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A THINNING ALGORITHM BY CONTOUR 
GENERATION 

A new contour generating serial algorithm is faster and more efficient than 
conventional contour tracing and parallel algorithms 

PAUL C. K. KWOK 

Thinning is an important preprocessing step for many 
image analysis operations such as fingerprint recogni- 
tion [16] and optical characte,r recognition [g]; it is also 
used in biomedical systems [6]. 

Thinning usually involves removing points or layers 
of outline from a pattern until all the lines or curves 
are of unit width, or a single pixel wide [8, 221. The 
resulting set of lines or curves is called the skeleton of 
the object. Many algorithms are available. An analog 
technique [6] generates a medial line in which every 
point is equidistant from at least two points on the edge 
of the pattern. In the case of a digital approach, a two- 
dimensional array of pixels are considered. Constraints 
are included so that contour pixels of the skeleton 
either touch or are on the medial line [l, 3, 18, 191. 
When contour pixels touch the medial line, the skele- 
ton will be two pixels wide [I, 9, 161 and a postprocess- 
ing step is required to thin the skeleton to unitary 
width. 

Most thinning algorithms a.re iterative. In an iteration 
(or pass), the edge points are examined against a set of 
criteria to decide whether the edge point should be 
removed or not. Rosenfeld et al. [24, 261 classified thin- 
ning algorithms as being parallel or sequential. With 
parallel algorithms, only the result from the previous 
iteration affects the decision to remove a point in the 
current iteration, making it suitable for processing by 
parallel hardware such as an array processor. A se- 
quential algorithm, on the other hand, uses the result 
from the previous pass plus the results obtained so far 
in the current pass to process the current pixel. Thus at 
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any point in an iteration, a number of pixels have al- 
ready been processed. These results can be used imme- 
diately to process the next pixel. It is generally believed 
that a sequential algorithm will be faster than a parallel 
algorithm implemented on n serial computer [24]. 

As the resolution of digitization equipment, frame 
buffers, and displays [21] continues to increase, the 
time complexity of algorithms that require the exami- 
nation of all the pixels in a bitmap during every itera- 
tion will also increase significantly. 

In the next sections, the terminology will be ex- 
plained, and two parallel algorithms and a serial algo- 
rithm will be described briefly and later used as a basis 
for comparison with a new serial method proposed in 
this article. 

THE ESSENTIAL CHARACTERISTICS 
OF A SKELETON 
Consider a binary image described by a 2-D array of 
pixels. The object, which forms the foreground Q of the 
image is represented by a set of “dark points” while the 
background & corresponds to a set of “white points.” 
For a given pixel p there are eight neighbors no, n, , . . . 
n,, with the subscript denoting the direction of the 
neighbor from p, with respect to the x-axis (Figure 1). 
Thus for ni, the direction is i - 43”. no, n2, n4, and n6 are 
called the D-neighbors, which are accessible from p by 
moving in a horizontal or vertical direction. The other 
neighbors, nI , n3, n5, and n, are called the I-neighbors, 
which are accessible from p by moving along any of the 
45” lines. If p is a dark point and one of its eight neigh- 
bors ni is also dark, p and ni is said to be 8-connected. 
On the other hand, if p is dark and one of its four 
D-neighbors nzi is also dark, p and n2i is said to be 
J-connected. 
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If p0 and pm are two (dark) points that belong to the 
same object, there exists a path, which can be described 
as a chain of dark points po, p, , . . , p,, with each con- 
secutive pair of pixels, pi and pi+1 (i = 0, 1, . . . m - l), 
being neighbors of each other. If all eight neighbors are 
considered, p. and pm are said to be 8-connected. If only 
the D-neighbors are considered, p. and pm are said to be 
a-connected. 

An object is 8-connected if all pairs of points in the 
object are 8-connected. An object is I-connected if all 
pairs of points in the object are J-connected. 

Given the above framework, the essential character- 
istics of a skeleton can be summarized as follows: 

(1) Connectivity should be preserved. If the object is 
connected, the resulting skeleton should also be con- 
nected. If the initial background is connected, the back- 
ground resulting from thinning, should also be con- 
nected. On the other hand, if the background is not 
connected, the background after thinning should not be 
connected. In most cases [l], 8-connectivity should be 
preserved for the foreground, while J-connectivity 
should be preserved for the background. This means 
that the z-pixel-wide 45” line shown in Figure 2a 
should be further thinned down to a l-pixel-wide line 
(Figure 2b). A dark point that disconnects an object if 
removed is called a break point. Thus a break point test 
is incorporated into many thinning algorithms to pre- 
serve connectivity. 

