
ARTICLES

A THINNING ALGORITHM BY CONTOUR
GENERATION

A new contour generating serial algorithm is faster and more efficient than
conventional contour tracing and parallel algorithms

PAUL C. K. KWOK

Thinning is an important preprocessing step for many
image analysis operations such as fingerprint recogni-
tion [16] and optical characte,r recognition [g]; it is also
used in biomedical systems [6].

Thinning usually involves removing points or layers
of outline from a pattern until all the lines or curves
are of unit width, or a single pixel wide [8, 221. The
resulting set of lines or curves is called the skeleton of
the object. Many algorithms are available. An analog
technique [6] generates a medial line in which every
point is equidistant from at least two points on the edge
of the pattern. In the case of a digital approach, a two-
dimensional array of pixels are considered. Constraints
are included so that contour pixels of the skeleton
either touch or are on the medial line [l, 3, 18, 191.
When contour pixels touch the medial line, the skele-
ton will be two pixels wide [I, 9, 161 and a postprocess-
ing step is required to thin the skeleton to unitary
width.

Most thinning algorithms a.re iterative. In an iteration
(or pass), the edge points are examined against a set of
criteria to decide whether the edge point should be
removed or not. Rosenfeld et al. [24, 261 classified thin-
ning algorithms as being parallel or sequential. With
parallel algorithms, only the result from the previous
iteration affects the decision to remove a point in the
current iteration, making it suitable for processing by
parallel hardware such as an array processor. A se-
quential algorithm, on the other hand, uses the result
from the previous pass plus the results obtained so far
in the current pass to process the current pixel. Thus at

This work was supported by the Natural Sciences and Engineering Research
Council of Canada.

0 1988 ACM 0001.0782/88/1100-1314 $1.50

any point in an iteration, a number of pixels have al-
ready been processed. These results can be used imme-
diately to process the next pixel. It is generally believed
that a sequential algorithm will be faster than a parallel
algorithm implemented on n serial computer [24].

As the resolution of digitization equipment, frame
buffers, and displays [21] continues to increase, the
time complexity of algorithms that require the exami-
nation of all the pixels in a bitmap during every itera-
tion will also increase significantly.

In the next sections, the terminology will be ex-
plained, and two parallel algorithms and a serial algo-
rithm will be described briefly and later used as a basis
for comparison with a new serial method proposed in
this article.

THE ESSENTIAL CHARACTERISTICS
OF A SKELETON
Consider a binary image described by a 2-D array of
pixels. The object, which forms the foreground Q of the
image is represented by a set of “dark points” while the
background & corresponds to a set of “white points.”
For a given pixel p there are eight neighbors no, n, , . . .
n,, with the subscript denoting the direction of the
neighbor from p, with respect to the x-axis (Figure 1).
Thus for ni, the direction is i - 43”. no, n2, n4, and n6 are
called the D-neighbors, which are accessible from p by
moving in a horizontal or vertical direction. The other
neighbors, nI , n3, n5, and n, are called the I-neighbors,
which are accessible from p by moving along any of the
45” lines. If p is a dark point and one of its eight neigh-
bors ni is also dark, p and ni is said to be 8-connected.
On the other hand, if p is dark and one of its four
D-neighbors nzi is also dark, p and n2i is said to be
J-connected.

1314 Communications of the ACM November 1988 Volume 31 Number 11

http://crossmark.crossref.org/dialog/?doi=10.1145%2F50087.50092&domain=pdf&date_stamp=1988-11-01

Articles

If p0 and pm are two (dark) points that belong to the
same object, there exists a path, which can be described
as a chain of dark points po, p, , . . , p,, with each con-
secutive pair of pixels, pi and pi+1 (i = 0, 1, . . . m - l),
being neighbors of each other. If all eight neighbors are
considered, p. and pm are said to be 8-connected. If only
the D-neighbors are considered, p. and pm are said to be
a-connected.

An object is 8-connected if all pairs of points in the
object are 8-connected. An object is I-connected if all
pairs of points in the object are J-connected.

Given the above framework, the essential character-
istics of a skeleton can be summarized as follows:

(1) Connectivity should be preserved. If the object is
connected, the resulting skeleton should also be con-
nected. If the initial background is connected, the back-
ground resulting from thinning, should also be con-
nected. On the other hand, if the background is not
connected, the background after thinning should not be
connected. In most cases [l], 8-connectivity should be
preserved for the foreground, while J-connectivity
should be preserved for the background. This means
that the z-pixel-wide 45” line shown in Figure 2a
should be further thinned down to a l-pixel-wide line
(Figure 2b). A dark point that disconnects an object if
removed is called a break point. Thus a break point test
is incorporated into many thinning algorithms to pre-
serve connectivity.

(2) Excessive erosion should be prevented. The end
points of a skeleton should be detected as soon as possi-
ble so that the length of a line or curve that represents
a true feature of the object is not shortened excessively.

(3) The skeleton should be immune to small pertur-
bations in the outline of an object. Noise, or small con-
vexities, which do not belong to a skeleton, will very
often result in a tail after thinning. The length of these
tails should be minimized.

In general, (2) and (3) may be conflicting criteria and
constraints will sometimes be added to obtain a com-
promise between the two.

