
A Global Optimization Algorithm Using
Stochastic Differential Equations

FILIPPO ALUFFI-PENTINI
Rome University
VALERIO PARISI
2nd Rome University

and
FRANCESCO ZIRILLI
Rome University

SIGMA is a set of FORTRAN subprograms for solving the global optimization problem, which
implements a method founded on the numerical solution of a Cauchy problem for a stochastic
differential equation inspired by statistical mechanics.

This paper gives a detailed description of the method as implemented in SIGMA and reports the
results obtained by SIGMA attacking, on two different computers, a set of 37 test problems which
were proposed elsewhere by the present authors to test global optimization software.

The main conclusion is that SIGMA performs very well, solving 35 of the problems, including
some very hard ones.

Unfortunately, the limited results available to us at present do not appear sufficient to enable a
conclusive comparison with other global optimization methods.

Categories and Subject Descriptors: G.1.6 [Numerical Analysis]: Optimization; G.4 [Mathematics
of Computing]: Mathematical Software--algorithm analysis; certification and testing

General Terms: Algorithms, Languages, Theory, Verification

Additional Key Words and Phrases: Global optimization, stochastic differential equations.

1. INTRODUCTION

In [4] a method for solving the global optimization problem was proposed. The
method associates a stochastic differential equation with the function whose
global minimizer we are looking for.

The research reported in this paper has been made possible through the support and sponsorship of
the United States Government through its European Research Office of the U.S. Army under contract
DAJA-37-81-C-0740 with the University of &merino, &merino, Italy.
Authors’ present addresses: F. Aluffi-Pentini, Dipartimento di Metodi e Modelli Matematici per le
Scienze Applicate, Universith di Roma, “La Sapienza,” Via A. Scarpa 10, 00161, Roma, Italy; V.
Parisi, Dipartimento di Fisica, 2” Universitl di Roma “Tor Vergata,” Via Orazio Raimondo, La
Romanina, 00173 Roma, Italy; F. Zirilli, Dipartimento di Matematica, Universita di Roma “La
Sapienza,” Piazzale Aldo Moro, 2, 00185 Roma, Italy.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1988 ACM 009%3500/88/1200-0345 $01.50

ACM Transactions on Mathematical Software, Vol. 14, No. 4, December 1988, Pages 345-365.

/

http://crossmark.crossref.org/dialog/?doi=10.1145%2F50063.50064&domain=pdf&date_stamp=1988-12-01

346 l F. Aluffi-Pentini et al.

The stochastic differential equation is a stochastic perturbation of a “steepest
descent” ordinary differential equation and is inspired by statistical mechanics.
In [4] the problem of the numerical integration of the stochastic equation
introduced was considered, and a suitable “stochastic” variation of the Euler
method was suggested.

SIGMA is a set of FORTRAN subprograms implementing the above method.
In Section 2 we describe the method as implemented in SIGMA, in Section 3

we give a general description of the method and some details on the implemen-
tation, in Section 4 we present some numerical experience on test problems, and
in Section 5 we offer conclusions.

The SIGMA package and its usage are described in the accompanying
algorithm.

2. THE METHOD

Let lF!?’ be the N-dimensional real euclidean space, and let f: IWN + [w be a real
valued function, regular enough to justify the following considerations.

In this paper we consider the problem of finding a global minimizer off, that
is, the point x* E (WN (or possibly one of the points) such that

f(x*) 5 f(x) vx E RN, (2.1)

and we propose a method introduced in [4], inspired by statistical mechanics, to
compute numerically the global minimizers of f by following the paths of a
stochastic differential equation.

The value of the global optimization problem both in mathematics and in
many applications is well known and will not be discussed here. We just want
to remark here that the root-finding problem for the system g(x) = 0, where
g:w-+llP, can be formulated as a global optimization problem considering the
function F(X) =]] g(x)]]“2, where]] .]I2 is the Euclidean norm in (IBN.l

Despite its importance and the efforts of many researchers, the global optimi-
zation problem is still rather open and there is a need for methods with a solid
mathematical foundation and a good numerical performance.

Much more satisfactory is the situation for the problem of finding the local
minimizers off, for which a large body of theoretical and numerical results exists;
see for instance [7] and [12] and the references given therein.

Ordinary differential equations have been used in the study of the local
optimization problem or of the root-finding problem by several authors; for a
review see [151.

The above methods usually obtain the local minimizers or roots by following
the trajectories of suitable ordinary differential equations. However, since the
property (2.1) of being a global minimizer is a global one, that is, it depends on

’ The present authors have considered this idea both from the mathematical point of view (for a
review see [15]) and from the viewpoint of producing good software (see [l] and [2]). The method
implemented in [l] and [2] is inspired by classical mechanics, uses ordinary differential equations,
and can be regarded as a method for global optimization.

ACM Transactions on Mathematical Software, Vol. 14, No. 4, December 1988.

A Global Optimization Algorithm l 347

the behavior off at each point of RN, and the methods that follow a trajectory of
an ordinary differential equation are local, that is, they depend only on the
behavior of f along the trajectory, there is no hope of building a completely
satisfactory method for global optimization on the basis of ordinary differential
equations.

The situation is different if we consider a suitable stochastic perturbation of
an ordinary differential equation as explained in the following.

Let us first consider the (Ito) stochastic differential equation

d[= -Vf([)dt + cdw (2.2)

where Of is the gradient of f and w(t) is a standard N-dimensional Wiener
process, E E R, E E RN.

In statistical mechanics, eq. (2.2) is known as the Smoluchowski-Kramers
equation [14]; this equation is a singular limit of Langevin’s second-order
equation when the inertial (i.e., second-order) term is neglected.

The Smoluchowski-Kramers equation has been extensively used by solid state
physicists and chemists to study physical phenomena such as atomic diffusion
in crystals or chemical reactions. In these applications eq. (2.2) represents
diffusion across potential barriers under the stochastic force cdw, where E =
(2kT/m)““, T is the absolute temperature, k is the Boltzmann constant, m is a
suitable mass coefficient, and f is the potential energy.

From an optimization point of view eq. (2.2) can be viewed as the steepest-
descent differential equation perturbed by adding a stochastic “white noise” term.

We assume that the minimizers off are isolated and nondegenerate, and that

lim f(x) = +crJ (2.3)
Ilxll*--

in such a way that

S UP e-a*‘(x) & < co, va E (rw\{O)). (2.4)

The above assumptions on the behavior off at infinity are not overly restrictive:
They are, for example, satisfied by any function f that grows at least as (I] x]] Z)p,
p > 0, when] x] 2 goes to infinity.

The use of eq. (2.2) for optimization purposes is suggested by the following
facts.

It is well known that if E’(t) is the solution process of (2.2) starting from an
initial point x0, the probability density function p’(t, X) of t’(t) (which is the
solution of the suitable Fokker-Planck partial differential equation) approaches
as t ---, ~0 the stationary solution given by the limit density

where A, is a normalization constant. The way in which p’(t, x) for a class of
one-dimensional systems approaches p&(x) has been studied in detail by consid-
ering the spectrum of the corresponding Fokker-Planck operators in [5].