(2) Excessive erosion should be prevented. The end 
points of a skeleton should be detected as soon as possi- 
ble so that the length of a line or curve that represents 
a true feature of the object is not shortened excessively. 

(3) The skeleton should be immune to small pertur- 
bations in the outline of an object. Noise, or small con- 
vexities, which do not belong to a skeleton, will very 
often result in a tail after thinning. The length of these 
tails should be minimized. 

In general, (2) and (3) may be conflicting criteria and 
constraints will sometimes be added to obtain a com- 
promise between the two. 

FIGURE 1. The O-Neighbors of a Pixel p 
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FIGURE 2. P-pixel Thick Lines (a) A 4!i” Line (b) Skeleton of a 
(c) Vertical and Horizontal Lines (d) Skeleton of c 

PARALLEL ALGORITHM 
Naccache and Shinghal [li’] reviewed and compared 
the speed of 14 parallel thinning algorithms [2, 4, 5, 13, 
18, 23, 26, 271. These algorithms used the same ap- 
proach of visiting all the pixels in the bit-map to iden- 
tify the dark points. The dark points are then classified 
into edge points and nonedge points. Only the edge 
points need to be considered. Tests are conducted on 
each edge point’s eight neighbors to determine whether 
they are break points, end points, or nonsafe points. 
The nonsafe points are then removed from the pattern 
at the end of the pass. The break and end points are 
collectively known as safe points and should not be 
removed. 

Although the fourteen algorithms are similar, they 
differ in the way they handle break points and end 
points. The safe-point-thinning algorithm (SPTA) was 
proposed [IT] and from experimental results, Naccache 
and Shinghal concluded that SPTA was the fastest 
method. An edge point can be further classified as a 
right, top, left, or bottom edge point (or a combination 
of the four types), depending on which of the four D- 
neighbors, no, nz, rz4, or n6, respectively (or a combina- 
tion of these), are white points. In SPTA, the safe-point 
test is conducted by examining a set of windows for a 
given edge point situation, right, top, left, or bottom. A 
decision tree can be constructed to minimize the num- 
ber of neighbors that need to be examined. A labelling 
scheme was used to tag a safe point and a nonsafe point 
so that at the end of a pass, the nonsafe points do not 
have to be eliminated explicitly from the bitmap. This 
also makes it possible to reconstruct the original pattern 
from the skeleton. 

Zhang and Suen [29] proposed a slightly different 
parallel algorithm. The break point and end point tests 
consist of (1) examining the number of white/dark 
transitions when the eight neighbors no, n, , , . . n7, no, 
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are traversed in that order (the number should be 
equal to I), (2) counting the number of dark neighbors 
so that if a pixel is a candidate for removal, this num- 
ber should be between 2 and 6 for the Zhang/Suen 
algorithm and between 3 and 6 for the Lii/Wang algo- 
rithm [15], and (3) performing two other tests on the 
D-neighbors to determine the edge conditions. 

In some parallel algorithms, a 2-pixel wide line will 
be completely removed because at the beginning of the 
pass, points on both sides of the line will not break the 
connectivity of the pattern if they are examined inde- 
pendently. If both sides are examined in parallel using 
the results from the previous pass, they will be re- 
moved simultaneously [15] because the result of re- 
moving one side of a line is unknown to the other side 
during the same pass. This is a mutual exclusion prob- 
lem, well-known in concurrent programming [7], 
which occurs when several parallel processes share the 
same memory. In thinning algorithms, when a process 
examines a certain pixel, it should have exclusive use 
of that pixel and its eight neighbors. In parallel thin- 
ning algorithms implemented on a parallel architecture 
or simulated on a serial architecture, this is often not 
the case. While a pixel A is examined by a process, the 
process associated with its neighbor is also examining 
pixel A, thus violating mutual exclusion. 

The solution is to divide a pass into four subiterations 
[23], [26], each responsible for the removal of the top, 
bottom, left, or right edge points. An alternative is to 
combine the top and left subiteration or the bottom 
and right subiteration. This will reduce the number of 
subiterations to two. However, in many instances, a 
2-pixel-wide, 45” line (Figure 2a) may be completely 
removed for the 2-subiteration case [15]. A slightly dif- 
ferent variation of the method combines the left and 
right subiterations, and the top and bottom subiter- 
ations [17]. In this case, a 2-pixel-wide, horizontal or 
vertical line will be completely removed. The alterna- 
tive is to make the edge information of the neighbors 
available to the current pixel [la]. 