FIGURE 1. The O-Neighbors of a Pixel p

00
00

00
00

00
00

00
00

(4

::

::
l ooooooooo

l ooo::oooo
:: 00
(cl (4

0
0

0
0

0
0

0
0

(W

:
0
0 -

.**

:
0
0

FIGURE 2. P-pixel Thick Lines (a) A 4!i” Line (b) Skeleton of a
(c) Vertical and Horizontal Lines (d) Skeleton of c

PARALLEL ALGORITHM
Naccache and Shinghal [li’] reviewed and compared
the speed of 14 parallel thinning algorithms [2, 4, 5, 13,
18, 23, 26, 271. These algorithms used the same ap-
proach of visiting all the pixels in the bit-map to iden-
tify the dark points. The dark points are then classified
into edge points and nonedge points. Only the edge
points need to be considered. Tests are conducted on
each edge point’s eight neighbors to determine whether
they are break points, end points, or nonsafe points.
The nonsafe points are then removed from the pattern
at the end of the pass. The break and end points are
collectively known as safe points and should not be
removed.

Although the fourteen algorithms are similar, they
differ in the way they handle break points and end
points. The safe-point-thinning algorithm (SPTA) was
proposed [IT] and from experimental results, Naccache
and Shinghal concluded that SPTA was the fastest
method. An edge point can be further classified as a
right, top, left, or bottom edge point (or a combination
of the four types), depending on which of the four D-
neighbors, no, nz, rz4, or n6, respectively (or a combina-
tion of these), are white points. In SPTA, the safe-point
test is conducted by examining a set of windows for a
given edge point situation, right, top, left, or bottom. A
decision tree can be constructed to minimize the num-
ber of neighbors that need to be examined. A labelling
scheme was used to tag a safe point and a nonsafe point
so that at the end of a pass, the nonsafe points do not
have to be eliminated explicitly from the bitmap. This
also makes it possible to reconstruct the original pattern
from the skeleton.

Zhang and Suen [29] proposed a slightly different
parallel algorithm. The break point and end point tests
consist of (1) examining the number of white/dark
transitions when the eight neighbors no, n, , , . . n7, no,

November 1988 Volume 31 Number 11 Communications of the ACM 1315

Articles

are traversed in that order (the number should be
equal to I), (2) counting the number of dark neighbors
so that if a pixel is a candidate for removal, this num-
ber should be between 2 and 6 for the Zhang/Suen
algorithm and between 3 and 6 for the Lii/Wang algo-
rithm [15], and (3) performing two other tests on the
D-neighbors to determine the edge conditions.

In some parallel algorithms, a 2-pixel wide line will
be completely removed because at the beginning of the
pass, points on both sides of the line will not break the
connectivity of the pattern if they are examined inde-
pendently. If both sides are examined in parallel using
the results from the previous pass, they will be re-
moved simultaneously [15] because the result of re-
moving one side of a line is unknown to the other side
during the same pass. This is a mutual exclusion prob-
lem, well-known in concurrent programming [7],
which occurs when several parallel processes share the
same memory. In thinning algorithms, when a process
examines a certain pixel, it should have exclusive use
of that pixel and its eight neighbors. In parallel thin-
ning algorithms implemented on a parallel architecture
or simulated on a serial architecture, this is often not
the case. While a pixel A is examined by a process, the
process associated with its neighbor is also examining
pixel A, thus violating mutual exclusion.

The solution is to divide a pass into four subiterations
[23], [26], each responsible for the removal of the top,
bottom, left, or right edge points. An alternative is to
combine the top and left subiteration or the bottom
and right subiteration. This will reduce the number of
subiterations to two. However, in many instances, a
2-pixel-wide, 45” line (Figure 2a) may be completely
removed for the 2-subiteration case [15]. A slightly dif-
ferent variation of the method combines the left and
right subiterations, and the top and bottom subiter-
ations [17]. In this case, a 2-pixel-wide, horizontal or
vertical line will be completely removed. The alterna-
tive is to make the edge information of the neighbors
available to the current pixel [la].

The time complexity of a parallel algorithm imple-
mented on a serial computer consists of three compo-
nents:

determine whether a pixel is an edge point or not is
still very substantial. The complexity of (2) increases
sharply when the resolution of the image or the thick-
ness of the objects increases.

SERIAL AND SEQUENTIAL ALGORITHMS
Sequential technique is an alternative to parallel meth-
ods. Less memory is required in sequential algorithms
[3, 131. However, as memory cost continues to fall,
memory usage is no longer an issue. Similar to parallel
algorithms, sequential algorithms also examine every
pixel in the bitmap to distinguish the foreground from
the background. Thus, time complexity still depends on
the size of the bitmap. A significant reduction in time
complexity can be achieved by examining only those
points that belong to the outline of an object. Xu and
Wang [28] introduced the idea of contour generation
where the four types of edge points-east, north, west,
and south-are put into buffers. These points are exam-
ined sequentially and matched to a 3 x 3 window. If a
point is removable, its D-neighbors in the interior of the
object constitute the new contour and are put into the
respective buffers. The technique was demonstrated to
be superior to many thinning algorithms.

Serial algorithms, and among them, the contour trac-
ing technique was introduced to deal with nearly
thinned objects [19] or thick objects [l, 91. In this case
the contour describing the edge of an object is traced in
every iteration. The contour is a sequence or chain of
edge points po, p, , . . . p,, where p. = pn (p,, is redun-
dant and can be eliminated from the chain). Where
multiple disjointed objects are involved and break
points or holes exist in an object, a set of chains will
evolve. For a pixel pi, the two pixels just prior to or
following it in the chain, namely pi-1 and p,+l, respec-
tively, are called the C-neighbors of pi (with pel = p,,-I).