ACM Transactions on Mathematical Software, Vol. 14, No. 4, December 1988.

348 l F. Aluffi-Pentini et al.

We note that pk is independent of x0 and that, as E ---) 0, pk becomes more
concentrated at the global minimizers off. That is,

lim,$‘(t) = 4:
t-m

in law (2.6)

where 5: has a probability density given by (2.5) and

in law (2.7)

where ,$“m is a random variable having as its probability density a weighted sum
of Dirac’s deltas concentrated at the global minimizers off. For example if N =
1 and f has two global minimizers lcl and x2, with (d2f/dX”)(xi) = Ci > 0, i = 1, 2,
we have (in a distribution sense)

lim p:(x) = y6(x - Xl) + (1 - YMX - x2)
c-0

where

y = (1 + a,-,. (2.8)

In order to obtain the global minimizers of f it seems natural to think of
performing simultaneously the limit in t (i.e., eq. (2.6)) and the limit in t (i.e., eq.
(2.7)); this suggests trying to obtain a global minimizer off as the asymptotic
value, as t --, CQ, of a sample trajectory of the stochastic differential equation
obtained by replacing the constant noise coefficient E in eq. (2.2) with a time-
varying noise coefficient c(t), which tends to zero.

We therefore consider the equation

dE = -Vf([)& + e(t)dw (2.9)

with initial condition

go) = x0 (2.10)

where

lim c(t) = 0. (2.11)
t--r-

In physical terms condition (2.11) means that the temperature T is decreased
to 0 (absolute zero) when t +B 03, that is, the system is being “frozen.”

In optimization terms condition (2.11) means that the stochastic perturbation,
which is suggested by the need for preventing the steepest descent trajectory
from being captured by local minima, must asymptotically vanish in order to
perform the final approach to a (hoped-for global) minimum.

Since we want to end up in a global minimizer off, that is, a global minimizer
of the (potential) energy, the system has to be frozen very slowly (adiabatically).

This means that, in order for the solution trajectory t(t) of problem (2.9),
(2.10) to become concentrated around a global minimizer off, it is necessary that
c(t) go to zero very slowly as t + 00. The way in which c(t) must go to zero
depends on the function f. In particular, it depends on the highest barrier in f
ACM Transactions on Mathematical Software, Vol. 14, No. 4, December 1988.

A Global Optimization Algorithm 349

that should be overcome in reaching the global minimizers. This dependence has
been studied in [4] using the adiabatic perturbation theory.2

In this paper we restrict our attention to the numerical implementations of
the previous ideas, that is, the computation of the global minimizers of f, by
following the paths defined by (2.9) and (2.10) and disregarding mathematical
problems such as the difference between the convergence in law of t(t) to a
random variable concentrated at the global minimizers off, and the convergence
with probability of one of the paths of t(t) to the global minimizers off.

We consider the problem of how to compute numerically these paths, keeping
in mind that we are not really interested in the paths, but only in their asymptotic
values.

We discretize (2.9) and (2.10) using the Euler method; that is, [(tk) is approx-
imated by the solution & of the following finite-difference equations:

t&l - 4‘k = -hkvf(fk) + &k)(Wk+l - wk), k = 0, 1, 2, . . . (2.12)

40 = x0 (2.13)

where

to = 0,

k-l

tk = c hi,
i=O

hk > 0,

and

wk = w(tk), k = 0, 1, 2, . . .

The choice of the Euler method, which is computationally cheap but slowly
convergent, is suggested by the fact that the noise coefficient t(t) should decrease
to zero very slowly as t + w, and, therefore, a large number of steps must be
computed anyway. Thus cheap steps are clearly useful, and there is no need to
resort to more expensive methods designed for rapid convergence.

The speed of convergence of the Euler method could become slower than the
decrease of e(t) zero only in extremely ill-conditioned problems, degrading the
performance of the method. In order to cope with such situations, the algorithm
implementation provides some form of resealing (see Section 3.2.12).

A further step can be made in the direction of avoiding unnecessary computa-
tional effort if we observe that a correct numerical computation of the gradient
in eq. (2.12) (which requires N + 1 function evaluations if a forward-difference
approximation is used) is not really needed, since we add a stochastic term to it.

’ We are indebted to A. H. G. Rinnooy Kan for bringing to our attention, after the submission of the
present paper, the existence of the work of Kirkpatric, Gelatt, and Vecchi [9] in which similar ideas
are exploited in the different context of combinatorial optimization. Their “simulated annealing”
method is based on the Metropolis algorithm for the numerical simulation of the behavior of a
collection of atoms tending to thermal equilibrium at a given constant temperature. It consists of
first “melting” the system being optimized, then slowly lowering the “temperature” by small steps,
each time waiting to reach the equilibrium, and continuing according to a given empirical “annealing
schedule” until the system “freezes,” one hopes in the lowest energy configuration.

The main differences with respect to our method are the discrete variable nature of combinatorial
optimization problems and the fact that our method looks for an optimum by following the solution
trajectories of the stochastic differential equation governing a diffusion process in which the
“annealing schedule” is given by a continuous decrease of the temperature parameter c(t).

ACM Transactions on Mathematical Software, Vol. 14, No. 4, December 1988.

350 l F. Aluffi-Pentini et al.

We therefore replace the gradient Of (6) with a “random gradient” as follows.
Let r be an N-dimensional random vector of length 1 uniformly distributed on
the N-dimensional unit sphere. Then for any given (nonrandom) vector u E RN
its projections along r is such that

N . E((r, u)r) = u (2.14)

where E(.) is the expected value, and (. , .) is the Euclidean inner product in
RN. This suggests replacing the gradient Of (&) with the “random gradient”

The random error

(2.15)

4tk) = r(tk) - VfW (2.16)

in the computation of the gradient is a vector random variable whose components
have the expected value 0 (y is an unbiased estimator of Of) and variance of the
same order as 1 Of 1 2.

We note that since (l/N) r(&) is the directional derivative in the direction r,
it is computationally much cheaper (e.g., when forward differences are used, only
two function evaluations are needed to approximate r(4)). Therefore, the paths
are computed approximating ,$(tk) with the solution ,$ of the following difference
equations:

tk+l - tk = -hk’?&d + &k)bk+l - wk), h = 0, 1, 2, . . . (2.17)

to = x0 (2.18)

where + (fk) is a finite difference (forward or central) approximation to y (&).
The complete algorithm is described in the next section.

3. THE COMPLETE ALGORITHM

We give in Section 3.1 a general description of the algorithm, while implemen-
tation details are given in Section 3.2.

