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Abstract 

 
 
We present a novel methodology for predicting future outcomes that uses small numbers of 
individuals participating in an imperfect information market. By determining their risk attitudes 
and performing a nonlinear aggregation of their predictions, we are able to assess the 
probability of the future outcome of an uncertain event and compare it to both the objective 
probability of its occurrence and the performance of the market as a whole. Experiments show 
that this nonlinear aggregation mechanism vastly outperforms both the imperfect market and 
the best of the participants.  

                                                 
* To appear in the Proceedings of the ACM Conference on e-commerce, October 2001. 
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Introduction 

The prediction of the future outcomes of uncertain situations is both an important 

problem and a guiding force behind the search for the regularities that underlie 

natural and social phenomena. While in the physical and biological sciences the 

discovery of strong laws has enabled the prediction of future scenarios with uncanny 

accuracy, in the social sphere no such accurate laws are known. To complicate 

matters further, in social groups the information relevant to predictions is often 

dispersed across people, making it hard to identify and aggregate it. 

 

In the social arena, economists have long articulated the belief that markets 

efficiently collect and disseminate information [1].  In particular, rational 

expectations theory tells us that markets have the capacity not only to aggregate 

information held by individuals, but also to convey it via the price and volume of 

assets associated with that information. Therefore, a possible methodology for the 

prediction of future outcomes is the construction of markets where the asset is 

information rather than a physical good. Laboratory experiments have determined 

that these markets do indeed have the capacity to aggregate information in this type 

of setting [2, 3, 4, 5].   

 

Information markets generally involve the trading of state-contingent securities.  If 

these markets are large enough and properly designed, they can be more accurate 

than other techniques for extracting diffuse information, such as surveys and 

opinions polls.  There are problems however, with information markets, as they tend 

to suffer from information traps [6, 7], illiquidity [8], manipulation [9, 10], and lack 

of equilibrium [11, 12]1. These problems are exacerbated when the groups involved 

are small and not very experienced at playing in these markets.  Even when 

possible, proper market design is very expensive, fragile, and context-specific. 

 

                                                 
1 Notable exceptions:  The Iowa Electronic Market [13] has shown that political events can be accurately 

predicted using markets when they are large enough.  Their predictions have consistently been more 

accurate than those resulting from major news polls.  Additionally, recent work by Pennock, Lawrence, 

Giles and Nielsen [14] show that the Hollywood Stock Exchange (HSX) does a remarkable job of predicting 

box office revenues and Oscar winners. However, both of these institutions have many traders, while we 

focus on systems with small number of participants (fewer than 15). 
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In spite of these obstacles, it is worth noting that certain participants in information 

markets can have either superior knowledge of the information being sought, or are 

better processors of the knowledge harnessed by the information market itself.  By 

keeping track of the profits and final holdings of the members, one can determine 

which participants have these talents, along with their risk attitudes. 

 

In this paper we propose a method of harnessing the distributed knowledge of a 

group of individuals by using a two-stage mechanism. In the first stage, an 

information market is run among members of the group in order to extract risk 

attitudes from the participants, as well as their ability at predicting a given outcome. 

This information is used to construct a nonlinear aggregation function that allows for 

collective predictions of uncertain events. In the second stage, individuals are simply 

asked to provide forecasts about an uncertain event, and they are rewarded 

according the accuracy of their forecasts. These individual forecasts are aggregated 

using the nonlinear function and used to predict the outcome. As we show 

empirically, this nonlinear aggregation mechanism vastly outperforms both the 

imperfect market and the best of the participants.  

 

Information Aggregation Mechanism Design 

In order to construct the aggregation function, we first notice that in ideal settings, it 

is easy to compute the true posterior probabilities using Bayes’ rule.  If individuals 

receive independent information conditioned on the true outcome, their prior beliefs 

are uniform (no other information is available other than the event sequence), and 

they each report the true posterior probabilities given their information, then the 

probability of an outcome s, conditioned on all of their observed information I, is 

given by: 
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where psi is the probability that individual i (i=1…N) assigns to outcome s (please see 

Appendix 1 for a discussion). This result allows us simply to take the individual 

predictions, multiply them together, and normalize them in order to get an 

aggregate probability distribution. The issue becomes how to design a mechanism 

that elicits truthful reporting from individuals.  We demonstrate in Appendix 2 that 
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the following mechanism will induce risk neutral utility maximizing individuals to 

report their prior probabilities truthfully.  We ask each player to report a vector of 

perceived state-probabilities, {q1,q2,…qN} with the constraint that the vector sums to 

one.  Then the true state x is revealed and each player paid c1+c2*log(qx), where c1 

and c2 are positive numbers.  

