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Abstract
A major achievement of mechanism design theory is the family of

truthful mechanisms often called VCG (named after Vickrey, Clarke
and Groves). Although these mechanisms have many appealing prop-
erties, their essential intractability prevents them from being applied
to complex problems like combinatorial auctions. In particular, VCG
mechanisms require the agents to fully describe their valuation func-
tions to the mechanism. Such a description may require exponential
size and thus be infeasible for the agents.

A natural approach for this problem is to introduce an intermediate
language for the description of the valuations. Such a language must
be succinct to both the agents and the mechanism. Unfortunately, the
resulting mechanisms are neither truthful nor do they satisfy individual
rationality.

This paper suggests a general method for overcoming this difficulty.
Given an intermediate language and an algorithm for computing the
results, we propose three different mechanisms, each more powerful
than its predecessor, but also more time consuming. Under reasonable
assumptions, the results of our mechanisms are at least as good as the
results of the algorithm on the actual valuations. All of our mechanisms
have polynomial computational time and satisfy individual rationality.

1 Introduction

1.1 Motivation

The theory of mechanism design may be described as studying the design

of protocols under the assumption that the participants behave according
∗This research was supported by Darpa grants number F30602-98-C-0214 and F30602-

00-2-0598.
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to their own goals and preferences and not necessarily as instructed by the

protocol. The canonical mechanism design problem can be described as fol-

lows: A set of rational agents need to collaboratively choose an outcome

o from a finite set O of possibilities. Each agent i has a privately known

valuation function vi : O → R quantifying the agent’s benefit from each

possible outcome. The agents are supposed to report their valuation func-

tions vi(·) to some centralized mechanism that chooses an outcome o that

maximizes the total welfare
∑

i v
i(o). The main difficulty is that agents

may choose not to reveal their true valuations but rather report carefully

designed lies in an attempt to influence the outcome to their liking. The

tool that the mechanism uses to motivate the agents to reveal the truth

is monetary payments. These payments are to be designed in a way that

ensures that rational agents always reveal their true valuations – making

the mechanism, so called, incentive compatible or truthful. To date there is

only one general technique known for designing such a payment structure,

sometimes called the generalized Vickrey auction [21], the Clarke pivot rule

[1] the Groves mechanism [5], or, as we will, VCG. In certain senses this

payment structure is unique [4, 17].

Although VCG mechanisms have many appealing properties, their in-

tractibility prevents them from being applied to complex problems like

combinatorial auctions. This intractability is twofold: Firstly, VCG mecha-

nisms require the agents to fully describe their valuation functions. Secondly,

it requires the mechanism to find the optimal allocation.

The problem of combinatorial auctions (CA) is an important example of

a mechanism design problem. In CA, the designer would like to auction a set

S of items (e.g. radio spectra licenses) among a group of agents who desire

them. As items may be substitutes (e.g. two licenses in the same place)

or complementary (e.g. licenses in two neighboring states) the valuation

of each agent may have a complex structure. A formal definition of the
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problem can be found in section 2.1.

Consider a VCG mechanism for CA: The mechanism first asks each agent

to declare her valuation function, i.e. to report a function wi : 2S → R+. It

then computes the optimal allocation and the payments of each agent.

Such a mechanism is clearly intractable. Firstly, finding the optimal

allocation is NP-hard even to approximate. Secondly, the mechanism relies

on the agents’ ability to describe their valuations in a way which is succinct

to its allocation algorithm. This ability cannot be taken for granted. For

example a naive solution will require each agent to report a vector of 2|S|−1

numbers to the mechanism. This of course is not feasible unless the number

of items is very small. On the other extreme the designer can ask the

agents to submit oracles, i.e. programs that return for every set s their

valuation vi(s). However, it is not difficult to see that in order to find the

optimal allocation or even a reasonable one, the allocation algorithm must

query these oracles an exponential number of times. The natural solution

for this problem is to introduce the notion of a bidding language. Such

a language should enable the agents to efficiently represent or at least to

approximate their valuations, but should also allow the allocation algorithm

to compute the desired allocation in polynomial time. Hopefully such a

language will capture most ”real life” valuations. Various bidding languages

were proposed in recent years. The interested reader is pointed to [11].