3.1 General Description of the Algorithm

The basic time-integration step (see eq. (2.17) and Section 3.2.1) is used to
generate a fixed number N TRAJ of trajectories, which start at time zero from the
same initial conditions, with possibly different values of E(O) (note that even if
the starting values E(O) are equal, the trajectories evolve differently owing to the
stochastic nature of the integration steps).

The trajectories evolve (simultaneously but independently) during an “obser-
vation period” having a given duration (see Section 3.2.5) and within which the
noise coefficient c(t) of each trajectory is kept at a constant value cP. At the same
time the values of the steplength hk and of the spatial discretization increment
Axk for computing the random gradient (see eq. (2.15) and Section 3.2.2) are
automatically adjusted for each trajectory by the algorithm (see Sections 3.2.3
and 3.2.4).
ACM Transactions on Mathematical Software, Vol. 14, No. 4, December 1988.

A Global Optimization Algorithm . 351

At the end of every observation period the corresponding trajectories are
compared, one of them is discarded (and will not be considered any more), and
all other trajectories are naturally continued in the next observation period. In
addition, one of the trajectories is selected for “branching” (see Section 3.2.6),
that is, for generating a second continuation trajectory differing from the first
one only in the starting values for Q, and Axk (see Section 3.2.7), and is considered
as having the same “past history” of the first one.

The set of simultaneous trajectories is considered as a single trial, which is
stopped as described in Section 3.2.8 and is repeated a number of times with
different operating conditions (Section 3.2.9).

The stopping criteria for the complete algorithm are described in Section
3.2.10.

The use of an admissible region for the x values is described in Section 3.2.11,
scaling is described in Section 3.2.12, and criteria for numerical equality, in
Section 3.2.13.

3.2 Implementation Details

3.2.1 The Time-Integration Step. The basic time-integration step of eq. (2.17) is
used for the trajectory under consideration in the form

tk+l = tk - htz?(tk) + ~p~uk (k = 0, 1, 2, . . .) (3.2.1.1)

where hk and tP are the current values of the steplength and of the noise coefficient
(the noise coefficient has a constant value cP throughout the current observation
period (Section 3.1)) uk is a random vector sample from an N-dimensional
standard Gaussian distribution, and h:12uk = w&l - wk is due to the properties
of the Wiener process.

We note that, neglecting the discretization error q - y, the magnitude of the
contribution of the random error (eq. 2.16) to eq. 3.2.1.1 becomes negligible with
respect to the Wiener noise term as hk + 0.

The computation of the finite-difference random gradient +(&) is described in
the next section.

The basic step (3.2.1.1) is actually performed in two half steps

t,: = 4‘k - hkf (tkk) (first half step) (3.2.1.2)

and

tk+l = t: + cp JTE,uk (second half step) (3.2.1.3)

Both half steps depend on hk, while the first depends also on the current value
Axk of the spatial discretization increment used in computing y (&).

Either half step can be rejected if deemed not satisfactory, as described in
Section 3.2.3.

3.2.2 The Finite-Difference Random Gradient. Given the current (scalar) value
Axk of the spatial discretization increment for the trajectory under consideration,
we consider the random increment vector

ACM Transactions on Mathematical Software, Vol. 14, No. 4, December 1988.

352 l F. Aluffi-Pentini et al.

where rk is a random sample of a vector uniformly distributed on the unit sphere
in RN, the forward and central differences

1

AFfk = fC5 + 4 - f&J
1

Acftz = - [f 65 + 4 - f (E/s - 41
(3.2.2.1)

2

the forward- and central-difference directional derivatives

6‘: = AFfJAxk, ;i; = Acfk/Axk (3.2.2.2)

and the forward- and central-difference random gradients

T: = N$rk, +f = Nij$-,p (3.2.2.3)

We use T!or +Efor +(&) in the first half step as described in the next section.

3.2.3 Accepting and Rejecting the Half Steps. The computation of the first half
step can be attempted with the forward- or central-difference random gradient
(+: and +i of eq. (3.2.2.3)) as described below.

In either case the half step is accepted or rejected according to the function
increment

A’fk = f 65) - f (E/J (3.2.3.1)

Since A'fk should be nonpositive for a sufficiently small value of hk, the half
step is rejected if A'fk is “numerically positive,” that is, larger than a given
positive small tolerance.

The second half step is rejected in the corresponding function increment

Avfk = f (&+I) - f b$) (3.2.3.2)

is positive and too large (greater than 100 6: in the present implementation).
The sequence of attempts affects the updating of the time-integration

steplength hk and of the spatial discretization increment Ark as described below;
the amount of the updating is described in Section 3.2.4. All attempts are with
the current (i.e., updated) values of hk and Axk.

The sequence of attempts is as follows:

(1) Pick up a random unit vector rk.
(a) Compute the random increment sk = Axkrk for computing the random

gradient (Section 3.2.2).
(b) If sk (and therefore Axk) is too small (i.e., if the square of the euclidean

norm of the difference between the computed values of [k -I-. Sk and [k is
zero because of the finite arithmetic of the machine) update (increase)
Axk and go back to (la).

(2) Compute the forward-difference directional derivative ;iI (eq. (3.2.2.2)).
If the computed value of (jj:)’ is zero (owing to the finite arithmetic) update
(increase) Axk and go back to (la).

(3) Compute the first half step with the forward-difference random gradient T!.
Compute the first half-step function increment A'fk (eq. (3.2.3.1)).
If A’fk 5 16: 1 Axk accept the first half step and jump to (5).

ACM Transactions on Mathematical Software, Vol. 14, No. 4, December 1988.

A Global Optimization Algorithm - 353

(4) Compute again the first half step with the central-difference random gradient
Tz to check the appropriateness of Axk. Compute the function increment
A'fk (eq. (3.2.3.1)).
(a) If A'fk > 16: - ijE 1 Axk reject the first half step, update (decrease) hk,

and go back to (1).
(b) Otherwise accept the first half step and update (decrease) Axk.

(5) Update (increase) hk. Update Axk.
(6) Compute the second half step. Compute the second half-step function incre-

ment A"fk (eq. (3.2.3.2)).
(a) If A"fk > 100 tz, reject the second half step, and reject also the first half

step, update (decrease) hk, and go back to (1).
(b) Otherwise accept the whole step.

Note however that, if the same half step is rejected too many times, the half
step is nevertheless accepted in order not to stop the algorithm. This is not too
harmful since several trajectories are being computed, and a “bad” one will be
eventually discarded (in the present implementation the bound is given explicitly
for the first half step (50 times) and implicitly for the second half step (if hk
becomes smaller than 10e3’)).

3.2.4 The Updating of hk and Axk. The time-integration steplength hk and the
spatial discretization increment Axk for the trajectory under consideration are
updated while performing the integration step, as described in the preceding
section.

Updating is always performed by means of a multiplicative updating factor
which is applied to the old value to obtain the new one.