The sequence of pixels is usually represented by a
chain code [IO, 121, which is a sequence of directions
dire, dir, , . . . dir,,-, , pointing to the next point in the
sequence. For 8-connected contours, diri is in the range
between 0 and 7 inclusive, representing the eight direc-
tions as shown in Figure 1. Another variation is to
record the change in direction, instead of the absolute
angle with respect to the x-axis. The set of chains,
together with the coordinates of the heads or starting
points p0 will completely define the bitmap, i.e., the
original bitmap can be completely recovered with this
information. In fact, thinning algorithms have been re-
lated to filling algorithms [20].

In contour tracing, the term multiple pixel is defined
to describe edge points that satisfy one or more of the
following:

(1) In every pass and in every subiteration, every
pixel in the bitmap has to be examined once to identify
the dark pixels. The number of operations is propor-
tional to the area of the bitmap.

(2) Every dark pixel has to be examined for edge
points. The number of operations is proportional to the
area of the objects in every pass.

(3) The number of passes is related to the “thickness”
of the object.

The total number of operations in (1) is therefore a
product of the number of passes, the number of subiter-
ations per pass, and the size of the bitmap. The total
number of operations in (2) is a sum of the sizes of the
objects in all the subiterations and in all the passes.

((Y) It is traversed more than once when tracing the set
of contours.

(p) It has no neighbors in the interior of Q.
(y) It has at least one D-neighbor which belongs to the

contour, but which is not one of its C-neighbors.

Even though the size of the objects reduces progres- After the contour has been traced and the sequence
sively after each pass, the total number of operations to of pixels examined to determine whether it is multiple

1316 Communications of the A.CM November 1988 Volume 31 Number 11

Articles

or not, the contour is removed. Multiple pixels are skel-
etal pixels and are copied to a bitmap where the skele-
ton is formed progressively. To ensure connectivity,
pixels which are neighbors to skeletal pixels discovered
in a previous pass are also identified as skeletal pixels.
In the next iteration, the new contour is traced and the
operation repeats until all the dark points are removed.

Arcelli [l] presented a variation of the contour trac-
ing thinning algorithm. After obtaining the set of multi-
ple pixels, only the nonmultiple pixels belonging to the
contour are removed.

In both of these cases, all the points on a z-pixel-wide
line (Figures 2a and 2c) touch the medial line. They are
multiple and will therefore precipitate into the skele-
ton. A postprocessing step is necessary to thin the skel-
eton down to unit width (Figures 2b and zd), by adopt-
ing the deletability criteria based on the notion of
crossing number.

CONTOUR GENERATION USING CHAIN CODES
Evidently the necessity of multiple subiterations in a
parallel algorithm and the possibility of a z-pixel-wide
line in contour tracing can be attributed to the problem
of “mutual exclusion.” In a parallel algorithm, a pixel
is processed on the basis of its previous state so that
when pixels are considered in parallel, all the pixels
are removed.

When the problem is viewed from another angle, one
can see that in both parallel and contour tracing tech-
niques, pixels are removed from the contours without
knowledge of what is going to remain in the object.
The result is that either all the pixels will have been
removed or, to prevent this from happening, a thick
curve (Figures 7e and 8e) will remain after the final
iteration.

The solution is therefore to consider the results ob-
tained so far for processing the current pixel. If a pixel
were to be removed, the new contour which will be
exposed to the background can be computed. Thus
when the current contour is traversed, a section of the
new contour is generated for every pixel in the current
contour being visited. The section is checked for break
points and this information is available when subse-
quent pixels in the sequence or those on the next se-
quence are visited. At the end of the iteration, a new
contour will be available for the next iteration without
having to remove the old one.

At any time, the algorithm will have complete
knowledge of what remains of the object when the
current contour is removed. Thinning is completed
when there are no nonsafe points in any of the new
contours. The algorithm, together with an implementa-
tion, is described in more detail in the next section.

Many contour tracing algorithms are available [18,
251. An efficient method (see box for details) is used.
The resulting set of chains represent the outermost
layer of the objects is used here. The chain is counter-
clockwise for the exterior of an object and clockwise
for an interior hole. As one traverses along the contour,
the right-hand side is always the background. The
chains together with the coordinates of the heads of
chains define the bitmap completely. This is a recoding
step, after which the original bitmap is no longer needed.

An Efficient Contour Tracing Method

The bitmap is scanned and for every scan line, the runs of
dark points are extracted and positions of the edge points
are noted and compared with the previous scan line. Chains
may be appended, new chains may be opened, or two
chains may be merged depending on the situation. For a
certain run in the current scan line, if none of the pixels is a
neighbor of a pixel of a run in the previous scan line, the run
is disconnected with any opened chains. In this case, two
new chains are opened.

If two or more runs in the current scan line are connected
to the same run in the previous scan line, new chains are
opened.

If there is at least one point which is a neighbor to a pixel
in a run in the previous scan line, the two runs are con-
nected and chain codes can be added to join the two runs.
8-connectivity is considered here. Finally, for a certain run in
the previous scan line, if none of the pixels are neighbors of
at least one pixel of a run in the current scan line, the corre-
sponding chains merge. If a run in the current scan line is
connected to two or more runs in the previous scan line, one
or more pairs of chains are merged.