The drawback of this approach is that there are always valuation func-

tions which are impossible to represent in polynomial-time. We therefore

call such languages incomplete. Since VCG mechanisms with incomplete

languages are not optimal, the impossibility results of [13] imply that they

cannot be truthful! In other words, instead of describing their true valua-

tion according to the designer’s instructions, agents may have incentive to

misreport. Therefore, there is no guarantee, even when the agents are ratio-

nal, that the mechanism will find a reasonable allocation. Moreover, such
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mechanisms do not even guarantee individual rationality. That is, there are

cases where truthful agents will pay for their allocated sets more than their

actual valuations for them.

Our goal in this paper is to prevent these phenomena.

1.2 This work

This paper proposes a general method for overcoming the non truthfulness

of VCG mechanisms with incomplete languages. We first introduce the no-

tions of oracles1, descriptions and consistency checkers in the context of

VCG mechanisms. Oracles are programs that represent the agents’ valua-

tions. They are used by the mechanism to measure the agents’ welfare. A

consistency checker is a function that checks whether an agent’s description,

which is given in the intermediate language, is consistent with her oracle.

These additions to the VCG method still do not suffice to guarantee its

truthfulness.

We then describe three mechanisms which guarantee that under rea-

sonable assumptions, truth-telling is the rational strategy for the agents.

Each mechanism is more powerful but also more time consuming than its

predecessor. All of our mechanisms have polynomial computational time.

Following [13] we adopt the concept of feasibly dominant actions (FDAs).

Informally speaking, we assume that the agents choose their actions (strate-

gies) according to their strategic knowledge. We say that an action is feasibly

domiant if the agent is not aware of any circumstances where another strat-

egy is better for her. It was argued in [13] that when feasibly dominant

actions are available for the agent, it is irrational for her not to choose one

of them. It was also shown in [13] that if the payment of a non-optimal mech-

anism is calculated according to the VCG formula, the existence of FDAs

must rely on further assumptions on the agent’s knowledge. Our mecha-
1Some advantages of using oracles were discussed in [19]
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nisms guarantee that, under such reasonable assumptions, truth-telling is

indeed an FDA. Each of them handles a more general form of knowledge

than its predecessor (i.e. more sophisticated agents).

When the agents are truthful, the result of our mechanisms is at least

as good as the result of the allocation algorithm on the truthfully reported

descriptions. Our mechanisms also satisfy individual rationality.

Note that our method does not make any assumptions on the algorithm

or the bidding language. The designer needs to design an intermediate lan-

guage, a consistency checker and an allocation algorithm such that, when the

agents prepare their descriptions according to her instructions, the overall

result is good. She then gets the mechanism for free.

For simplicity we prove all our theorems directly for the combinatorial

auction problem. Our results however are much more general and can be

applied to any VCG, weighted VCG or compensation and bonus [14] mech-

anism.

1.3 Related work

Non optimal VCG mechanisms were first studied in [13]. This paper dis-

cusses VCG mechanisms where the optimal algorithm is replaced by a poly-

time approximation or heuristic. This paper shows that mechanisms con-

structed this way cannot be truthful. It then proposes a general way of

dealing with this non-truthfulness using a certain form of appeal functions.

The problem of combinatorial auctions has been studied by several re-

searchers in recent years. A comprehensive survey of various aspects of

this problem can be found in [2]. In particular, various bidding languages

[3, 7, 20] and restrictions on the classes of bids that can be submitted (e.g.

[6]) were proposed. A comparative study of some of these languages can be

found in [11].