The magnitude of the updating factors as used in the various phases of the
sequence in the preceding Section, 3.2.3, is as follows:

3.2.4.1 Updating Factors for Axk.

In phase (lb): lo6
In phase (2a): 10
In phase (4b): 1o-4

In phase 5 the value of the updating factor is chosen among the values l/2, 1,
2: The choice depends on the magnitude of the current estimated function
increment Afk = 1 & 1 Axk (where ijk is the forward- or central-difference directional
derivative, ;i: or ;it, as appropriate), and of the function value fk = f (,!$).

The choice is performed as follows: We test fk and fh = fk + Afk, for numerical
equality according to the relative difference criterion (see Section 3.2.13) with
tolerances 7R1 = lo-” and TR2 = lop5 and take the updating factor

.
2 if fk and th are “equal” within TR1

112 if fk and fk are not “equal” within 7R2
1 otherwise.

We note that the performance of the present method, unlike that of quasi-
Newton methods, is not critically degraded, owing to the stochastic nature of the
integration step, by a not overly accurate computation of the gradient; it is,

ACM Transactions on Mathematical Software, Vol. 14, No. 4, December 1988.

354 l F. Aluffi-Pentini et al.

therefore, only necessary to prevent the space discretization increment Axk from
becoming abnormally large or small. The above interval (lo-“, 10e5) represents
therefore a relatively wide “indifference region” within which no control action
for Axk is taken, which is to be considered machine independent, since it contains
both the square root and cube root of the machine precision of most computers
in double precision (the square root is appropriate for forward differences,
whereas the cube root is appropriate for central differences).

3.2.4.2 Updating Factors for hk. In phase (4a) the updating factor for hk is

l/1.05 for the first attempt to the first half step
112 for the second attempt
l/10 for all other attempts

In phase 5 the updating factor depends on the current number a of accepted
time-integration steps in the current observation period and on the current total
number r of half steps rejected so far in the current trial (excluding those possibly
rejected while attempting the first step).

If r > 0 the updating factor is

1.0 (if a 5 2r)

1.1 (if 2r < a 5 3r)

2.0 (if 3r < a)

If r = 0 the updating factor is

2.0 (if a = 1)

10.0 (if a > 1)

In phase (6a) the updating factor is 0.1.

3.2.5 Duration of the Observation Period. The duration of the observation
period numbered Izp from trial start, defined as the number Nhp of time-integration
steps in period lz,, is computed as a function of $ by means of a formula which
must be chosen, before the algorithm starts, from among the following three
formulas:

(1) Nhp = 1 + [logz(lz,)l (“short” duration)

(2) Nhp = [k;‘21 (“medium-size” duration)

(3) Nhp = lz, (“long” duration)

where $ = 1, 2, . . . , and [x] is the largest integer not greater than X.

3.2.6 Trajectory Selection. In order to decide, at the end of an observation
period, which trajectory is to be discarded and which one should be selected for
branching, we compare the trajectories on the basis of the values of their noise
coefficient in the observation period and of the function values obtained from
trial start.

From the viewpoint of past function values, a trajectory is considered better
than another if it has attained a lower function value than the other (excluding
a possible initial part common to both trajectories).
ACM Transactions on Mathematical Software, Vol. 14, No. 4, December 1988.

A Global Optimization Algorithm 355

From the viewpoint of the noise coefficient 8, a trajectory with larger t,, is
considered better if the comparison is made in an early observation period (as
long as k, < MP . Ib, where $ is the number of elapsed observation periods and
M,,, 4 are defined below) and worse otherwise.

A basic partial ordering of the trajectories is first obtained on the basis of past
function values, and a final total ordering is then obtained, if needed, by suitably
exploiting the noise-based ordering.

The discarded trajectory is always the worst in the ordering, whereas the
trajectory selected for branching is usually not the best one so as to avoid sticking
in a nonglobal minimum.

Normal branching is performed on the trajectory which, in the ordering,
occupies the place Ib (a given integer); exceptional branching, in which the best
trajectory is selected, occurs for the first time at the end of the observation period
km and then at every M, period (kPO and MP are given integers), so that exceptional
observation periods are those numbered

lz, = kpo + jM,, (j = 0, 1, 2, . ..).

3.2.7 The Second Continuation of a Branched Trajectory. While the first
(unperturbed) continuation of a trajectory that undergoes branching starts with
the current values of cP and Axk, the second continuation starts with values
obtained by means of multiplicative random updating factors applied to the
current values.

The updating factor F, for eP is as follows:

For the first trial and for any trial following an unsuccessful trial:

F L = 10x-1/2 where X is a random sample from a
standard normal distribution

For all other trials:

F e = 2y-‘/2 where Y is a random sample from a
standard Cauchy distribution, that is,
with density p(Y) = l/(a(l + Y”))

The updating factor for Axk is

Fax = 103’ where 2 is a random sample from a
standard normal distribution.

3.2.8 Stopping Criteria for a Trial. A trial is stopped, at the end of an obser-
vation period, if one of the following two stopping criteria is satisfied:

(1) Uniform Stop: The final function values of all the trajectories (except the
discarded one) are “numerically equal” (possibly at different points x), that
is, the maximum fTFM*X and the minimum fTFMrN among the final function
values are numerically equal as defined in Section 3.2.13, with given toler-
ances TABS and TREL.

(2) Maximum Trial Duration: A given maximum number NrMAx of observation
periods has been reached.

ACM Transactions on Mathematical Software, Vol. 14, No. 4, December 1988.

356 l F. Aluffi-Pentini et al.

The stopping criteria are checked in the stated order, and checking is activated
only after a minimum trial duration, that is, a minimum given number NPMIN of
observation periods has been reached.

The stop is considered successful only if it is a uniform stop and if the final
function values can be considered numerically equal to the current best minimum
function value fopT found so far from the algorithm start; that is, if fTFMIN and
fopT are numerically equal (see Section 3.2.13) with the same tolerances.

We note that fopT is updated whenever a lower function value is reached, and
that a past trial that had a successful stop may not continue to be considered a
successful trial because of the updating of fopT (Section 3.2.10).

3.2.9 Characteristics of the Successive Trials. The operating conditions that
are changed when another trial is started are

-the seed of the random number generator
-the maximum duration of the trial
-the policy for choosing cP for the second continuation of a branched trajectory
-the value of cP at the start of the trial
-the initial point x0.

The maximum duration of a trial, that is, the maximum number iVPMAX of
observation periods, is obtained as follows: If the preceding trial had a uniform
stop (Section 3.2.8), take the value of the preceding trial; otherwise, take a value
obtained by adding to the preceding value a fixed given increment INPMAX.

The policy for selecting tP for the second continuation of a branched trajectory
was described in Section 3.2.7.

The value of tP at the start of a new trial is obtained by means of a multiplicative
updating factor (Y applied to the starting value of the preceding trial, according
to the outcome (stopping condition) of the preceding trial and to the number t
of trials performed from the algorithm start, as compared to the given maximum
number of trials iVTRIAL.

Successful stop:

a = 103.