The time complexity of a parallel algorithm imple- 
mented on a serial computer consists of three compo- 
nents: 

determine whether a pixel is an edge point or not is 
still very substantial. The complexity of (2) increases 
sharply when the resolution of the image or the thick- 
ness of the objects increases. 

SERIAL AND SEQUENTIAL ALGORITHMS 
Sequential technique is an alternative to parallel meth- 
ods. Less memory is required in sequential algorithms 
[3, 131. However, as memory cost continues to fall, 
memory usage is no longer an issue. Similar to parallel 
algorithms, sequential algorithms also examine every 
pixel in the bitmap to distinguish the foreground from 
the background. Thus, time complexity still depends on 
the size of the bitmap. A significant reduction in time 
complexity can be achieved by examining only those 
points that belong to the outline of an object. Xu and 
Wang [28] introduced the idea of contour generation 
where the four types of edge points-east, north, west, 
and south-are put into buffers. These points are exam- 
ined sequentially and matched to a 3 x 3 window. If a 
point is removable, its D-neighbors in the interior of the 
object constitute the new contour and are put into the 
respective buffers. The technique was demonstrated to 
be superior to many thinning algorithms. 

Serial algorithms, and among them, the contour trac- 
ing technique was introduced to deal with nearly 
thinned objects [19] or thick objects [l, 91. In this case 
the contour describing the edge of an object is traced in 
every iteration. The contour is a sequence or chain of 
edge points po, p, , . . . p,, where p. = pn (p,, is redun- 
dant and can be eliminated from the chain). Where 
multiple disjointed objects are involved and break 
points or holes exist in an object, a set of chains will 
evolve. For a pixel pi, the two pixels just prior to or 
following it in the chain, namely pi-1 and p,+l, respec- 
tively, are called the C-neighbors of pi (with pel = p,,-I). 

The sequence of pixels is usually represented by a 
chain code [IO, 121, which is a sequence of directions 
dire, dir, , . . . dir,,-, , pointing to the next point in the 
sequence. For 8-connected contours, diri is in the range 
between 0 and 7 inclusive, representing the eight direc- 
tions as shown in Figure 1. Another variation is to 
record the change in direction, instead of the absolute 
angle with respect to the x-axis. The set of chains, 
together with the coordinates of the heads or starting 
points p0 will completely define the bitmap, i.e., the 
original bitmap can be completely recovered with this 
information. In fact, thinning algorithms have been re- 
lated to filling algorithms [20]. 

In contour tracing, the term multiple pixel is defined 
to describe edge points that satisfy one or more of the 
following: 

(1) In every pass and in every subiteration, every 
pixel in the bitmap has to be examined once to identify 
the dark pixels. The number of operations is propor- 
tional to the area of the bitmap. 

(2) Every dark pixel has to be examined for edge 
points. The number of operations is proportional to the 
area of the objects in every pass. 

(3) The number of passes is related to the “thickness” 
of the object. 

The total number of operations in (1) is therefore a 
product of the number of passes, the number of subiter- 
ations per pass, and the size of the bitmap. The total 
number of operations in (2) is a sum of the sizes of the 
objects in all the subiterations and in all the passes. 

((Y) It is traversed more than once when tracing the set 
of contours. 

(p) It has no neighbors in the interior of Q. 
(y) It has at least one D-neighbor which belongs to the 

contour, but which is not one of its C-neighbors. 

Even though the size of the objects reduces progres- After the contour has been traced and the sequence 
sively after each pass, the total number of operations to of pixels examined to determine whether it is multiple 
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or not, the contour is removed. Multiple pixels are skel- 
etal pixels and are copied to a bitmap where the skele- 
ton is formed progressively. To ensure connectivity, 
pixels which are neighbors to skeletal pixels discovered 
in a previous pass are also identified as skeletal pixels. 
In the next iteration, the new contour is traced and the 
operation repeats until all the dark points are removed. 

Arcelli [l] presented a variation of the contour trac- 
ing thinning algorithm. After obtaining the set of multi- 
ple pixels, only the nonmultiple pixels belonging to the 
contour are removed. 

In both of these cases, all the points on a z-pixel-wide 
line (Figures 2a and 2c) touch the medial line. They are 
multiple and will therefore precipitate into the skele- 
ton. A postprocessing step is necessary to thin the skel- 
eton down to unit width (Figures 2b and zd), by adopt- 
ing the deletability criteria based on the notion of 
crossing number. 

CONTOUR GENERATION USING CHAIN CODES 
Evidently the necessity of multiple subiterations in a 
parallel algorithm and the possibility of a z-pixel-wide 
line in contour tracing can be attributed to the problem 
of “mutual exclusion.” In a parallel algorithm, a pixel 
is processed on the basis of its previous state so that 
when pixels are considered in parallel, all the pixels 
are removed. 