An alternative approach to the one that is taken here is to consider
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mechanisms where the agents are not required to declare their valuation

functions (non-revelation mechanisms). Examples of such mechanisms are

the simultaneous ascending auction [10] and iBundle [16]. The efficiency of

these auctions however is dependent on strong assumptions on the agents’

behaviour. They are also specifically designed to address the combinatorial

auction problem.

Finally, there is an extensive literature in the field of mechanism design.

An introduction can be found in [8, chapter 23] and [15, chapter 10]

Organization of this paper: The rest of the paper is organized as follows:

Section 2 formally defines combinatorial auctions and VCG mechanisms for

CA and explains their intractability. Section 3 provides an example of a

VCG mechanism with incomplete language and demonstrates the drawbacks

of such mechanisms. Section 4 defines our most basic mechanism, describes

the main concepts of [13] and shows that under reasonable assumptions on

the agents’ knowledge, truth-telling is an FDA. Sections 4 to 6 define ex-

tended versions of this mechanism and prove their basic properties. Section

7 discusses additional implementation issues and section 8 concludes the

paper.

2 Preliminaries

2.1 Combinatorial auctions (CA)

The problem of combinatorial auctions (CA) has been extensively studied

in recent years (see e.g. [7] [20] [3] [6] [11] ). The importance of this problem

is twofold. Firstly, several important applications rely on it (e.g. the FCC

auction [9]). Secondly, it is a generalization of many other problems of

interest, in particular in the field of electronic commerce. A recent survey of

various aspects of this problem can be found in [2]. For simplicity we prove

all our theorems directly for this problem.
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The problem: A seller wishes to sell a set S of items (radio spectra licenses,

electronic devices, etc.) to a group of n agents who desire them. Each agent

i has, for every subset s ⊆ S of the items, a non-negative number vi(s)

that represents how much s is worth for her. The function vi(.) is called

the agent’s valuation or type. We assume that vi(.) is privately known to

the agent. Given a (possibly partial) allocation s = (s1, . . . , sn) we shall

define the total welfare of the agents as g =
∑

i v
i(s). In this paper we will

be interested in mechanisms (protocols) which are designed to maximize

the total welfare. This goal is justified in many settings. There is also a

basic correlation between maximizing welfare and maximizing the seller’s

revenue. Solving the problem without monetary transfers is impossible (see

a discussion at [8, chapter 23]). We assume that the mechanism can ask

for payment from the agents and that the overall utility of each agent i is

ui = vi(s) + pi where s denotes the chosen allocation and pi the amount of

currency that the mechanism pays to the agent2. In an auction, pi will be

non-positive. This utility is what each agent tries to maximize.

For the sake of the example we take some standard additional assump-

tions on the type space of the agents:

No externalities The valuation of each agent depends only on the items

allocated to her. I.e. {vi(si)|s ⊆ S)} completely represents the agent’s

valuation.

Free disposal Items have non-negative values. I.e if s ⊆ t then vi(s) ≤

vi(t).

Normalization vi(φ) = 0.

Note that the problem allows items to be complementary, i.e.

vi(S
⋃
T ) ≥ vi(S) + vi(T ) or substitutes, i.e. vi(S

⋃
T ) ≤ vi(S) + vi(T )

2This is called the quasi-linearity assumption.
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(S, T disjointed). For example an agent may be willing to pay $200 for

a TV set, $150 for a VCR, $450 for both and only $200 for two VCRs.

The structure of the valuation functions might therefore be complex. The

problem of finding an optimal allocation is equivalent to set-packing and is

NP -hard even to approximate within any reasonable factor.

Note that the valuation functions are not known to the mechanism in

advance. Moreover, if the mechanism is not carefully designed, the agents

will have an incentive to manipulate it for their own self interest. Such

manipulations might severely damage the efficiency of the mechanism. In

mechanism design problems the agents are assumed to be rational in a game

theoretic sense. They choose strategies which are good for them and not nec-

essarily act as instructed. The goal of the designer is to design a mechanism

(protocol) that produces good results under this assumption. Comprehen-

sive surveys of mechanism design theory can be found in [15, chapter 10] [8,

chapter 23].