Unsuccessful uniform stop:

a = 10 if t < [[@b)NTRIAL]l

ff = 1o-4 otherwise,

where [[LX]] is the smallest integer not smaller than X.

Unsuccessful nonuniform stop:

CY = 10-4.

The initial point x0 is selected as follows: If t < [[(2/5)NTRIAL]], take the value
of x0 at the algorithm start; otherwise, take x o = %PT where xoPT is the current
best minimizer found so far from the algorithm start.

All other initial values are those of the first trial, except the initial values of
hk and Axk, which are the values reached at the end of the preceding trial.
ACM Transactions on Mathematical Software, Vol. 14, No. 4, December 1988.

A Global Optimization Algorithm l 357

3.2.10 Stopping Criteria for the Algorithm. The final stopping and evaluation
of the complete algorithm is based on the value of foPT, the current best minimum
function value found so far from the algorithm start (possibly not at the end of
a trial) and on the values of two quantities, fT*opT and KSW, which summarize
the outcomes of the past trials and which are defined below.

fTFOPT is the current best end-of-trial function value found so far; that is, the
minimum among the values found so far for fTFMIN in the uniformly stopping
trials (note that fTFoPT is initialized with the function values at the starting point,
and that, before the first uniform stop occurs, fTFoPT is set to the value of fTFMIN
at every trial).

KsUc is the current count of successful trials, which is set to zero at the
algorithm start, and is updated at every uniform stop, on the basis of comparison
of the last trial to those among the preceding trials which stopped uniformly.

If the last trial is sufficiently better, that is, if its final value fTFMIN is smaller
than fTFoPT without being “numerically equal” to it (see Section 3.2.13, usual
tolerances), then KsUc is reset to zero, thus forgetting the past trials; otherwise,
the current value is retained.

In any case KsUc is then incremented by one only if the last trial stopped
successfully.

The complete algorithm is stopped, at the end of a trial, if one of the following
two stopping criteria (checked in the stated order) is satisfied:

(1) Sufficient Number of Successful Trials: The current count KsUc of successful
trials has reached a given requested number of successful trials Nsuc.

(2) Maximum Duration: A given maximum number NTRIAL of trials has been
reached.

The successful trials, as counted by K sue, are considered “not valid” whenever
fopT differs too much (owing to nonfinal function values) from fTFMIN; that is,
fopT and fTFMIN are not numerically equal (as in Section 3.2.13, always defined
with the same tolerances).

Success is claimed by the algorithm if the current count KsUc of successful
trials is at least one and if such trials are currently valid.

We note that each integration step can be rejected only a finite number of
times, each observation period lasts a finite number of accepted integration steps,
and there is a finite number of observation periods in a trial; since a finite
number of trials is allowed, the algorithm will stop after a finite total number of
steps and function evaluations.

3.2.11 Admissible Region for the x Values. In order to help the user in trying
to prevent computation failures (e.g., overflow) the present implementation of
the method gives the possibility of defining (for any given problem and machine
dynamic range and on the basis of possible analytical or experimental-evidence)
an admissible region for the x values (containing, one hopes, the looked-for global
minimizer) within which the function values may be safely computed. We use an
N-dimensional interval

RMIN 5 X(i) 5 RMAX, i = 1, 2, . . . , N,

where the interval boundaries must be given before the trial starts.
ACM Transactions on Mathematical Software, Vol. 14, No. 4, December 1988.

358 l F. Aluffi-Pentini et al.

Outside the admissible region, the function f(x) is replaced by an exponentially
increasing function in such a way that the values off and of the external function
are matched at the boundary of the region.

3.2.12 Scaling. In order to counter the possible degradation of the performance
of the method on extremely ill-conditioned problems (see the comments after eq.
(2.13)), some form of resealing is performed by the algorithm as follows:

We consider (for each trajectory) the resealed variable i = Ax + b, where A is
an N X N resealing matrix and b E RN is a bias vector, and, instead off(x), we
minimize, with respect to X, the function f(x) = f ($ = f (Ax + b), and we try to
counter the ill conditioning of f with respect to n by suitably adjusting A (and b
is adjusted in order not to alter 2).

The updating of A is obtained by means of an updating matrix FA and is
performed at the end of an observation period if sufficient data are available (see
below) and if the number of elapsed observation periods is not less than a given
number K,,,,, and greater than 7N.

The updating matrix FA is computed as described below, keeping in mind that
the random gradients are the only simply usable data on the behavior of f
computed by the algorithm.

Let y(i), i = 1, 2, . . . , Ng be the column vectors of the components of all the
Ng finite-difference random gradients + (TF or Tc) evaluated along the trajectory
(also for rejected steps) from the last scaling.

If sufficient data are available (i.e., if Ng 2 2N2) we compute the average

r = $2 -f(i)

and the estimated covariance matrix

C=’ Ng Lz [(Y(i) - 7)(7(i) - TJT19

which seems to be a reasonable indicator, given the available data, of the average
ill conditioning off as having the larger eigenvalues associated with the directions
along which the second directional derivative off is on the average larger.

Let X1 be the largest eigenvalue of the (symmetric and nonnegative definite)
matrix C.

We adopt the updating matrix

F/, = /3 X,I - C

where I is the N x N identity matrix, @ > 1 (/3 = 1.3 in the present implementa-
tion), and we obtain the updated value A ’ of A by means of the formula

A’ = dF.z,

where a! is a normalization factor such that the sum of the squares of the elements
of A ’ is equal to N (as in the identity matrix).

The matrix FA seems to be one of the reasonable choices since it is positive
definite for p > 1, it has the same set of eigenvectors as C, its eigenvalue spectrum
is obtained from the spectrum of C by reflection around X = ,8Al/2, and it
therefore acts in the right direction to counter the ill conditioning off.
ACM Transactions on Mathematical Software, Vol. 14, No. 4, December 1988.

A Global Optimization Algorithm 359

The magnitude of the countereffect depends on p: The adopted value has been
experimentally adjusted.

The updated bias vector b’ is chosen in order that the scaling at x does not
alter L?, that is, in order that

A’x+b’=Ax+b.

3.2.13 Criteria for Numerical Equality. The following two criteria are used in
a number of places in the algorithm to decide if two given numbers p and q are
sufficiently close to each other (within given tolerances):

(a) Relative difference criterion:

IP--qi sTREL(iPI + iql)/2*

(b) Absolute difference criterion:

Ip-41 STABS,

where TREL and mass are given nonnegative tolerances.

We simply say “p and q are numerically equal” (within tolerances TREL and
7Ass) if p and q satisfy at least one of the above criteria with the given tolerances.

4. NUMERICAL TESTING

SIGMA has been numerically tested on a number of test problems run on two
computers. The test problems are described in Section 4.1, the computers in
Section 4.2, and some numerical results are reported in Section 4.3.