When the problem is viewed from another angle, one 
can see that in both parallel and contour tracing tech- 
niques, pixels are removed from the contours without 
knowledge of what is going to remain in the object. 
The result is that either all the pixels will have been 
removed or, to prevent this from happening, a thick 
curve (Figures 7e and 8e) will remain after the final 
iteration. 

The solution is therefore to consider the results ob- 
tained so far for processing the current pixel. If a pixel 
were to be removed, the new contour which will be 
exposed to the background can be computed. Thus 
when the current contour is traversed, a section of the 
new contour is generated for every pixel in the current 
contour being visited. The section is checked for break 
points and this information is available when subse- 
quent pixels in the sequence or those on the next se- 
quence are visited. At the end of the iteration, a new 
contour will be available for the next iteration without 
having to remove the old one. 

At any time, the algorithm will have complete 
knowledge of what remains of the object when the 
current contour is removed. Thinning is completed 
when there are no nonsafe points in any of the new 
contours. The algorithm, together with an implementa- 
tion, is described in more detail in the next section. 

Many contour tracing algorithms are available [18, 
251. An efficient method (see box for details) is used. 
The resulting set of chains represent the outermost 
layer of the objects is used here. The chain is counter- 
clockwise for the exterior of an object and clockwise 
for an interior hole. As one traverses along the contour, 
the right-hand side is always the background. The 
chains together with the coordinates of the heads of 
chains define the bitmap completely. This is a recoding 
step, after which the original bitmap is no longer needed. 

An Efficient Contour Tracing Method 

The bitmap is scanned and for every scan line, the runs of 
dark points are extracted and positions of the edge points 
are noted and compared with the previous scan line. Chains 
may be appended, new chains may be opened, or two 
chains may be merged depending on the situation. For a 
certain run in the current scan line, if none of the pixels is a 
neighbor of a pixel of a run in the previous scan line, the run 
is disconnected with any opened chains. In this case, two 
new chains are opened. 

If two or more runs in the current scan line are connected 
to the same run in the previous scan line, new chains are 
opened. 

If there is at least one point which is a neighbor to a pixel 
in a run in the previous scan line, the two runs are con- 
nected and chain codes can be added to join the two runs. 
8-connectivity is considered here. Finally, for a certain run in 
the previous scan line, if none of the pixels are neighbors of 
at least one pixel of a run in the current scan line, the corre- 
sponding chains merge. If a run in the current scan line is 
connected to two or more runs in the previous scan line, one 
or more pairs of chains are merged. 

After all the scan lines have been visited, the chains are 
joined together and the final number of chains is equal to the 
number of closed contours in the bitmap. The procedure 
returns a set of pointers for the heads of the chains. 

Incidentally, salt-and-pepper noise can also be removed 
without increasing the computation time. This is not required 
in the contour generation method because it is immune to 
this type of noise. 

With the chain codes, the outline is plotted on a 
bitmap S. Every pixel visited will have its value incre- 
mented. If S begins with all the pixels having a value of 
0, a pixel visited more than once will have a value 
greater than or equal to 2 and is therefore a break point 
(condition 01). 

After plotting the first contour on S, the algorithm 
goes through a number of iterations. The iteration ter- 
minates for a particular contour when there are no 
more nonsafe points in that contour. Thus the num- 
ber of passes required for one contour may differ from 
another. When the operation completes, the skeleton 
is formed in S. A chain code describing the skeleton is 

THINNING BY CONTOUR GENERATION also available. 
Before all the iterations, the given bitmap is recoded At any point in an iteration, a section of the new 
into chain codes. A chain code is generated for every contour is to be generated to correspond to the pixel pi 
closed contour describing the outlines of the object. under consideration. Two direction vectors, dir+, and 
This is done only once and contour tracing is not diri are maintained. Arithmetic involving dir is under- 
required within an iteration. stood to be of modulo-8. The result always lies between 
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0 and 7 inclusive. The xy coordinates of pi are updated 
from the fry coordinates of pi...1 using din-l. The coordi- 
nates are represented by a pointer to a 1-D array de- 
scribing the bitmap. A look-up table is used that gives 
the offsets needed for each of the 8 directions. A flag 
pi-,-is-safe-point is kept to show whether the previous 
pixel is a safe point or not. The current pixel pi is 
checked for safe point by examining its value in the 
bitmap S. With this information, a unique section of the 
new contour can be generated. The new contour will 
include all the safe points uncovered so far and some 
dark points which are neighbors of the current outline. 