After all the scan lines have been visited, the chains are
joined together and the final number of chains is equal to the
number of closed contours in the bitmap. The procedure
returns a set of pointers for the heads of the chains.

Incidentally, salt-and-pepper noise can also be removed
without increasing the computation time. This is not required
in the contour generation method because it is immune to
this type of noise.

With the chain codes, the outline is plotted on a
bitmap S. Every pixel visited will have its value incre-
mented. If S begins with all the pixels having a value of
0, a pixel visited more than once will have a value
greater than or equal to 2 and is therefore a break point
(condition 01).

After plotting the first contour on S, the algorithm
goes through a number of iterations. The iteration ter-
minates for a particular contour when there are no
more nonsafe points in that contour. Thus the num-
ber of passes required for one contour may differ from
another. When the operation completes, the skeleton
is formed in S. A chain code describing the skeleton is

THINNING BY CONTOUR GENERATION also available.
Before all the iterations, the given bitmap is recoded At any point in an iteration, a section of the new
into chain codes. A chain code is generated for every contour is to be generated to correspond to the pixel pi
closed contour describing the outlines of the object. under consideration. Two direction vectors, dir+, and
This is done only once and contour tracing is not diri are maintained. Arithmetic involving dir is under-
required within an iteration. stood to be of modulo-8. The result always lies between

November 1988 Volume 31 Number 11 Communications of the ACM 1317

Articles

0 and 7 inclusive. The xy coordinates of pi are updated
from the fry coordinates of pi...1 using din-l. The coordi-
nates are represented by a pointer to a 1-D array de-
scribing the bitmap. A look-up table is used that gives
the offsets needed for each of the 8 directions. A flag
pi-,-is-safe-point is kept to show whether the previous
pixel is a safe point or not. The current pixel pi is
checked for safe point by examining its value in the
bitmap S. With this information, a unique section of the
new contour can be generated. The new contour will
include all the safe points uncovered so far and some
dark points which are neighbors of the current outline.

THE STARTING AND TER.MINAL POINTS FOR
THE SECTION
Sections of the new boundary are created as pixels in
the current chain are visited serially. One section is
generated for each successive pixel in the chain and it
always joins to the section generated from the last
pixel.

Different methods can be used to define the starting
and ending points of the section of the new contour.
The scheme shown in Figure 3 is adopted. If the pre-
vious point pi-1 is a safe point, the previous section of
the new chain terminates at pi-l. If it is not, the pre-
vious section terminates at a common neighbor of pi-1
and pi, found by rotating the line joining pi-1 and pi by
45” into the interior using pi as the center of rotation.
This point must be a dark point, otherwise pi-1 would
have been a break point. The terminal point for the
previous section is the starting point of the new section.

If the current point pi is a safe point, the new section

(4

I
lerm~nal po n,
01 “PW sectsor

Ei!B .

‘i ‘i+l

J

(b)

\
.4i-. l ?

‘i ‘i+l

03

FIGURE 3. Starting and Terminal Points of a Section of the New
Boundary (a) Starting Point: pi-, is a Safe Point (b) Starting Point:

pieI is not a Safe Point (c) Terminal Point: pi is a Safe Point
(d) Terminal Point: pi is not a Safe Point

will terminate at pi. If it is not, it will terminate at a
common neighbor of pi and pi+l, found by rotating the
line joining p, and pi+1 by 45” into the interior, using
pi+1 as the center of rotation. Again this point must be a
dark point, otherwise pi would have been a break point.

GENERATING A SECTION OF THE NEW
CONTOUR
There are four different cases that need to be consid-
ered. They are shown in Figure 4. If both pi and pi-1 are
safe points, the new section consists of one vector, the
direction being diri-1. This vector links pi-1 to pi. This
case will be predominant toward the final iterations as
more and more safe points are uncovered.

FIGURE 4. The Four Cases for Generating a New Section of a
New Chain

If pi is a safe point while pi-1 is not, the new section
consists of one vector which links the starting point to
pi. The direction of this vector is (diri-1 + 7).

If pi is not a safe point, the difference (diri - diri-1) is
computed and the new section is generated on a case-
by-case basis as shown in Figures 5 and 6. Figure 5 is
for the case where pi-1 is a safe point: the new section
begins at pi-l. Figure 6 is for the case where pi-1 is not a
safe point: the new section begins at the starting point
as determined in the last section. It can be seen that the
starting and terminal points are neighbors of pi. If one
begins at the starting point and assumes a counter-
clockwise path visiting the D-neighbors of pi until one
reaches the terminal pixel, all the points visited will be
dark, otherwise pi will be a safe point and will contra-
dict the safe point test just conducted on pi. The safe
point test performed on the bitmap S was up-to-date
because it included the results of processing of the pre-
vious pixels in the same chain, and of all the pixels
belonging to the previous chains. Thus connectivity is
guaranteed even for objects with holes in it, in which
case, two different chains describe the outer and inner
edges, e.g., as in the letter 0 of the alphabet. The set of
pixels just visited are pixels of the section to be gener-
ated and hence belong to the new contour.

For Figure 5, where pi-1 is a break point, the new
section will consist of 0 to 3 elements. In the case
where (diri - diri-1) E 4, pi is an end point and will be
flagged as a safe point automatically.