4.1 Test Problems

The set of test problems is fully described in [3], together with the initial points;
the test problems are

(1) A fourth-order polynomial (N = 1)
(2) Goldstein sixth-order polynomial (N = 1)
(3) One-dimensional penalized Shubert function (N = 1)
(4) A fourth-order polynomial in two variables (N = 2)
(5) A function with a single row of local minima (N = 2)
(6) Six-hump camel function (N = 2)
(7) Two-dimensional penalized Shubert function, /3 = 0 (N = 2)
(8) Two-dimensional penalized Shubert function, p = 0.5 (N = 2)
(9) Two-dimensional penalized Shubert function, p = 1 (N = 2)

(10) A function with three ill-conditioned minima, a = 10 (N = 2)
(11) A function with three ill-conditioned minima, a = 100 (N = 2)
(12) A function with three ill-conditioned minima, a = 1000 (N = 2)
(13) A function with three ill-conditioned minima, a = 10,000 (N = 2)
(14) A function with three ill-conditioned minima, a = lo5 (N = 2)
(15) A function with three ill-conditioned minima, a = lo6 (N = 2)
(16) Goldstein-Price function (N = 2)
(17) Penalized Branin function (N = 2)
(18) Penalized Shekel function M = 5 (N = 4)
(19) Penalized Shekel function M = 7 (N = 4)

ACM Transactions on Mathematical Software, Vol. 14, No. 4, December 1988.

360 l F. Aluffi-Pentini et al.

(20) Penalized Shekel function M = 10 (N = 4)
(21) Penalized three-dimensional Hartman function (N = 3)
(22) Penalized six-dimensional Hartman function (N = 6)
(23) Penalized Levy-Montalvo function, type 1 (N = 2)
(24) Penalized Levy-Montalvo function, type 1 (N = 3)
(25) Penalized Levy-Montalvo function, type 1 (N = 4)
(26) Penalized Levy-Montalvo function, type 2 (N = 5)
(27) Penalized Levy-Montalvo function, type 2 (N = 8)
(28) Penalized LevyMontalvo function, type 2 (N = 10)
(29) Penalized Levy-Montalvo function, type 3, range 10 (N = 2)
(30) Penalized Levy-Montalvo function, type 3, range 10 (N = 3)
(31) Penalized Levy-Montalvo function, type 3, range 10 (N = 4)
(32) Penalized Levy-Montalvo function, type 3, range 5 (N = 5)
(33) Penalized Levy-Montalvo function, type 3, range 5 (N = 6)
(34) Penalized Levy-Montalvo function, type 3, range 5 (N = 7)
(35) A function with a cusp-shaped minimum (N = 5)
(36) A function with a global minimum having a small region of attraction, a = 100

(N=2)
(37) A function with a global minimum having a small region of attraction, a = 10

(N = 5).

We use the above functions and the standard initial points as they are coded
in the subroutined GLOMTF and GLOMIP, which are available in [3].

4.2 Test Computers
We consider two typical machines of “large” and “small” dynamic range, that is,
with 11 and 8 bits for the exponent (biased or signed) of a double-precision
number and a corresponding dynamic range of about 10k308 and 10’38. The tests
were actually performed on

-A UNIVAC 1100/82 with an EXEC8 operating system (level 38R5) and a
FORTRAN (ASCII) computed (level 10RlA) (“large” dynamic range), and

-A D.E.C. VAX 11/750 with VMS operating system (version 3.0) and a FOR-
TRAN compiler (version 3) (“small” dynamic range).

4.3 Numerical Results

Numerical results of running SIGMA on the above problems and on the above
machines are described below.

The easy-to-use driver subroutine SIGMA1 (described in the accompanying
algorithm) was used with Nsuc, the requested number of successful trials (Section
3.2.10), set to 5. All numerical values used for the parameters are set in the driver
SIGMA1 and in the other subroutines which are described in the accompanying
algorithm.

In order to evaluate the performance of SIGMA, we consider all the cases in
which the program claimed a success (output indicator IOUT > 0) or a failure
(IOUT I 0) and, by comparing the final point with the known solution, we
identify the cases in which such a claim is clearly incorrect (i.e., success claim
ACM Transactions on Mathematical Software, Vol. 14, No. 4, December 1988.

A Global Optimization Algorithm l 361

when the final point is not even approximately close to the known solution or
failure claim when the final point is practically coincident with the known
solution). It is also meaningful to consider all the cases in which a computational
failure due to overflow actually occurs at any point of the computation.

We therefore provide a “success indicator” Is defined by

Is = I-success, correctly claimed
Is = 2-failure, correctly claimed
Is = 3-incorrect claim
Is = 4-overflow failure

and we note that effectiveness, dependability, and robustness can be estimated
by looking at the numbers of correctly claimed successes, incorrect claims, and
overflow failures.

The results of the testing are reported in Tables I, II, and III (including the
“intermediate” results relative to N sue = 1, 2, 3, 4, that is, the results that one
would have obtained by setting Nsuc equal to 1, 2, 3, or 4).

The performance of SIGMA on the UNIVAC 1100/82 is reported in Table ,I,
where for each one of the 37 test problems we give the total number Nf of
function evaluations (including the ones needed to evaluate the random gradient)
and the value of the success indicator Is; the performance on the VAX 11/750 is
reported in Table II.

Summarized data are given in Table III, where for each test machine we give
the total number of times in which, over ‘the whole set of test problems, the
success indicator had the value 1,2,3, or 4, that is, the total number of correctly
claimed successes, of correctly claimed failures, of incorrect claims, and of
overflow failures. We note that success was always claimed by the algorithm and
that no overflow occurred.

5. CONCLUSIONS

The SIGMA package presented here seems to perform quite well on the proposed
test problems.

As shown in [3], some of the test problems are very hard; for example, problem
28 (N = 10) has a single global minimizer and a number of local minimizers of
order 10” in the region 1 xi 1 5 10, i = 1,2, . . . , 10.

Table III shows that, from the point of view of effectiveness as measured by
the number of correctly claimed successes, the performance of SIGMA is very
satisfactory (35 out of 37 problems were correctly solved); moreover, SIGMA is
remarkably machine independent (note that completely different random step
sequences are generated by the algorithm on the two test machines3). The results
of Table III also suggest that the performance of SIGMA is very satisfactory
from the point of view of robustness (no overflow on both machines) and of
dependability (only 2 incorrect claims on the “large” dynamic range machine
when Nsuc > 3 and on the “small” dynamic range machine when Nsuc > 4). It

3 This is due to the fact that different pseudorandom number sequences are generated on the two test
machines and to the unavoidable integration effects that would occur even with identical pseudo-
random number generators.

ACM Transactions on Mathematical Software, Vol. 14, No. 4, December 1988.

362 l F. Aluffi-Pentini et al.