THE STARTING AND TER.MINAL POINTS FOR 
THE SECTION 
Sections of the new boundary are created as pixels in 
the current chain are visited serially. One section is 
generated for each successive pixel in the chain and it 
always joins to the section generated from the last 
pixel. 

Different methods can be used to define the starting 
and ending points of the section of the new contour. 
The scheme shown in Figure 3 is adopted. If the pre- 
vious point pi-1 is a safe point, the previous section of 
the new chain terminates at pi-l. If it is not, the pre- 
vious section terminates at a common neighbor of pi-1 
and pi, found by rotating the line joining pi-1 and pi by 
45” into the interior using pi as the center of rotation. 
This point must be a dark point, otherwise pi-1 would 
have been a break point. The terminal point for the 
previous section is the starting point of the new section. 

If the current point pi is a safe point, the new section 
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01 “PW sectsor 
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FIGURE 3. Starting and Terminal Points of a Section of the New 
Boundary (a) Starting Point: pi-, is a Safe Point (b) Starting Point: 

pieI is not a Safe Point (c) Terminal Point: pi is a Safe Point 
(d) Terminal Point: pi is not a Safe Point 

will terminate at pi. If it is not, it will terminate at a 
common neighbor of pi and pi+l, found by rotating the 
line joining p, and pi+1 by 45” into the interior, using 
pi+1 as the center of rotation. Again this point must be a 
dark point, otherwise pi would have been a break point. 

GENERATING A SECTION OF THE NEW 
CONTOUR 
There are four different cases that need to be consid- 
ered. They are shown in Figure 4. If both pi and pi-1 are 
safe points, the new section consists of one vector, the 
direction being diri-1. This vector links pi-1 to pi. This 
case will be predominant toward the final iterations as 
more and more safe points are uncovered. 

FIGURE 4. The Four Cases for Generating a New Section of a 
New Chain 

If pi is a safe point while pi-1 is not, the new section 
consists of one vector which links the starting point to 
pi. The direction of this vector is (diri-1 + 7). 

If pi is not a safe point, the difference (diri - diri-1) is 
computed and the new section is generated on a case- 
by-case basis as shown in Figures 5 and 6. Figure 5 is 
for the case where pi-1 is a safe point: the new section 
begins at pi-l. Figure 6 is for the case where pi-1 is not a 
safe point: the new section begins at the starting point 
as determined in the last section. It can be seen that the 
starting and terminal points are neighbors of pi. If one 
begins at the starting point and assumes a counter- 
clockwise path visiting the D-neighbors of pi until one 
reaches the terminal pixel, all the points visited will be 
dark, otherwise pi will be a safe point and will contra- 
dict the safe point test just conducted on pi. The safe 
point test performed on the bitmap S was up-to-date 
because it included the results of processing of the pre- 
vious pixels in the same chain, and of all the pixels 
belonging to the previous chains. Thus connectivity is 
guaranteed even for objects with holes in it, in which 
case, two different chains describe the outer and inner 
edges, e.g., as in the letter 0 of the alphabet. The set of 
pixels just visited are pixels of the section to be gener- 
ated and hence belong to the new contour. 

For Figure 5, where pi-1 is a break point, the new 
section will consist of 0 to 3 elements. In the case 
where (diri - diri-1) E 4, pi is an end point and will be 
flagged as a safe point automatically. 
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FIGURE 5. Generation of a Section of the New Chain 

In Figure 6, where pi-1 is not a break point, the new 
section will consist of 0 to 2 elements, In the case 
where (diri - diri-1) = 3 or 6, the starting point of the 
new section is pi+1 and it is a break point. pi therefore 
also belongs to the new section and it is an end point. 
Again pi is flagged as a safe point automatically. The 
new section consists of one element. The value of this 
element in the chain is diri + 4, i.e., in the opposite 
direction of diri. 

When (diri - diri-1) = 2 or 6 and diri is even, the 
present contour is going through a convexity. This may 
be a 60” corner or it may be noise. In some cases, it is 
desirable to generate a tail while in other cases, a tail 
should not be generated [l, 61. If desired, a corner find- 
ing technique can be used [ll] and special constraints 
can be put in to enable the generation or suppression of 
a tail. Such a technique is not considered in the present 
implementation. To suppress a tail, pi is deleted from 
the current chain. No new section is generated. The 
direction vector din-1 is recomputed as if pi-1 is linked 
to pi+l, i.e., dinmI = diri-1 + 1. 

Figures 6 and 6 also show the cases that do not occur 
(enclosed in dotted lines) either because an 8-connected 
contour will not be chain-coded in that way or because 
it contradicts the safe point tests. 