1318 Communicntions of the ACM November 1988 Volume 37 Number 11

Articles

diri - diri-,

(mod 8)

diri - diriF,

(mod 8)

d d

0 A? 0 l 0 A? 0 l 0 0 0 0 0 0

oPi* 0 oPi* 0

0 0 0 0 0 0
.o becomes an end pomt. .o becomes an end pomt.

dir) we” d’ri odd

‘i-1
is a safe point but

pi is not a safe point.

dir, won diri odd

a pomts for the current chain q safe points

n points for the now chain 0 white points

+ d’rcurrent + d’r new cha”
--7

? don’t know and don’t care I . . . ; cannot happen

FIGURE 5. Generation of a Section of the New Chain

In Figure 6, where pi-1 is not a break point, the new
section will consist of 0 to 2 elements, In the case
where (diri - diri-1) = 3 or 6, the starting point of the
new section is pi+1 and it is a break point. pi therefore
also belongs to the new section and it is an end point.
Again pi is flagged as a safe point automatically. The
new section consists of one element. The value of this
element in the chain is diri + 4, i.e., in the opposite
direction of diri.

When (diri - diri-1) = 2 or 6 and diri is even, the
present contour is going through a convexity. This may
be a 60” corner or it may be noise. In some cases, it is
desirable to generate a tail while in other cases, a tail
should not be generated [l, 61. If desired, a corner find-
ing technique can be used [ll] and special constraints
can be put in to enable the generation or suppression of
a tail. Such a technique is not considered in the present
implementation. To suppress a tail, pi is deleted from
the current chain. No new section is generated. The
direction vector din-1 is recomputed as if pi-1 is linked
to pi+l, i.e., dinmI = diri-1 + 1.

Figures 6 and 6 also show the cases that do not occur
(enclosed in dotted lines) either because an 8-connected
contour will not be chain-coded in that way or because
it contradicts the safe point tests.

From Figures 6 and 6, a table of chain codes can be
formed (Table I) and can be used for the subsequent
implementation. In general, a convexity results in
fewer elements being created for the new section than
for the case of a concavity.

Where a new section is generated, the corresponding
pixels, including the terminal point but excluding the
starting point, will have their values in bitmap S incre-
mented (condition CY), Table I also shows the direction
of these points with respect to pi.

After pi has been considered, dir+, are updated in
preparation for the next element diri+l in the chain.

THE HEAD AND TAIL OF A CHAIN
As far as po, the head of a chain is concerned, one must
assume that the previous element processed was pn-l
(the tail of the chain). Serial processing of a closed con-

November 1988 Volume 31 Number 11 Communications of the ACM 1319

Articles

diri dir ~
I- I

(mod 8)

0 0 0
p, becomes an end pmt

dir, dir,_,

(mod R)

dr, ever- dir, odd

Pi.., and q are not safe points.

? don’t know and don’t care I : cannst lhaopen

FIGURE 6. Generation of a Section of the New Chain

tour means that pnml will not be processed before p. and
the information that is available for p. at the beginning
of the chain may have been altered by the time p,,-I is
processed the end of the chain. For instance, at the
beginning of the chain, p,-1 was not a safe point, but
it becomes a safe point during the pass. It may be nec-
essary to append an extra vector to the new chain to
complete a closed contour.

The following strategy is used to deal with the head
and tail of a chain. At the begi:nning of a pass, if p. is a
safe point, the new chain starts at po. If not, a test is
made on pnel. If pnml is a safe point, the new chain
starts at pnel. If both pnml and ~1~ are nonsafe points, the
new chain starts at the usual starting position for the
first section,’ i.e., a common neighbor of pn-l and p.
found by rotation as described earlier. In this case a flag
p,-l_was_nof_sufe_point is set. If the starting pixel has

’ There are two special cases: if (dir.-, - dirnw2 = 2) and (dir.-,) is even, p”-, is
deleted from the chain. If (dir.+, -dir.-* = 3) and (dir.-,) is even, the value
of pn-l is incremented to become a safe point.

been visited once before, i.e., it is on the boundary, its
value in S is incremented so that it becomes a safe point.

At the end of the chain when ~“-1 is processed, if p.
is a safe point, an extra vector is added to link the last
point of the chain to po.

If p. is not a safe point, pnel is a safe point, but the
p,-l_was_not_sufe-point flag has been set, meaning that
pnel has since become a safe point and an extra vector
is needed to link up pnml and the start of the chain. In
one case it is necessary to alter the position of the head
of the new chain. The value of the head of the new
chain is incremented in the bitmap S.

COMPARISONS WITH OTHER ALGORITHMS
SPTA [17], Zhang/Suen [29], Xu/Wang’s CGT [28],
and the contour tracing described by Pavlidis [19] are
implemented in C and optimized so that they are as
efficient as they can be. A labelling technique similar to
the one used in SPTA has been used in the Zhang/
Suen algorithm so that at the end of a pass, pixels do

1320 Communications of the ACM November 1988 Volume 31 Number 11

Articles

TABLE I. Chain Code Elements and the Generated Contour Points

I 0 dir, + 1

I

dir, + 1 ii, ~~)