In order to handle complex problems like combinatorial auctions the

mechanism needs to address the following issues:

• Agents’ valuations might be complex to express.

• The allocation and payments might be hard to compute.

• The mechanism needs to be designed to find good allocations even

though the agents follow their own self interest.

Let us summarize our notations and terminology regarding this problem.

Notations: We shall denote the whole set of items by S and a (possibly

partial) allocation by s = (s1, . . . , sn). Note that the sis are disjointed. We

denote the type of agent i by vi and the group’s type by v = (v1, . . . , vn).

Let pi denote the amount of currency that the mechanism pays to each agent

i and ui the agent’s utility. Given an allocation s and a type v we denote by
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gs(v) the welfare
∑

i v
i(si). Finally we shall use the following vectorial nota-

tion: given a vector a = (a1, . . . , an) we let a−i = (a1, . . . , ai−1, ai+1, . . . , an)

and (bi, a−i) denote the vector (a1, . . . , ai−1, bi, ai+1, . . . , an).

2.2 VCG mechanisms for CA

One of the major achievements of mechanism design theory is the VCG

method for constructing truthful mechanisms. In this subsection we briefly

describe these mechanisms for CA and discuss some of their properties.

The simplest kind of mechanisms are protocols (called revelation mecha-

nisms) where the agents are simply required to (privately) report their types

to the mechanism. According to these declarations the mechanism computes

the allocation and the payments. Note that agents may lie if it is beneficial

for them. Such a mechanism can be denoted by a pair m = (k(w), p(w))

where k denotes the allocation function, p the payment function and w the

agents’ declaration .

Definition 1 (truthful mechanism) A revelation mechanism is called

truthful if truth-telling is a dominant strategy for all agents. I.e. if lying to

the mechanism can never be more beneficial than declaring vi.

VCG mechanism are a special kind of revelation mechanisms.

Definition 2 (VCG mechanism) A VCG mechanism for CA is a reve-

lation mechanism m = (k(w), p(w)) such that:

• The mechanism chooses an allocation s = k(w) that maximizes the

total welfare gs(w) according to the declaration w.

• The payment is calculated according to the VCG formula: pi(w) =∑
j 6=iw

j(s)) + hi(w−i) (hi(.) can be any real function of w−i).

Theorem 2.1 ([5]) A VCG mechanism is truthful.
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Proof: Assume by contradiction that the mechanism is not truthful. Then

there exists an agent i of type vi, a type declaration w−i for the other

agents, and wi 6= vi such that vi(k((vi, w−i))) + pi((vi, w−i)) + hi(w−i) <

vi(k((wi, w−i))) + pi((wi, w−i)) + hi(w−i). Let s = k((vi, w−i)) denote the

chosen allocation when the agent is truthful and let s′ = k((wi, w−i)). The

above inequality implies that gs((vi, w−i)) < gs′((vi, w−i)). This contradicts

the optimality of k(.).

Rational agents will therefore reveal their true type to the mechanism.

Thus, when agents are rational the mechanism will result in the optimal

allocation!

Note that the main trick of this method is to identify the utility of

truthful agents with the declared total welfare. Similar techniques were

introduced in [14] for handling different type of problems. The results pre-

sented here are applicable to their methods as well.

Another desirable property of mechanisms is called individual rationality.

This means that the utility of a truthful agent is guaranteed to be non-

negative. A special kind of VCG mechanism called Clarke’s mechanism

[1] can guarantee this property. It also guarantees that the payment of

agents who are not allocated any object is zero. It does so by setting hi =

−
∑

j 6=i k(w
−i) where k(w−i) denotes the result of the algorithm when agent

i is ”ignored”. Until section 7 we shall only be interested in truthfulness.

Thus, for simplicity we can assume that hi(w−i) ≡ 0.