Table I. Performance Data on UNIVAC 1100/82

&UC 1 2 3 4 5

NPROB N Nf Is Nf Is Nf Is Nf Is Nf Is

1 1 3,588 1 11,467 1 23,067 1 32,520 1 58,751 1
2 1 3,254 1 9,509 1 20,893 1 32,910 1 72,015 1
3 1 8,638 1 17,741 1 23,814 1 57,187 1 67,621 1
4 2 6,594 1 15,898 1 30,589 1 69,489 1 101,633 1
5 2 12,680 1 23,221 1 38,362 1 95,423 1 104,391 1
6 2 2,697 1 8,343 1 19,660 1 57,728 1 78,090 1
7 2 32,185 1 35,256 1 49,153 1 59,983 1 139,675 1
8 2 5,600 3 347,039 1 348,301 1 359,642 1 392,466 1
9 2 6,180 3 83,625 3 470,130 1 699,767 1 701,051 1

10 2 3,596 1 6,731 1 12,958 1 61,753 1 66,855 1
11 2 3,191 1 8,384 1 23,196 1 40,808 1 56,958 1
12 2 4,199 1 7,296 1 18,902 1 29,315 1 47,216 1
13 2 7,105 1 10,287 1 20,605 1 27,838 1 43,505 1
14 2 6,671 1 10,654 1 15,102 1 31,322 1 47,051 1
15 2 7,747 1 11,631 1 16,227 1 23,587 1 38,362 1
16 2 16,021 1 26,560 1 58,401 1 67,865 1 115,350 1
17 2 2,700 1 6,670 1 14,388 1 28,275 1 80,826 1
18 4 4,674 3 16,556 3 101,828 1 209,177 1 282,950 1
19 4 4,759 3 54,559 1 131,350 1 224,028 1 306,327 1
20 4 9,955 3 90,092 1 262,616 1 278,385 1 327,392 1
21 3 3,416 1 12,520 1 27,472 1 66,044 1 86,482 1
22 6 4,729 1 10,488 1 20,318 1 36,981 1 52,364 1
23 2 11,888 1 16,660 1 32,579 1 84,168 1 92,194 1
24 3 8,099 1 36,057 1 47,619 1 69,901 1 92,104 1
25 4 11,954 1 54,212 1 71,655 1 97,724 1 191,722 1
26 5 43,083 1 284,104 1 347,056 1 450,102 1 464,611 1
27 8 2,324 3 21,124 3 75,728 3 635,990 1 654,436 1
28 10 50,975 1 426,171 1 454,808 1 474,323 1 479,817 1
29 2 25,462 1 35,675 1 98,944 1 111,447 1 167,728 1
30 3 15,734 3 113,789 1 177,970 1 257,904 1 286,273 1
31 4 11,516 3 143,757 1 208,217 1 264,834 1 296,663 1
32 5 50,911 1 176,840 1 275,852 1 357,089 1 679,442 1
33 6 53,178 1 102,652 1 272,642 1 303,267 1 454,543 1
34 7 14,594 3 298,256 1 357,878 1 409,949 1 520,641 1
35 5 33,635 1 50,348 1 70,105 1 127,091 1 183,864 1
36 2 3,102 3 10,176 3 23,283 3 72,931 3 79,481 3
37 5 6,938 3 12,469 3 25,175 3 64,639 3 92,407 3

Notes:
NPROB problem number given in Section 4.1 Nsuc requested number of successful trials
N problem dimension (number of (see Section 3.2.10)

variables) Is success indicator (1 = success, correctly
Nf total number of function evaluations claimed, 2 = failure, correctly claimed,

including the ones needed to compute 3 = incorrect claim; 4 = overflow failure)
the “random” gradient

can also be seen that increasing Nsuc gives a better performance at the expense
of a greater number of function evaluations.

It would be interesting to compare the performance of SIGMA against other
global optimization methods; we think, however, that both our results and the
ACM Transactions on Mathematical Software, Vol. 14, No. 4, December 1988.

A Global Optimization Algorithm 363

Table II. Performance Data on VAX 11/750

N 8°C 1 2 3 4 5

NPROB N Nf Is Nf Is Nf Is Nf Is Nf Is

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

1 7,522 1 12,657 1 21,643 1 31,787 1 46,954 1
1 3,131 1 6,542 1 14,171 1 27,023 1 70,953 1
1 11,526 1 15,342 1 20,457 1 57,342 1 67,423 1
2 9,265 1 17,713 1 28,667 1 80,161 1 144,719 1
2 12,094 1 19,716 1 36,426 1 59,214 1 100,336 1
2 4,650 1 11,040 1 25,772 1 57,087 1 62,099 1
2 10,543 1 44,408 1 82,833 1 130,859 1 156,208 1
2 27,044 3 76,348 3 189,195 3 521,474 3 604,401 1
2 24,348 1 35,885 1 71,593 1 165,393 1 225,842 1
2 4,114 1 9,959 1 19,363 1 42,409 1 91,572 1
2 3,254 1 7,901 1 12,795 1 28,450 1 42,615 1
2 6,711 1 9,949 1 18,191 1 28,788 1 44,896 1
2 6,771 1 11,031 1 15,508 1 22,629 1 39,765 1
2 6,208 1 9,443 1 17,719 1 23,579 1 39,721 1
2 6,313 1 13,581 1 17,631 1 30,648 1 42,360 1
2 5,439 1 10,491 1 24,055 1 80,137 1 101,441 1
2 2,790 1 11,006 1 18,444 1 51,305 1 61,100 1
4 2,446 3 36,252 1 129,264 1 269,925 1 290,805 1
4 4,778 1 19,951 1 44,198 1 109,747 1 273,679 1
4 4,741 1 11,312 1 24,947 1 78,820 1 125,407 1
3 4,334 3 27,816 1 44,893 1 82,640 1 150,742 1
6 3,975 1 8,613 1 16,514 1 54,082 1 68,270 1
2 5,534 1 29,691 1 52,042 1 65,588 1 75,379 1
3 10,050 1 18,170 1 80,567 1 109,726 1 190,920 1
4 10,657 1 37,655 1 56,285 1 129,598 1 227,682 1
5 59,689 1 369,912 1 460,779 1 476,325 1 585,249 1
8 168,933 1 259,950 1 302,092 1 310,718 1 330,192 1

10 43,466 1 393,550 1 411,854 1 454,095 1 474,422 1
2 15,223 1 55,718 1 95,254 1 131,418 1 171,995 1
3 12,641 1 54,822 1 118,927 1 201,965 1 333,175 1
4 26,235 1 123,716 1 148,183 1 242,535 1 397,066 1
5 35,365 1 86,758 1 186,860 1 285,371 1 316,702 1
6 49,087 1 71,418 1 159,987 1 184,087 1 296,770 1
7 50,237 1 132,768 1 173,955 1 204,081 1 348,809 1
5 14,815 1 53,394 1 79,235 1 129,480 1 206,980 1
2 3,744 3 9,574 3 23,355 3 55,947 3 82,518 3
5 3,847 3 12,239 3 29,411 3 70,599 3 107,264 3

Notes:
NPROB problem number given in Section 4.1 Nsuc requested number of successful trials (see
N problem dimension (number of Section 3.210)

variables) Is success indicator (1 = success, correctly
Nf total number of function evaluations claimed, 2 = failure, correctly claimed;

including the ones needed to compute 3 = incorrect claim; 4 = overflow failure)
the “random” gradient

other results we are aware of (see [6], [ES], [lo], [ll], and [13]) do not appear
sufficient for enabling a conclusive comparison.