1 dir, dir, dir, + 2 dir, + 1 none dir,+ diri + 1

2 none diri + 7 diri + 1 none none delete pi

3,4 dir+, pi itself dir, + 4 pi itself

dir, + 3
diri + 1

7 dir, + 2 dir, + 2
dir,..., diri

chain code
elements

diri + 4 diri + 3
dir, + 2 diri + 1

contour point
direction w.r.t. vi

dir+, dir,-,
dir,

chain code
elements

dir, + 2 dir, + 3
diri + 1

contour point
direction w.r.t. v,

not need to be removed. Xu/Wang’s CGT algorithm
was implemented using the SPTA windows. The test
images are 128 x 128 patterns, two of which are shown
in Figures 7 and 8. For the Chinese character shown in
Figure i’a, the computation times are as follows: con-
tour generation using chain codes: 0.517 seconds (in-
cluding recoding into chain codes); SPTA: 5.03 seconds
(excluding salt-and-pepper noise removal time); Zhang/
Suen: 5.73 seconds; Xu/Wang’s CGT: 0.783 seconds and

Pavlidis contour tracing: 2.02 seconds (excluding post-
processing). In this case, contour generation using chain
codes is 50% faster than CGT, 4 times faster than con-
tour tracing, and 10 times faster than the two parallel
algorithm.

For a thicker object, such as the bold Old-English %
shown in Figure 8a, the computation times are as fol-
lows, contour generation using chain codes: 0.717 sec-
onds (including recoding into chain codes]; SPTA:

(a)

(d) @I (f)

FIGURE 7. A 128 x 128 Chinese Character (a) The Original Character Consists of Three Disjoint Objects, One with a Hole (b) SPTA
(c) Zhangpuen Algorithm (d) Xu/Wang’s CGT (e) Pavlidis’s Contour Tracing (f) Contour Generation with Chain Codes

November 1988 Volume 31 Number II Communications of the ACM 1321

Articles

Implementation Details

The algorithm was coded in the C language and implemented
on an Apollo DN300Cl workstation. Although the coding may
be complex and low level, structured programming practices
can still be applied and the resulting module is very efficient.
The other algorithms, SPTA, Zhang/Suen, Xu/Wang’s CGT,
and Pavlidis’s contour tracing are also coded in the same
manner so that the comparison described in the article can
be made upon a fair and equal basis.

In the Apollo DN3000 workstation, the screen can be
mapped directly onto the user’s address space so that the
building up of the skeleton can be viewed while the individual
bits are plotted on the bitmap S. The rate of accumulation of
the skeleton is an indication of the spead of the thinning
algorithm.

There are two ways of setting up the bitmaps. The array
can be declared as a character iarray in which eight bits are
assigned to every pixel. The second choice is to have one bit
per pixel where eight pixels are packed into a character. In
implementing SPTA, an integer equal to the number of the
pass is used to flag a safe-point. This is useful for recon-
structing the original pattern. Consequently the former ap-
proach has been adopted. This resulted in the use of more
memory but the access to a pixel is considerably faster than
in the packed format.

In contour generation, since the chain code and the coordi-
nates of the head of the chain define the bitmap completely,
the memory space allocated for the original bitmap can be
reused for the bitmap S without the need for clearing it. At
the beginning, the dark points in the bitmap have values
equal to 0. When a contour is created, each pixel generated
will have its value incremented. When its value is greater
than or equal to 2, it becomes a safe-point (condition (Y). Its
value will be tested for safe points. This operation of incre-
menting and test is analogous to a test-and-set operation in
concurrent programming.

The use of pointers in C speeds up the location of a pixel
considerably. This results in a higher data transfer rate to
and from the bitmap than is possible with a 2-D matrix. The
ability to manipulate bits means that module8 addition and
subtraction can be done using the normal integer addition/
subtraction with the result ANDed to 7.

To compare the algorithms fairly, every algorithm is coded
using the same strategy regarding the setup of the bitmap
and of the pointers for the neighbors of a given pixel. Fur-
thermore, all the implementations are optimized so that
they run faster than those implicated by their respective
publications.

13.6 seconds (excluding salt-and-pepper noise removal
time); Zhang/Suen: 14.4 seconds; Xu/Wang’s CGT: 1.28
seconds; and Pavlidis contour tracing: 4.37 seconds (ex-
cluding postprocessing). In this case, contour generation
using chain codes is 80 percent faster than CGT; 6
times faster than contour tracing; and 19 times faster
than the two parallel algorithm.

Serial algorithms are faster than a parallel algorithm
implemented on a serial computer [24]. According to
the data given by Arcelli [l] a serial algorithm is about
4 four times faster than a parallel algorithm. The reason
is that in the case of a parallel algorithm, the time
complexity is related to the size of the bitmap and the
thickness of the objects, whereas in the case of a serial

algorithm, the time complexity is related to the total
size of all the objects in the bitmap. The difference in
speed is more significant for thick objects because of
the increase in complexity in the case of pa.rallel algo-
rithms for determining whether a dark point is an edge
point or not.

Contour generation is considerably faster than con-
tour tracing because the chain codes are extracted only
once from the original bitmap whereas a contour trac-
ing is required in every pass.

In contour generation, the complexity of the initial
contour tracing is related to the size of the bitmap. In
each iteration, the outer layer of pixels of the object is
processed. Processing time is proportional to the total
length of the contours. The overall computation time is
therefore proportional to the sum of the lengths of the
contours in each pass. This sum is approximately equal
to the size of the object because the nonsafe points
which make up the majority of the dark points will
have been traversed exactly once during the entire
process.