 

While this very simple method might seem to aggregate dispersed information well, 

it suffers from the fact that, due to their risk attitude, most individuals do not 

necessarily report their true posterior probabilities conditioned on their information. 

In most realistic situations, a risk averse person will report a probability distribution 

that is flatter than her true beliefs as she tends to spread her bets among all possible 

outcomes. In the extreme case of risk aversion, an individual will report a flat 

probability distribution regardless of her information.  In this case, no predictive 

information is revealed by her report.  Conversely, a risk-loving individual will tend 

to report a probability distribution that is more sharply peaked around a particular 

prediction, and in the extreme case of risk loving behavior a subject’s optimal 

response will be to put all his weight on the most probable state according to his 

observations. In this case, his report will contain some, but not all the information 

contained in his observations. 

 

In order to account for both the diverse levels of risk aversion and information 

strengths, we add a stage to the mechanism.  Before individuals are asked to report 

their beliefs, they participate in an information market designed to elicit their risk 

attitudes and other relevant behavioral information.  This information market is 

driven by the same information structure in the reporting game.  We use information 

markets to capture the behavioral information that is needed to derive the correct 

aggregation function.  Note that, although the participant pool is too small for the 

market to act perfectly efficiently, it is a powerful enough mechanism to help us illicit 

the needed information. 

 

The nonlinear aggregation function that we constructed is of the form: 
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where βi is the exponent assigned to individual i. The role of βi  is to help recover the 

true posterior probabilities from individual i’s report. The value of β for a risk neutral 

individual is one, as he should report the true probabilities coming out of his 

information. For a risk averse individual, βi is greater than one so as to compensate 

for the flat distribution that he reports.  The reverse, namely βi smaller than one, 

applies to risk loving individuals. In terms of both the market performance and the 

individual holdings and risk behavior, a simple functional form for βi is given by  

 

 

βi=r(V i /σi)c 

 

 

(3) 

 
where r is a parameter that captures the risk attitude of the whole market and is 

reflected in the market prices of the assets, V i is the utility of individual i, and σi is 

the variance of his holdings over time. c is a normalization factor so that if r=1, 

∑
i

iβ equals number of individuals. Thus the problem lies in the actual determination 

of both the risk attitudes of the market as a whole and of the individual players. 

 

To do so, notice that if the market is perfectly efficient then the sum of the prices of 

the securities should be exactly equal to the payoff of the winning security.  

However, in the thin markets characterized here, this efficiency condition was rarely 

met.  Moreover, although prices that do not sum to the winning payoff indicate an 

arbitrage opportunity, it was rarely possible to realize this opportunity with a 

portfolio purchase (once again, due to the thinness of the market).  However, we can 

use these facts to our advantage.  If the sum of the prices is below the winning 

payoff, then we can infer that the market is risk-averse, while if the price is above 

this payoff then the market exhibits risk-loving behavior.  Thus, the ratio of the 

winning payoff to the sum of the prices provides a proxy for the risk attitude of the 

market as a whole. 

 

The ratio of value to risk, (V i  /σi), captures individual risk attitudes and predictive 

power. An individual’s value Vi is given by the market prices multiplied by his 
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holdings, summed over all the securities. As in portfolio theory [15], his amount of 

risk can be measured by the variance of his values using normalized market prices 

as probabilities of the possible outcomes.  

 

Experimental Design 

In order to test this mechanism we conducted a number of experiments at Hewlett-

Packard Laboratories, in Palo Alto, California.  The subjects were undergraduate and 

graduate students at Stanford University and knew the experimental parameters 

discussed below, as they were part of the instructions and training for the sessions.  

The five sessions were run with eight to thirteen subjects in each. 

 

The two-stage mechanism was implemented in a laboratory setting. Possible 

outcomes were referred to as “states” in the experiments. There were 10 possible 

states, A through J, in all the experiments.  Each had an Arrow-Debreu2 state 

security associated with it.  The information available to the subjects consisted of 

observed sets of random draws from an urn with replacement.  After privately 

drawing the state for the ensuing period, we filled the urn with one ball for each 

state, plus an additional two balls for the just-drawn true state security.  Thus it is 

slightly more likely to observe a ball for the true state than others. 

