, ISGN, EST, KASE) 

IF (KASE .NE. 0) THEN 
CALL SGESL(B, LDA, N, IPIVOT, X, KASE - 1) 
GOT0 10 

ENDIF 
ENDIF 

6.2 Complex Version 

The subprogram for complex matrices has the following specification: 

SUBROUTINE CONEST(N, V, X, EST, KASE) 
INTEGER N, KASE 
COMPLEX V(N), X(N) 
REAL EST 

The details for the user are the same as in the real case, except that, on 
intermediate returns with KASE = 2, X should be overwritten by A*x. 

We have coded the reverse communication in the following way: A RETURN 
is placed at each point in the code where a matrix-vector product is needed, and 
an integer variable JUMP records the statement label at which execution is to 
continue on the next call; a computed GOT0 near the start of the routine 
performs the required jump. All variables are SAVEd between calls. 

The codes make use of the three BLAS routines whose root names are -AMAX, 
-ASUM, and -COPY [ 181. For CONEST we had to modify ICAMAX and 
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Table I. Results for 2105 Test Matrices 

Matrix type 
Number of 

Number of iterations 
Number of saved 

matrices 2 345 linear systems 

l(a): One small singular value 
l(b): One large singular value 
l(c): Exponentially distributed 

singular values 

634 625 9 0 0 401 
752 701 2 0 0 49 
719 660 55 4 0 172 

SCASUM because they use the “i-absolute value” discussed in Section 5, rather 
than the genuine absolute value that we require. 

SONEST and CONEST have been tested on a CDC Cyber 170-730 using the 
FTN5 compiler (OPT = 2); the machine precision is 2-48 = 3.55 X 10-15. In all 
the tests, EST was within a factor 11 of the directly computed norm. We have 
not noticed any significant difference between the behavior of SONEST and 
CONEST. 

In one group of tests, we used SONEST to estimate ]] A-' ]] 1 for matrices A of 
types l(a), (b), and (c) in Section 3. We took n = 5, 10, 25, 50, 75, 100, K~(A) = 
10, 103, 106, log, lOI*, 1014, and up to 25 different matrices for each combination 
of n and K~(A). Linear systems were solved using LINPACK’s SGECO/SGESL 
and inverses computed using SGEDI. Statistics summarizing the number of 
iterations and the number of repeated ,$ vectors are given in Table I. We mention 
that SONEST’s estimate of I] A-' II 1 was bigger than the one from SGECO (which 
is also a lower bound) in over 90 percent of the cases. 

The results in Table I confirm that the number of iterations is usually 2, and 
rarely more than 3, and that testing for repeated [ vectors produces a useful 
computational saving. 

In all our tests with random matrices, the estimate returned by the codes was 
the one from the main iteration. The estimate from the extra stage was returned 
for some of the counterexamples of Section 2 and for certain Vandermonde 
matrices-in each case the extra stage achieved its purpose of producing a 
satisfactory “backup” estimate when the main iteration produces a poor one. 

7. CONCLUDING REMARKS 

SONEST and CONEST compute estimates of ]I A I] I at the cost of forming a 
few matrix-vector products. The number of products is between 4 and 11 for 
SONEST; in practice, the number rarely exceeds 7 and averages between 4 and 
5. CONEST usually requires at least 5 products because it does not test for a 
repeated vector. 

The computational work expended within SONEST is proportional to n, the 
matrix order. The overall cost is problem dependent, but will usually be domi- 
nated by the cost of evaluating matrix-vector products between calls to SONEST. 
In the important application of estimating I] A-l I] 1 given a factorization A = LU, 
SONEST requires, typically, 4n2 or 5n* flops. This is roughly similar to the work 
required by the condition estimation phase of LINPACK’s SGECO, which is 
approximately 3n2 flops plus up to 4n’ multiplications for resealing operations 
[3]. Note that, necessarily, SONEST consigns the responsibility of handling 
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possible overflows to the matrix-vector products routine in the calling program. 
We note that, in practice, rounding errors ensure that most computed condition 
numbers are bounded by the reciprocal of the machine precision, so overflows 
are unlikely. However, when estimating ]] A-’ ]] I it is important for the user to 
test for exact singularity of any triangular factors of A, since a singular triangular 
factor would cause breakdown in the substitutions required when using SONEST. 

Our experience suggests that SONEST is extremely reliable: In practice, EST 
is almost certain to be within a factor 10 of the true l-norm. However, counter- 
examples do exist (see (4.1)); their significance is to show the futility of trying 
to prove a reliability result (see the discussion in [3]). 

In conclusion, the versatility of the codes makes them well suited for use in a 
wide variety of condition estimation applications, and they should be of particular 
interest in contexts where a condition estimator is not already available. 
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