Contour generation using chain codes is faster than
CGT because in CGT, examination of a 3 x 3 window
of neighbors is time consuming.

The efficiency of this method can be attributed to the
following:

(1) All the points visited are edge points.
(2) The only examination needed to perform a safe

point test is on the value of the pixel in the bitmap
S, i.e., the pixel can be removed if its value is less
than 2.

(3) Removal of a pixel is not necessary, but a new sec-
tion of contour is generated. The break point infor-
mation and the associated direction vectors of the
current and last pixels in the chain are all that is
necessary to identify the darkness of relevant neigh-
bors of a pixel, to enable the generation of a new
contour.

Contour generation is immune to noise in the image.
For instance, an isolated pixel attached to a straight
line (Figure ga) will either have no effect on the skele-
ton or will be precipitated as a l-pixel long spike in the
skeleton, depending on the order in which pixels on
the contour are traversed. In the case of algorithms that
are sensitive to noise, a long tail will be generated.
Thus preprocessing is not needed with contour genera-
tion to remove salt-and-pepper noise.

The order in which each of the contours is consid-
ered and the starting point and the direction of traver-
sal of a contour will determine the final shape of the
skeleton. Minor variations may result if a different
starting point and/or a different direction of traversal
are chosen. If the head of a contour is at the middle of a
straight line, and is an even number of pixels thick, the
skeleton will consist of two connected straight lines,
one displaced by one pixel from the other. The contour
tracing algorithm used here ensures that a chain always
begins at a corner position and the problem is avoided.

Connectivity and unit-thickness of the skeleton is

1322 Communications of the ACM November 1988 Volume 31 Number 11

Articles

(4 (b)

(4 (e)

FIGURE 8. A 128 x 128 Bold Old English $8 (a) The Original Character Consists of Two Disjoint Objects, One with Three Holes (b) SPTA
(c) Zhang/Suen Algorithm (d) Xu/Wang’s CGT (e) Pavlidis’s Contour Tracing (f) Contour Generation with Chain Codes

guaranteed in contour generation because of the nature
of the algorithm, i.e., every point generated as a section
of the new contour is tested and the iteration termi-
nates when every point generated is a safe point. Thus
the last contours generated are just sufficient to ensure
connectivity so that a skeleton of unit thickness is gen-
erated. No post-processing is needed.

Contour generation can also be implemented in an
MIMD type environment. The different chains of an
object can be assigned to the individual processor or
the chains can be subdivided into several subchains,
each of which is assigned to a processor. The processors
share the same bitmaps where the safe-point informa-
tion can be updated and communicated between the

(a) (4 64

(e)

FIGURE 9. Lines with noise (a) A 5-pixel Wide Line with Noise.
The Square Boxes Represent the Chain Generated at the End of
the First Pass (b) The Chain Generated after the Second Pass. All

but Two of the Pixels have become Safe Points (c) Final Skeleton
with a Clockwise Chain (d) Final Skeleton with a Counterclockwise
Chain (e) Skeleton Obtained from SPTA without Noise Removal

November 1988 Volume 31 Number 11 Communications of the ACh4 1323

Articles

different processes. When a pixel is processed, mutual
exclusion must be enforced on it and its neighbors to
ensure connectivity and a unit-thickness skeleton.

CONCLUSION
Connectivity problems and thick skeletons experienced
by many thinning algorithms often result when the
outer layer of pixels of an object is removed and the
structure of the resulting object is unknown as far as
the current iteration is concerned. In the case of paral-
lel algorithms, the solution has been to divide a pass
into several subiterations or to obtain information
about the neighbors of neighbors of a pixel. In the case
of serial algorithms, constraints were introduced to en-
sure connectivity so that in some instances, a doubly
thick skeleton is produced.

In the case of the proposed contour generation
method the result of processing the current pixel is
made available to the subsequent pixels. This is in es-
sence the enforcement of mutual exclusion. Since new
contours are generated instead of old ones being re-
moved, the algorithm can always keep track of the sta-
tus of the new shape of the object after every pass,
thereby ensuring connectivity.

By using a more relaxed safe point test, which is
condition (Y of the multiple point test, the algorithm
will not stop when two sections of a contour are neigh-
bors, as in the case of a Z-pixel wide line. The final pass
will retain the section that is visited last.

Although the coding of the algorithm is complex,
contour generation is faster than other methods be-
cause contour tracing is performed only once during
the iterations, and only edge points are visited. When
pictures are digitized to a higher and higher resolution
(made possible by the falling cost of memory and the
increasing precision of digitization equipment) time
complexity of thinning algorithms should be made in-
dependent of the product of the size of bitmap and
number of passes. Contour generation represents a sig-
nificant reduction in time complexity.

REFERENCES
1. Arcelli, C. Pattern thinning by contour tracing. Computer Graphics

and huge Processing 17. 2 (Oct. 1981), 130-144.
2. Arc&, C. A condition for digital points removal. Signal Processing 1.

4 (1979). 283-285.
3. Arcelli, C., and Sanniti di Baja, G. On the sequential approach to

medial line transformalion. IEEE Tram. Systems, Man and Cybernetics
SMC-8, (1978). 139-144.

4. Bel-Lan, A., and Montoto, L. A thinning transform for digital images.
Signal Processing 3, (1981). 37-47.

5. Beun, M. A flexible method for automatic reading of hand-written
numerals. Philips Technical Review 33, 4 (19731, 89-101.