It is worth notifying that weighted VCG mechanisms are possible as well

(see e.g. [17] [14]). Also the designer can impose her own preferences by

”pretending” to be one of the agents. To date VCG is the only general

known method for the construction of truthful mechanisms. There is also

some evidence [17] that other methods are generally impossible.
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2.3 The intractability of VCG mechanisms

Although VCG mechanisms have many desirable properties, their essential

intractability prevents them from being used for complex problems like CA.

This intractability is twofold: VCG mechanisms require the agents to fully

describe their valuation functions and require the mechanism to find opti-

mal allocations.

The second aspect has been extensively discussed in [13]. This paper

discusses VCG mechanisms where the optimal algorithm is replaced by a

poly-time approximation or heuristics. It shows that mechanisms which are

constructed in this way cannot be truthful. The paper proposes a method

to overcome this non-truthfulness. It suggests a bounded rationality variant

of truthfulness called feasible truthfulness and shows that under reasonable

assumptions there is a general way of constructing poly-time feasible truthful

mechanisms.

An even more fundamental obstacle on the way to the application of VCG

mechanisms (and revelation mechanisms in general) to complex problems is

the fact that the agents are required to describe their valuation functions

to the mechanism. Consider for example a VCG mechanism for CA. One

natural way in which an agent can describe her valuation function to the

mechanism is by reporting a vector of numbers denoting her valuation for

every possible combination of items. This however is infeasible unless the

number of items is very small as it will require a vector of size 2|S| − 1. On

the other extreme, the designer can ask the agent to construct an oracle, i.e.

a program that returns for every set s the agent’s valuation vi(s). However

it is not difficult to see that in order to find the best allocation or even

a reasonable one, the algorithm needs to query the oracle an exponential

number of times.

The natural solution for this problem is to introduce the notion of a
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bidding language (see e.g. [11]) – a language that will enable agents to effi-

ciently represent or at least approximate their valuations but will also allow

the mechanism’s algorithm to compute the desired allocation in polynomial

time. Hopefully such a language will capture most ”real life” valuations.

In addition the designer must provide the agents with instructions of how

to construct these descriptions from their actual valuations. Given such a

language L we can define VCG mechanisms as before. The bidding lan-

guage and allocation algorithm must be constructed in a way that when the

agents follow the designer’s instructions, the results will be good (heuristi-

cally, within a certain factor from the optimum etc.)

The problem with this approach is that there are always valuation func-

tions which are impossible to represent in polynomial-time. We therefore

call such languages incomplete. As such a mechanism is not optimal, the

impossibility results in [13] imply that VCG mechanisms with incomplete

languages cannot be truthful! In other words, agents may have incentives

not to follow the designer’s instructions. Therefore there is no guarantee,

even when the agents are rational, that the overall results will be good.

Moreover, such mechanisms do not even guarantee individual rationality.

That is, there are cases where truthful agents will pay for their allocated

sets more than their actual valuations for them.

In this paper we propose a general method for overcoming this non-

truthfulness. Our solution is in the same spirit of [13]. However several

additional steps are needed to guarantee the good game theoretical proper-

ties of the resulting mechanisms.

3 Example VCG with OR bids

In this section we describe a simple example for a VCG mechanism with

an incomplete bidding language. We shall use this example throughout
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A B AB
Agent1: 1 1 1.25 (2)
Agent2: 0.8 0.8 1.2 (1.6)

Figure 1: Type matrix for the OR example

the paper. We first describe the language and the mechanism. Then we

analyze what strategies rational agents might choose when participating in

it. Note that our language is less expressive than what we expect from real

life mechanisms. We will demonstrate that even with such a language it is

possible to construct mechanisms where truth-telling is the rational strategy.