A reliable comparison-when stochastic methods are involved-should in fact
be based on results averaged over a sufficient number of repeated trials in order

ACM Transactions on Mathematical Software, Vol. 14, No. 4, December 1988.

364 l F. Aluffi-Pentini et al.

Table III. Summarized Performance Data

Results on UNIVAC 1100/82 Results on VAX 11/750

Nsuc 1 2 3 4 5 1 2 3 4 5

Outcome
1 26 32 34 35 35 32 34 34 34 35
2 0 0 0 0 0 0 0 0 0 0
3 11 5 3 2 2 5 3 3 3 2
4 0 0 0 0 0 0 0 0 0 0

Notes:
Nsuc requested number of successful trials (Section 3.2.10)
Is success indicator (1 = success, correctly claimed; 2 = failure, correctly claimed;

3 = incorrect claim; 4 = overflow failure)

to avoid effects mainly due to the variability of sample results (as it appears to
be the case, for example, for the differences in performance of SIGMA on our
two tests machines).

In order to attempt a rough comparison, we could consider the results with the
greatest number of common test problems, which are those in [lo] and [ll],
where Levy and Montalvo report the results of their tunneling algorithm on
4 problems taken from the literature (problems 6 to 9 in Section 4.1) and
12 problems proposed by Levy and Montalvo (problems 23 to 34 also in
Section 4.1), based on functions of essentially the same analytical form. The
results, however, are not truly comparable, since Levy and Montalvo made 4 runs
for each problem, starting from different initial points whose choice (first
described in [ll]) was different for each problem, while we made one run for
each problem starting always from the center of the observation region defined
in [lo], that is, from the vector zero.

Moreover, Levy and Montalvo give the total number of function evaluations
and of gradient evaluations separately and do not state how the gradients were
computed.

If we want to attempt a comparison, we may observe what follows. As for the
number of failures, Levy and Montalvo fail in about 10 percent of the runs
but with no “problem-failure” (since on every problem they never fail in more
than two of the four runs), while our results depend on the control parameter
Nscc, ranging from 6 failures on 16 problems with Nsuc = 1 to no failures with
Nsuc = 4.

As for the number of function evaluations, if we assume for the sake of
comparison that central-differences gradients were used by Levy and Montalvo,
we see that, for Nsuc = 1, our results are comparable with their results but
become more expensive with growing Nsoc.

This may be due in part to the fact that, as explained in more detail in [3], our
method is designed to perform a truly unconstrained optimization (i.e., over II?!“),
and although the restriction to a given compact n-dimensional observation
interval is easily performed by adding suitable penalization functions, this does
not prevent wasting some search effort outside the region of interest.

We may also point out that our method can easily cope with nondifferentiable
minima as in problem 35.
ACM Transactions on Mathematical Software, Vol. 14, No. 4. December 1988.

A Global Optimization Algorithm l 365

We think that a really conclusive comparison is very difficult but would in any
case be best performed when the algorithms to be compared are available to a
third party for extensive testing on a larger and commonly accepted set of
standard test problems.

ACKNOWLEDGMENTS

F. Zirilli gratefully acknowledges the hospitality and the support of the Depart-
ment of Mathematical Sciences of Rice University where part of this work was
done.

REFERENCES

1. ALUFFI-PENTINI, F., PARISI, V., AND ZIRILLI, F. A differential-equations algorithm for nonlinear
equations. ACM Trun.s. Math. Softw. 10, 3 (Sept. 1984), 299-316.

2. ALUFFI-PENTINI, F., PARISI, V., AND ZIRILLI, F. Algorithm 617. DAFNE-A differential-
equations algorithm for nonlinear equations. ACM Trans. Math. Softw. 10, 3 (Sept. 1984),
317-324.

3. ALUFFI-PENTINI, F., PARISI, V., AND ZIRILLI, F. Test problems for global optimization software.
Tech Rep. ROM2F/85/030, Dip. di Fisica, 2” Univ. di Roma (Tar Vergata), Dec. 1985. To appear
in the Computer J.

4. ALUFFI-PENTINI, F., PARISI, V., AND ZIRILLI, F. Global optimization and stochastic differential
equations. J. Optim. Theo. Appl. 47 (1986), 1-16.

5. ANGELETTI, A., CASTAGNARI, C., AND ZIRILLI, F. Asymptotic eigenvalue degeneracy for a class
of one dimensional Fokker-Planck operators. J. Math. Phys. 26 (1985), 678-691.

6. BOENDER, C. G. E., RINNOOY KAN, A. H. G., TIMMER, G. T., AND STOUGIE, L. A stochastic
method for global optimization. Math. Program. 22 (1982), 125-140.

7. DENNIS, J. E., AND SCHNABEL, R. B. Numerical methods for unconstrained optimization and
nonlinear equations. Prentice-Hall, Englewood Cliffs, N.J., 1983.

8. DIXON, L. C. W., AND SZEG~, G. P., Eds. Towards Global Optimization 2. North-Holland,
Amsterdam, The Netherlands, 1978.

9. KIRKPATRICK, S., GELATT, C. D., JR., AND VECCHI, M. P. Optimization by simulated annealing.
Science 220 (1983), 671-680.

10. LEVY, A. V., AND MONTALVO, A. Algoritmo de tunelizacibn para la optimization global de
funciones. Comunicaciones tecnicas, Serie Naranja, n. 204. IIMAS-UNAM, Mexico, D.F., 1979.

11. LEVY, A. V., AND MONTALVO, A. The tunneling algorithm for the global minimization of
functions. SIAM J. Sci. Stat. Comput. 6 (1985), 15-29.

12. POWELL, M. J. D., Ed. Nonlinear Optimization 1981. Academic Press, London, 1982.
13. RINNOOY KAN, A. H. G., AND TIMMER, G. T. Stochastic methods for global optimization. Tech.

Rep. 8317/O, Erasmus Univ., Rotterdam, The Netherlands, 1984.
14. SCHUSS, Z. Theory And Applications Of Stochastic Differential Equations. J. Wiley, New York,

1980, Chap. 8.
15. ZIRILLI, F. The use of ordinary differential equations in the solution of nonlinear systems of

equations. In Nonlinear Optimization 1981, M. J. D. Powell, Ed., Academic Press, London, 1982,
39-47.

Received January 1985; revised April 1987; accepted April 1988

ACM Transactions on Mathematical Software, Vol. 14, No. 4, December 1988.