 

The amount of information given to the subjects was controlled by letting them 

observe different number of draws from the urn. Three types of information 

structures were used to ensure that the results obtained were robust. In the first 

treatment, each subject received three draws from the urn, with replacement.  In 

the second treatment, half of the subjects received five draws with replacement, and 

the other half received one.  In a third treatment, half of the subjects received a 

random number of draws (averaging three, and also set such that the total number 

of draws in the community was 3N) and the other half received three, again with 

replacement. 

 

The information market we constructed consisted of an artificial call market in which 

the securities were traded. The states were equally likely and randomly drawn.  If a 

                                                 
2 These securities have lottery-like properties, and they pay off one unit contingent on the positive 
outcome of an event linked to that security, and zero otherwise. 
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state occurred, the associated state security paid off at a value of 1,000 francs3.  

Hence, the expected value of any given security, a priori, was 100 francs.  Subjects 

were provided with some securities and francs at the beginning of each period.   

 

Each period consisted of six rounds, lasting 90 seconds each.  At the end of each 

round, the bids and asks were gathered and a market price and volume was 

determined.  The transactions were then completed and another call round began.  

At the end of six trading rounds the period was over, the true state security was 

revealed, and subjects were paid according to the holdings of that security. This 

procedure was then repeated in the next period, with no correlation between the 

states drawn in each period. 

 

In the second-stage, every subject played under the same information structure as 

in the first stage, although the draws and the true states were independent from 

those in the first.  Each period they received their draws from the urn and 100 

tickets.  They were asked to distribute these tickets across the 10 states with the 

constraint that all 100 tickets must be spent each period and that at least one ticket 

is spent on each state.  Since the fraction of tickets spent determines psi, this implies 

that psi is never zero.  The subjects were given a chart that told them how many 

francs they would earn upon the realization of the true state as a function of the 

number of tickets spent on the true state security.  The payoff is a linear function of 

the log of the percentage of tickets placed in the winning state(Please see Appendix 

2 for a discussion of the payoff function).  The chart the subjects received showed 

the payoff for every possible ticket expenditure, and an excerpt from the chart is 

shown below. 

Table 1: Payoff Chart for Reporting Game 

 

Number of 
Tickets Possible Payoff  

Number of 
Tickets Possible Payoff 

1 33  50 854 
10 516  60 893 
20 662  70 925 
30 747  80 953 
40 808  90 978 

 

                                                 
3 An experimental currency, exchanged for dollars at the end of the experiment according to an 
announced exchange rate. 
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Procedural Overview 

A total of five experiments were conducted. The number of subjects in the 

experiments ranged from eight to thirteen. The speed of the experiments depended 

on how fast the subjects were making their decisions, the length of the training 

sessions and a number of other variables. Therefore, we have completed different 

number of periods in different experiments. The following table provides a summary. 

 

Table 2: Summary of Experiments 

 

Experiment 
Number 

Number of 
Subjects 

Number of Call 
Market Periods

Number of Rounds 
of Reporting Game Information Structure 

1 13 3 7 3 draws 
2 9 6 18 3 draws 

3 11 7 
29 5 draws for 6 subjects 

1 draw for 5 subjects 

4 8 7 
25 5 draws for 4 subjects 

1 draw for 4 subjects 

5 10 10 
30 Random for 5 subjects 

3 draws for 5 subjects 
 

 

Analysis  

Notice that if the aggregation mechanism were perfect, the probability distribution of 

the states would be as if one person had seen all of the information available to the 

community.  Therefore, the probability distribution conditioned on all the information 

acts as a benchmark to which we can compare alternative aggregation mechanisms.  

In order to compute it, recall that there are twelve balls in the information urn, three 

for the true state and one for each of the other nine states.  Using Bayes’ rule one 

obtains the omniscient probability distribution, i.e. 
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where s denotes the states, O is a string of observations, #(s) is the number of 

draws of the state s in the string, and #( s ) is the number of draws of all other 

states.  
 

Once this benchmark is created, the next step is to find a measure to compare 

probabilities provided by different aggregation mechanisms to this benchmark. The 

obvious measure to use is the Kullback-Leibler measure, also known as the relative 

entropy. The Kullback-Leibler measure of two probability distributions p and q is 

given by: 
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where p is the “true” distribution. In the case of finite number of discrete states, the 

above equation (4) can be rewritten as: 
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It can be shown that a) KL(p,q)=0 if and only if the distribution p and q are identical, 

and b) KL(p,q)≥0. A smaller Kullback-Leibler number indicates that two probabilities 

are closer to each other.  