From Figures 6 and 6, a table of chain codes can be 
formed (Table I) and can be used for the subsequent 
implementation. In general, a convexity results in 
fewer elements being created for the new section than 
for the case of a concavity. 

Where a new section is generated, the corresponding 
pixels, including the terminal point but excluding the 
starting point, will have their values in bitmap S incre- 
mented (condition CY), Table I also shows the direction 
of these points with respect to pi. 

After pi has been considered, dir+, are updated in 
preparation for the next element diri+l in the chain. 

THE HEAD AND TAIL OF A CHAIN 
As far as po, the head of a chain is concerned, one must 
assume that the previous element processed was pn-l 
(the tail of the chain). Serial processing of a closed con- 
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FIGURE 6. Generation of a Section of the New Chain 

tour means that pnml will not be processed before p. and 
the information that is available for p. at the beginning 
of the chain may have been altered by the time p,,-I is 
processed the end of the chain. For instance, at the 
beginning of the chain, p,-1 was not a safe point, but 
it becomes a safe point during the pass. It may be nec- 
essary to append an extra vector to the new chain to 
complete a closed contour. 

The following strategy is used to deal with the head 
and tail of a chain. At the begi:nning of a pass, if p. is a 
safe point, the new chain starts at po. If not, a test is 
made on pnel. If pnml is a safe point, the new chain 
starts at pnel. If both pnml and ~1~ are nonsafe points, the 
new chain starts at the usual starting position for the 
first section,’ i.e., a common neighbor of pn-l and p. 
found by rotation as described earlier. In this case a flag 
p,-l_was_nof_sufe_point is set. If the starting pixel has 

’ There are two special cases: if (dir.-, - dirnw2 = 2) and (dir.-,) is even, p”-, is 
deleted from the chain. If (dir.+, -dir.-* = 3) and (dir.-,) is even, the value 
of pn-l is incremented to become a safe point. 

been visited once before, i.e., it is on the boundary, its 
value in S is incremented so that it becomes a safe point. 

At the end of the chain when ~“-1 is processed, if p. 
is a safe point, an extra vector is added to link the last 
point of the chain to po. 

If p. is not a safe point, pnel is a safe point, but the 
p,-l_was_not_sufe-point flag has been set, meaning that 
pnel has since become a safe point and an extra vector 
is needed to link up pnml and the start of the chain. In 
one case it is necessary to alter the position of the head 
of the new chain. The value of the head of the new 
chain is incremented in the bitmap S. 

COMPARISONS WITH OTHER ALGORITHMS 
SPTA [17], Zhang/Suen [29], Xu/Wang’s CGT [28], 
and the contour tracing described by Pavlidis [19] are 
implemented in C and optimized so that they are as 
efficient as they can be. A labelling technique similar to 
the one used in SPTA has been used in the Zhang/ 
Suen algorithm so that at the end of a pass, pixels do 
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TABLE I. Chain Code Elements and the Generated Contour Points 

I 0 dir, + 1 

I 

dir, + 1 ii, ~~ ) 

1 dir, dir, dir, + 2 dir, + 1 none dir,+ diri + 1 

2 none diri + 7 diri + 1 none none delete pi 

3,4 dir+, pi itself dir, + 4 pi itself 

dir, + 3 
diri + 1 

7 dir, + 2 dir, + 2 
dir,..., diri 

chain code 
elements 

diri + 4 diri + 3 
dir, + 2 diri + 1 

contour point 
direction w.r.t. vi 

dir+, dir,-, 
dir, 

chain code 
elements 

dir, + 2 dir, + 3 
diri + 1 

contour point 
direction w.r.t. v, 

not need to be removed. Xu/Wang’s CGT algorithm 
was implemented using the SPTA windows. The test 
images are 128 x 128 patterns, two of which are shown 
in Figures 7 and 8. For the Chinese character shown in 
Figure i’a, the computation times are as follows: con- 
tour generation using chain codes: 0.517 seconds (in- 
cluding recoding into chain codes); SPTA: 5.03 seconds 
(excluding salt-and-pepper noise removal time); Zhang/ 
Suen: 5.73 seconds; Xu/Wang’s CGT: 0.783 seconds and 

Pavlidis contour tracing: 2.02 seconds (excluding post- 
processing). In this case, contour generation using chain 
codes is 50% faster than CGT, 4 times faster than con- 
tour tracing, and 10 times faster than the two parallel 
algorithm. 