Following [11] we define an atomic bid to be a pair (s, p) where s ⊆ S is

a set of items and p is a price. The semantic of such a bid is ”my maximum

willingness to pay for s is p”. A description in this language consists of a

polynomial number of such pairs. Given such a description (sj , pj) we can

define, for every set s, the price ps to be the maximal3 sum of pjs such that

sj ⊆ s are disjointed: max{
∑

j pj |(sj ⊆ s) and ∀j 6= k, sj
⋂
sk = φ}. This so

called OR language was used in [20].

Proposition 3.1 [11] OR bids can represent only super-additive valuation

functions.

The OR language therefore assumes that if an agent is willing to pay

up to PA for item A and PB for item B, then she is willing to pay at least

(PA + PB) for both.

Consider now the following (toy) example of a VCG mechanism: There

are only two items A and B. As shown in figure 3, the type of Agent1 is

(1, 1, 1.25) and of Agent2 is (0.8, 0.8, 1.2).
3For the sake of the example we ignore the fact that computing this maximum might

be NP -hard.
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Suppose that the designer instructs the agents to submit their true

valuation for every singleton. In this case we can define a description

di = {(sj , pj)} as truthful if for every item j, pj = vi(j). In other words,

such a description was prepared according to the designer’s instructions.

Consider a VCG mechanism with this language. After the descriptions are

reported, the mechanism allocates the items optimaly (according to the de-

scriptions but not to the actual allocations!). It then calculates the payments

according to the VCG formula. We assume that the designer has a small

reserved price for each item, so objects which are not desired by the agents

are not allocated.

In the example, when both agents are truthful, the mechanism will assign

the valuation in brackets to the set AB (see figure 3). The mechanism in this

case will allocate both items to Agent1 resulting in a utility of ui = 1.25 for

each agent (recall that we assume the simplified form where hi ≡ 0). The

optimal allocation will allocate to each agent one item, resulting in a welfare

of 1.8.

The above mechanism is not truthful. For example if Agent1 ”gives up”

item B and declares (1, 0, 1.25) while Agent2’s declaration remains the same,

it will cause the algorithm to produce the optimal result and therefore will

increase Agent1’s utility to 1.8! The same is true for Agent2. On the other

hand if both agents are ”giving up” the same item, only one item will be

allocated (to Agent1). This will result in a welfare of only 1.0. We shall

call a declaration where the agent reports a 0 value on one of the items

singleton concession. Another reasonable strategy for an agents is to find

a description which will bring the mechanism’s interpretation as close as

possible to her actual valuation. Formally we define the l∞-approximation

of vi(.) to be the description that minimizes maxs |vi(s) − di(s)|4. Such a
4For the sake of the example we ignore the fact that calculating such a description

might be NP-hard.
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description for Agent1 is {2/3, 2/3, 4/3} . Note that the worthwhileness

of such declarations is highly dependent on the declarations of the others.

There are cases where such declarations will considerably improve the result

of the algorithm and therefore will increase the agent’s utility. On the other

hand there are many cases where such designated ”lies” will severely damage

the total welfare and henceforth the agent’s utility.

Note that the Clarke version of the above mechanism does not satisfy

individual rationality. For example, if both agents are truthful, Agent1 gets

both items, but pays 1.6, thereby loosing 0.35.

In this paper we will try to prevent these bad phenomena from happen-

ing.

4 Mechanism1

In this section we describe our first and most basic mechanism. We first

describe the building blocks of the mechanism – oracles, descriptions and

consistency checkers. Then we define the mechanism and formulate its basic

properties. Finally we show that under reasonable assumptions truth-telling

is the rational strategy for the agents.

We start with a formal definition adopted from [13] of computationally

bounded algorithms5.

Definition 3 (algorithm of degree d) Let n denote the number of agents.

We say that a function F is of degree d if its running time is bounded by

some polynomial of degree d of n.