 

Furthermore, the Kullback-Leibler measure of the joint distribution of multiple 

independent events is the sum of the Kullback-Leibler measures of the individual 

events. Since periods within an experiment were independent events, the sum or 

average (across periods) of Kullback-Leibler measures is a good summary statistics 

of the whole experiment. 

 
Results 

Three information aggregation mechanisms were compared to the benchmark 

distribution given by Eq. (4) by the use of the Kullback-Leibler measure.  In addition, 

we also report the K-L measures of the “no information” prediction (uniform 

distribution over all the possible states) and the predictions of the best individual. 
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The “no information” prediction serves as the first baseline to determine if any 

information is contained in the predictions of the mechanisms. If a mechanism is 

really aggregating information, then it should be doing at least as well as the best 

individual. Predictions of the best individual serve as the second baseline, which 

helps us to determine if information aggregation indeed occurred in the experiments. 

 

The first of the three information aggregation mechanisms is the market prediction. 

The market prediction was calculated using the last traded prices of the assets.  We 

used the last traded prices rather than the current round’s price because sometimes 

there was no trade in a given asset in a given round.  From these prices, we inferred 

a probability distribution on the states. 

 

The second and the third mechanisms are the simple aggregation function given by 

the risk neutral formula of Eq. (1), and the market-based nonlinear aggregation 

function of Eq. (2).   

 

The results are shown in Table 3. The entries are the average values and standard 

deviations (in parentheses) of the Kullback-Leibler number [16], which was used to 

characterize the difference between the probability distributions coming out of a 

given mechanism and the omniscient probability.  

 

Table 3: Kullback-Leibler Numbers, by Experiment 

 

No Information Market Prediction Best Player 
Simple Aggregation 

Function 
Nonlinear Aggregation 

Function 
1.977 (0.312) 1.222 (0.650) 0.844 (0.599) 1.105 (2.331) 0.553 (1.057) 
1.501 (0.618) 1.112 (0.594) 1.128 (0.389) 0.207 (0.215) 0.214 (0.195) 
1.689 (0.576) 1.053 (1.083) 0.876 (0.646) 0.489 (0.754) 0.414 (0.404) 
1.635 (0.570) 1.136 (0.193) 1.074 (0.462) 0.253 (0.325) 0.413 (0.260) 
1.640 (0.598) 1.371 (0.661) 1.164 (0.944) 0.478 (0.568) 0.395 (0.407) 

 

As can easily be seen, the nonlinear aggregation function worked extremely well in 

all the experiments. It resulted in significantly lower Kullback-Leibler numbers than 

the no information case, the market prediction, and the best a single player could do. 

In fact, it performed almost three times as well as the information market. 

Furthermore, the nonlinear aggregation function exhibited a smaller standard 

deviation than the market prediction, which indicates that the quality of its 
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predictions, as measured by the Kullback-Leibler number, is more consistent than 

that of the market. In three of five cases, it also offered substantial improvements 

over the simple aggregation function. 

 

The results displayed in the second column show that the market was not sufficiently 

liquid to aggregate information properly, and it was only marginally better than the a 

priori no information case.  In almost all cases, the best player in the reporting game 

conveyed more information about the probability distribution than the market did.  

However, even in situations where the market performs quite poorly, it does provide 

some information, enough to help us construct an aggregation function with 

appropriate exponents.   

 

All these results are illustrated in Figure 1, we show the probability distributions 

generated by the market mechanisms, the best individual in a typical experiment, 

the nonlinear aggregation function, as well as the omniscient probability distribution 

generated by Equation (4) 4.  Notice that the nonlinear aggregation function exhibits 

a functional form very similar to the omniscient probability, and with low variance 

compared to the other mechanisms. This is to be contrasted with the market 

prediction, which exhibits information traps at state I and F, and a much larger 

variance. 

Figure 1
Accuracy of Prediction, by Mechanism
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4 While different, independent events are used for the market stage and the reporting stage, we found one 
period in both stages that contained the exact same information. Thus, we can compare results from these 
two periods in this figure. 



  Page 12 

These experiments confirm the utility of our nonlinear aggregation mechanism for 

making good forecasts of uncertain outcomes. This nonlinear function applies the 

predictions of a group of people whose individual risk attitudes can be extracted by 

making them participate in an information market. Equally important, our results 

show that many of the shortcomings associated with information markets can be 

bypassed by this two stage method, without having to design and resort to 

complicated market games. In this context it is worth pointing out that even with 

such small groups we were able to obtain information whose accuracy, measured by 

Kullback-Leibler, surpasses by a factor of seven even more complicated institutions 

such as pari-mutuel games [17]. 