For a thicker object, such as the bold Old-English % 
shown in Figure 8a, the computation times are as fol- 
lows, contour generation using chain codes: 0.717 sec- 
onds (including recoding into chain codes]; SPTA: 

(a) 

(d) @I (f) 

FIGURE 7. A 128 x 128 Chinese Character (a) The Original Character Consists of Three Disjoint Objects, One with a Hole (b) SPTA 
(c) Zhangpuen Algorithm (d) Xu/Wang’s CGT (e) Pavlidis’s Contour Tracing (f) Contour Generation with Chain Codes 
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Implementation Details 

The algorithm was coded in the C language and implemented 
on an Apollo DN300Cl workstation. Although the coding may 
be complex and low level, structured programming practices 
can still be applied and the resulting module is very efficient. 
The other algorithms, SPTA, Zhang/Suen, Xu/Wang’s CGT, 
and Pavlidis’s contour tracing are also coded in the same 
manner so that the comparison described in the article can 
be made upon a fair and equal basis. 

In the Apollo DN3000 workstation, the screen can be 
mapped directly onto the user’s address space so that the 
building up of the skeleton can be viewed while the individual 
bits are plotted on the bitmap S. The rate of accumulation of 
the skeleton is an indication of the spead of the thinning 
algorithm. 

There are two ways of setting up the bitmaps. The array 
can be declared as a character iarray in which eight bits are 
assigned to every pixel. The second choice is to have one bit 
per pixel where eight pixels are packed into a character. In 
implementing SPTA, an integer equal to the number of the 
pass is used to flag a safe-point. This is useful for recon- 
structing the original pattern. Consequently the former ap- 
proach has been adopted. This resulted in the use of more 
memory but the access to a pixel is considerably faster than 
in the packed format. 

In contour generation, since the chain code and the coordi- 
nates of the head of the chain define the bitmap completely, 
the memory space allocated for the original bitmap can be 
reused for the bitmap S without the need for clearing it. At 
the beginning, the dark points in the bitmap have values 
equal to 0. When a contour is created, each pixel generated 
will have its value incremented. When its value is greater 
than or equal to 2, it becomes a safe-point (condition (Y). Its 
value will be tested for safe points. This operation of incre- 
menting and test is analogous to a test-and-set operation in 
concurrent programming. 

The use of pointers in C speeds up the location of a pixel 
considerably. This results in a higher data transfer rate to 
and from the bitmap than is possible with a 2-D matrix. The 
ability to manipulate bits means that module8 addition and 
subtraction can be done using the normal integer addition/ 
subtraction with the result ANDed to 7. 

To compare the algorithms fairly, every algorithm is coded 
using the same strategy regarding the setup of the bitmap 
and of the pointers for the neighbors of a given pixel. Fur- 
thermore, all the implementations are optimized so that 
they run faster than those implicated by their respective 
publications. 

13.6 seconds (excluding salt-and-pepper noise removal 
time); Zhang/Suen: 14.4 seconds; Xu/Wang’s CGT: 1.28 
seconds; and Pavlidis contour tracing: 4.37 seconds (ex- 
cluding postprocessing). In this case, contour generation 
using chain codes is 80 percent faster than CGT; 6 
times faster than contour tracing; and 19 times faster 
than the two parallel algorithm. 

Serial algorithms are faster than a parallel algorithm 
implemented on a serial computer [24]. According to 
the data given by Arcelli [l] a serial algorithm is about 
4 four times faster than a parallel algorithm. The reason 
is that in the case of a parallel algorithm, the time 
complexity is related to the size of the bitmap and the 
thickness of the objects, whereas in the case of a serial 

algorithm, the time complexity is related to the total 
size of all the objects in the bitmap. The difference in 
speed is more significant for thick objects because of 
the increase in complexity in the case of pa.rallel algo- 
rithms for determining whether a dark point is an edge 
point or not. 

Contour generation is considerably faster than con- 
tour tracing because the chain codes are extracted only 
once from the original bitmap whereas a contour trac- 
ing is required in every pass. 

In contour generation, the complexity of the initial 
contour tracing is related to the size of the bitmap. In 
each iteration, the outer layer of pixels of the object is 
processed. Processing time is proportional to the total 
length of the contours. The overall computation time is 
therefore proportional to the sum of the lengths of the 
contours in each pass. This sum is approximately equal 
to the size of the object because the nonsafe points 
which make up the majority of the dark points will 
have been traversed exactly once during the entire 
process. 

Contour generation using chain codes is faster than 
CGT because in CGT, examination of a 3 x 3 window 
of neighbors is time consuming. 