Our mechanism fixes a constant c = O(nd) and terminates each function

that runs more than c time units (see section 7 for more details).
5There are several alternative definitions. This one simplifies the formalization of the

results.
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4.1 Oracles and valid descriptions

All the mechanisms described in this paper ask the agents to prepare oracles

that represent their valuation functions. These oracles are queried by the

mechanisms in order to measure the total welfare. Formally:

Definition 4 (oracle) An oracle is a function w : 2S → R+. It is called

truthful for agent i if wi(s) = vi(s) for every set s.

We shall assume that agents are capable of preparing such oracles6. We

also assume that all the oracles are of degree d.

As mentioned earlier, it is hard for allocation algorithms to work with

oracles. We assume that the allocation algorithm accepts as input descrip-

tions in some bidding language (e.g. the OR language) and ask the agents

to prepare such descriptions. A consistency checker verifies that the agents’

descriptions are consistent with their oracles.

Definition 5 (valid description) A consistency checker is a function

ψ(w, d) such that:

• ψ(w, d) gets an oracle w and a description d in the bidding language

and returns a ”corrected” oracle w′.

• for every oracle w there exists at least one description d such that

w = ψ(w, d). Such ”fixpoint” descriptions are called valid.

Semantically, a valid description was prepared according to the designer’s

instructions. Since the mechanism can always use the ”corrected” oracle w′

we shall assume that agents’ descriptions are valid. We also assume that a

consistency checker of degree d is available to the designer and that given a
6The tools which must be provided by the designer in order to make this assumption

realistic are not discussed in this paper.
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declaration d, the designer can compute an oracle wd such that d is a valid

description of wd. We say that an agent’s description is truthful if it is a

valid description of a truthful oracle.

In the OR language for example we can define w′(s) = p for every atomic

bid (s, p) in the description. Creating an oracle w from a description d such

that d is valid is straight forward.

4.2 Appeal functions

Another basic building block of our mechanism is the notion of appeal func-

tions. This is a modification of the appeals that were introduced in [13].

Intuitively an appeal function lets an agent incorporate her own knowledge

about the algorithm into the mechanism. The idea is that instead of declar-

ing a falsified type, the agent can follow the designer’s instructions and ask

the mechanism to check whether the false description would have lead to

better results. The mechanism will then choose the better of these two

possibilities leveraging both the agent’s utility and the total welfare.

Definition 6 (appeal) An appeal function gets as input the agents’ oracles

and valid descriptions and returns a tuple of alternative descriptions. I.e.

it is of the form: l(w1, . . . , wn, d1, . . . , dn) = (d′1, . . . , d′n) where di is a valid

description of wi.

Note that the d′is do not have to be valid. The semantics of an appeal l is:

“when the agents’ type is w = (w1, . . . , wn) and is described by (d1, . . . , dn),

I believe that the output algorithm k produces a better result if it is given

d′ instead of the actual description d”.

We assume that all appeal functions are of degree d for some reasonable

value of d. In section 7 we will discuss ways to enforce such a limit.

In our OR example (section 3) an appeal for Agent1 might try to give

up one of the items (i.e. perform a singleton concession) or try to give up
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item A for herself and B for Agent2 etc.

The actual implementation of the appeal functions is discussed in sub-

section 7.

4.3 Mechanism1

We can now define our first mechanism.

Definition 7 (mechanism1) Given an allocation algorithm k(d), and a

consistency checker for the bidding language we define mechanism1 as fol-

lows:

1. Each agent submits to the mechanism:

• An oracle wi(.).

• A (valid) description di.

• An appeal function li(.).

2. Let w = (w1, . . . , wn), d = (d1, . . . , dn). The mechanism computes the

allocations k(d), k(l1(w, d)), . . . , k(ln(w, d)) and chooses among these

allocations the one that maximizes the total welfare (according to w!).

In other words, the mechanism tries all the appeals and chooses the

one that yields the best result.

3. Let ŝ denote the chosen allocation. The mechanism calculates

the payments according to the VCG formula: pi =
∑

j 6=iw
j(ŝ) +

hi(w−i, d−i, l−i) (hi(.) can be any real function).