6. Blum, H. A transformation for extracting new descriptors of shape.
Symposium on Models for the Perceplion of Speech and Visual Form,
MIT Press, Cambridge, Mass., (1964).

7. Brinch Hansen, P. Concurrent programming concepts. ACM Camp.
Sum 5,4 (Dec. 1973). 223-245.

6. Davies, E.R., and Plummer, A.P.N. Thinning algorithm, a critique
and a new methodology. Pattern Recognition 14, 1 (1981), 53-63.

9. Dill, A.R., and Levine, M.D. Multiple resolution skeletons. IEEE
Trans. Pattern Analysis and Machine Intelligence PAMI-9, 4 (July
1987), 495-504.

10. Freeman, H. On the encoding of arbitrary geometric configurations.
IEEE Trans. Electronic Computers EC.-IO, (June 1961), 260-268.

11. Freeman, H.. and Davis, L. A corner-finding algorithm for chain-
coded curves. ZEEE Trans. Computers C-26, 3 (Mar. 1977),297-303.

12. Freeman, H.. and Garder, L. Apictorial jigsaw puzzles, the computer
solution of a problem in pattern recognition. lEEE Trans. Electronic
Cumputers EC-13, (Apr. 1964), 118-127.

13. Hilditch. C.J. Linear skeletons from square cupboards. In Machine
Intelligence IV, B. Mertzer and D. Michie, Eds. University Press,
Edinburgh, 1969.403-420.

14. Holt, C.M. et al. An improved parallel thinning algorithm, Comnrun.
ACM 30,2 (Feb. 1987),156-160.

15. Lii, H.E., and Wang, P.S.P. A comment on “A fast parallel algorithm
for thinning digital patterns”. Commun. .4CM 29. 3 (Mar. 1986),
239-242.

16. Moayer. B., and Fu, KS. A tree system approach for fingerprint
pattern recognition. IEEE Trans. Comput. C-25, 3 (Mar. 1976). 262-
275.

17. Naccache, N.J.. and Shinghal, R. SPTA: A proposed algorithm for
thinning binary patterns. IEEE Trans. Systems, Man and Cybernetics
SMC-14, 3 (May 1984), 409-418.

18. Pavlidis, T. Algorithms for graphics and imnge processirlg, Computer
Science Press, Rockville, Md: 1982.

19. Pavlidis, T. A thinning algorithm for discrete binary images. Com-
puter Graphics and Image Processing 13, (19801, 142-157.

20. Pavlidis, T. Filling algorithms for raster graphics. Computer Graphics
and Image Processing 10, (1979), 126-141.

21. Perry, T.S.. and Wallich, P. Computer displays-new choices, new
trade-offs and From lab to lap. ZEEE Spectrum 22, 7 (July 1985), 52-59.

22. Pfaltz, J.L., and Rosenfeld, A. Computer representation of planar
regions by their skeletons. Commun. ACM 10, 2 (February 1967).
119-125.

23. Rosenfeld, A. A characterization of parallel thinning algorithms.
Inform. Contr. 29, 3 (Nov. 1975), 286-291.

24. Rosenfeld, A., and Pfaltz, J.L. Sequential operations in digital picture
processing. 1. ACM 23,4 (October 1966), 471-494.

25. Sobel, I. Neighbourhood coding of binary images for fast contour
following and general binary array processing. Computer Graphics
and Image Processing 8, (1978), 127-135.

26. Stefanelli, R., and Rosenfeld, A. Some parallel thinning algorithms
for digital pictures. J. ACM 18, 2 (April 1971), 255-264.

27. Tamura, H. A comparison of line thinning algorithms from digital
geometry viewpoint. In Proceedings of 4th International Conference on
Pattern Recognition, Kyoto, Japan, (1978), 715-719.

28. Xu, W., and Wang, C. CGT: A fast thinning algorithm implemented
on a sequential computer. IEEE Trans. Systems, Man and Cybernetics
SMC-27, 5 (September 1987), 847-851.

29. Zhang, T.Y., and Suen, C.Y. A fast parallel algorithm for thinning
digital patterns. Commun. ACM 27, 3 (Mar. 1984), 236-239.

CR Categories and Subject Descriptors: 1.5.2 [Pattern Recognition]:
Design Methodology-pattern analysis; 1.5.4 [Pattern Recognition]:
Applications-compufer vision

General Terms: Algorithms, Design, Theory
Additional Key Words and Phrases: Serial algorithms, skeletoniza-

(ion, thinning of digital patterns

ABOUT THE AUTHOR:

PAUL KWOK graduated from the University of Essex with a
B.Sc. in 1976 and obtained a Ph.D. in electrical engineering
at the University of Cambridge in 1979. He joined
Monotype International in Cambridge in 1979, and worked on
ideographic laser typesetting systems. Between 1981 and 1986
he was on the faculties at the Chinese University of Hong Kong
and the University of Hong Kong. Since 1986, he has been an
assistant professor in the Department of Computer Science, the
University of Calgary, Canada. His research interest is in the
areas of image processing and ideographic computing. He de-
signed and implemented the first bilingual videotex system in
Hong Kong. Author’s present address: Paul C.K. Kwok, Depart-
ment of Computer Science, The University of Calgary, 2500
University Drive NW, Calgary, Canada T2N lN4.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

1324 Communications of the ACM November 1988 Volume 31 Number 11