The efficiency of this method can be attributed to the 
following: 

(1) All the points visited are edge points. 
(2) The only examination needed to perform a safe 

point test is on the value of the pixel in the bitmap 
S, i.e., the pixel can be removed if its value is less 
than 2. 

(3) Removal of a pixel is not necessary, but a new sec- 
tion of contour is generated. The break point infor- 
mation and the associated direction vectors of the 
current and last pixels in the chain are all that is 
necessary to identify the darkness of relevant neigh- 
bors of a pixel, to enable the generation of a new 
contour. 

Contour generation is immune to noise in the image. 
For instance, an isolated pixel attached to a straight 
line (Figure ga) will either have no effect on the skele- 
ton or will be precipitated as a l-pixel long spike in the 
skeleton, depending on the order in which pixels on 
the contour are traversed. In the case of algorithms that 
are sensitive to noise, a long tail will be generated. 
Thus preprocessing is not needed with contour genera- 
tion to remove salt-and-pepper noise. 

The order in which each of the contours is consid- 
ered and the starting point and the direction of traver- 
sal of a contour will determine the final shape of the 
skeleton. Minor variations may result if a different 
starting point and/or a different direction of traversal 
are chosen. If the head of a contour is at the middle of a 
straight line, and is an even number of pixels thick, the 
skeleton will consist of two connected straight lines, 
one displaced by one pixel from the other. The contour 
tracing algorithm used here ensures that a chain always 
begins at a corner position and the problem is avoided. 

Connectivity and unit-thickness of the skeleton is 
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(4 (b) 

(4 (e) 

FIGURE 8. A 128 x 128 Bold Old English $8 (a) The Original Character Consists of Two Disjoint Objects, One with Three Holes (b) SPTA 
(c) Zhang/Suen Algorithm (d) Xu/Wang’s CGT (e) Pavlidis’s Contour Tracing (f) Contour Generation with Chain Codes 

guaranteed in contour generation because of the nature 
of the algorithm, i.e., every point generated as a section 
of the new contour is tested and the iteration termi- 
nates when every point generated is a safe point. Thus 
the last contours generated are just sufficient to ensure 
connectivity so that a skeleton of unit thickness is gen- 
erated. No post-processing is needed. 

Contour generation can also be implemented in an 
MIMD type environment. The different chains of an 
object can be assigned to the individual processor or 
the chains can be subdivided into several subchains, 
each of which is assigned to a processor. The processors 
share the same bitmaps where the safe-point informa- 
tion can be updated and communicated between the 

(a) (4 64 

(e) 

FIGURE 9. Lines with noise (a) A 5-pixel Wide Line with Noise. 
The Square Boxes Represent the Chain Generated at the End of 
the First Pass (b) The Chain Generated after the Second Pass. All 

but Two of the Pixels have become Safe Points (c) Final Skeleton 
with a Clockwise Chain (d) Final Skeleton with a Counterclockwise 
Chain (e) Skeleton Obtained from SPTA without Noise Removal 
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different processes. When a pixel is processed, mutual 
exclusion must be enforced on it and its neighbors to 
ensure connectivity and a unit-thickness skeleton. 

CONCLUSION 
Connectivity problems and thick skeletons experienced 
by many thinning algorithms often result when the 
outer layer of pixels of an object is removed and the 
structure of the resulting object is unknown as far as 
the current iteration is concerned. In the case of paral- 
lel algorithms, the solution has been to divide a pass 
into several subiterations or to obtain information 
about the neighbors of neighbors of a pixel. In the case 
of serial algorithms, constraints were introduced to en- 
sure connectivity so that in some instances, a doubly 
thick skeleton is produced. 

In the case of the proposed contour generation 
method the result of processing the current pixel is 
made available to the subsequent pixels. This is in es- 
sence the enforcement of mutual exclusion. Since new 
contours are generated instead of old ones being re- 
moved, the algorithm can always keep track of the sta- 
tus of the new shape of the object after every pass, 
thereby ensuring connectivity. 

By using a more relaxed safe point test, which is 
condition (Y of the multiple point test, the algorithm 
will not stop when two sections of a contour are neigh- 
bors, as in the case of a Z-pixel wide line. The final pass 
will retain the section that is visited last. 

Although the coding of the algorithm is complex, 
contour generation is faster than other methods be- 
cause contour tracing is performed only once during 
the iterations, and only edge points are visited. When 
pictures are digitized to a higher and higher resolution 
(made possible by the falling cost of memory and the 
increasing precision of digitization equipment) time 
complexity of thinning algorithms should be made in- 
dependent of the product of the size of bitmap and 
number of passes. Contour generation represents a sig- 
nificant reduction in time complexity. 
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