 

Lastly, unlike the standard information aggregation implied by the Condorcet 

theorem, our mechanism allows us to extract probability distributions rather than the 

validity of a discrete choice obtained via a majority vote. Moreover, our mechanism 

provides a signal even in situations when an overall system itself does not contain 

accurate information as to the outcome.  Equally important, unlike Condorcet our 

two-stage mechanism does not demand risk neutrality and access to the same 

information by all participants in the system. 

 

Conclusions 

Accurate predictions are essential to individuals and organizations.  For large 

communities, information relevant to forecasts is often dispersed across people, 

frequently in different geographical areas.  Examples include forecasting sales of a 

product, aggregating the financial predictions of the venture capital community, and 

public opinion polls.  The methodology described in this paper addresses many of the 

needs to aggregate this information accurately and with the correct incentives.  One 

can take past predictive performance of participants in information markets and 

create weighting schemes that will help predict future events, even if they are not 

the same event on which the performance was measured.  Furthermore, our two-

stage approach can improve upon predictions by harnessing distributed knowledge in 

a manner that alleviates problems with low levels of participation.  The typical 

business forecast cycle also lends itself to this approach.  Since forecasts cycles in 

organizations typically involve the prediction of similar events on a periodic basis, it 

is possible to set up an initial market to obtain consistent measures of skills and risk 
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attitudes and then use the reporting mechanism to extract and aggregate 

information in the future. 

 

Obviously, this approach can also be extended to work across organizations.  One 

possible use is to aggregate and create consensus estimates in the financial analyst 

community.  Another one is to provide the venture capital community a way of 

forming predictions about the viability of new ventures.  The Hollywood Stock 

Exchange has shown that information markets can be used to predict movie ticket 

sales, which are tremendously important to studio executives.  In the same vein, our 

methodology can be used with smaller groups of movie screen test subjects to create 

forecasts before a movie is released.  One can imagine a world in which focus groups 

are no longer run solely on survey questions and discussions, but where each 

member has a financial stake in the information coming out of the focus group. 

 

The rapid advances of information technologies and the understanding of information 

economics have opened up many new possibilities for applying mechanism design to 

gather and analyze information. This paper discusses one such design and provides 

empirical evidence about its validity. Although the results we presented are particular 

to events with finite number of outcomes and assumptions of independent 

information, they can be generalized to continuous state space and non-independent 

information structure.  We are currently pursuing these extensions.  Equally 

intriguing is the possibility of having this mechanism in the context of the Web, thus 

enabling information aggregation over large geographical areas, perhaps 

asynchronously.  This leads to issues of information cascades and the optimal time to 

keep an aggregation market open, which we will explore in turn.  
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Appendices 

Appendix 1: Conditional Probabilities and Products of Reports 

Lemma:  If: 

• O1 through On are independent observations conditioned on a given state 

• The a priori beliefs of the probabilities of the states are uniform 
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In other words, if N people observe independent information about the likelihood of a 

given state and they report those probabilities, one can find the probability 

conditioned on all of their observations by multiplying their reported probabilities and 

then normalizing the results. 

 

Proof (by induction): 
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Appendix 2: Risk Neutrality and Log Payoff Functions in the Reporting Game 
 

Consider the following game: 

• There are N possible states of the world. 

• A player is given information about the state of the world x∈ {1,2,…,N}. His 

belief on the probabilities of these states of the world, conditioned on his 

information, are Pi, i∈ {1,2,…,N} 

• The player is asked to report a vector {q1,q2,…qN}  with the constraint 

∑
=

=
N

i
iq

1
1 . Then the true state x is revealed and he is paid f(qx). 

 

Lemma 2: If the player is risk neutral and f(y)=log(y), then qi=Pi for all i. That is, 

players will report their true beliefs on the probabilities. 
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Proof: 

The player’s maximization problem is: 
{ } ∑=

N

i
iiq

qPMax
i 1

)log(  s.t. ∑
=

=
N

i
iq

1
1. 

The Langrangian for this problem is L= 






 −− ∑∑
==

N

i
i

N

i
ii qqP

11

1)log( λ  

The first order condition is: λ=
i

i

q
P

for all i   => ii qP λ=  

Summing over all i, 1=λ. Thus qi=Pi for all i.  ! 
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