Note that hi(.) is independent of agent i. Until section 7 we simply assume

that it is always zero. Note also that we do not require the allocation

algorithm k(.) to be optimal. It can be any polynomial time approximation

or heuristic.
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An action (strategy) in mechanism1 is a triplet (wi, di, li). We say that

such an action is truthful if wi is truthful. The following two observations

are key properties of the mechanism:

Proposition 4.1 Consider mechanism1 with an allocation algorithm k(.).

Let d = (d1, . . . , dn) denote the agents’ descriptions. If all the agents are

truth-telling, the allocation chosen by the mechanism is at least as good

as k(d).

Proposition 4.2 If the allocation algorithm k, the appeal functions, oracles

and consistency checkers are of degree d, then the mechanism is of degree

d+ 2.

Let ŝ denote the chosen allocation. Let ṽ = (vi, w−i). Since we assume

that hi() = 0, the utility of agent i equals gŝ(ṽ) – the total welfare when the

allocation is ŝ and the type is ṽ . Lying to the mechanism, i.e. submitting an

oracle wi 6= vi, is thus beneficial for the agent only if it causes the mechanism

to compute a better result (relatively to ṽ). (For a more comprehensive

discussion see [13].) Note that when an agent lies to the mechanism, she

may not only cause damage to the algorithm’s result, but may also cause

the mechanism to prefer the wrong allocation on the second stage. Thus,

an agent needs to have a good reason for lying to the mechanism.

We will show that under reasonable assumptions on the agents, truth-

telling is the rational strategy for the agents. Thus, when the agents are

rational, the result of the mechanism is at least as good as the result of the

allocation algorithm on the truthful descriptions.
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4.4 An example

Consider the OR example of section 3. Suppose that Agent1 notices that

usually the result of the algorithm improves when she is giving up item A.

In a VCG mechanism the agent may be tempted to misreport in order to

increase the total welfare and henceforth her own utility. In many cases how-

ever this will cause damage to the overall welfare and henceforth to Agent1.

In our mechanism Agent1 can, instead of lying, declare her true type to the

mechanism and ask it to check whether such a lie would have been helpful.

If so, it prefers the result that was obtained by ”lying”. Otherwise, the

mechanism prefers the result of the algorithm on the truthful description

and thus prevents the damage that would have been caused by the lie. This

form of appeal functions provides the agents with a lot of power. Suppose,

for example, that Agent1 notices that the result improves if she gives up

item A while Agent2 is giving up item B. As before, the agent can ask the

mechanism to check whether such a transformation of the input would have

improve the overall result.

We note that not every knowledge of the agent about the allocation

algorithm k(.) can be exploited in this mechanism. Suppose that Agent1

notices that when both agents submit l∞-approximations of their valuations

the overall result improves. However, as she is given an oracle for v2, she

cannot compute Agent2’s approximation as it requires her to query the

oracle for every possible subset. Therefore, she cannot exploit her knowledge

about the algorithm. Such phenomena is problematic and do not occur in

the setting of [13].

4.5 When is it rational to tell the truth to the mechanism?

It was shown in [13] that even with full descriptions available, non-optimal

VCG mechanisms cannot be truthful (unless they produce unreasonable re-
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sults). That paper introduces a bounded rationality variant of the concept

of dominant strategies called feasible dominance and shows that under rea-

sonable assumptions truth-telling is feasibly dominant for the agents. This

paper follows this pattern. In this section we first describe the basic con-

cepts of [13]. We then consider mechanis1 and analyze the conditions under

which truth-telling is feasibly dominant for the agents.

4.5.1 Feasibly dominant actions (FDAs)

In this section we briefly describe the main concepts of [13]. The reader is

referred to this paper for a more comprehensive discussion.

Notations: We denote the action (strategy) space of agent i by Ai. Given a

tuple a = (a1, . . . , an) of actions chosen by the agents, we denote the utility

of agent i by ui(a).

In mechanism1 an action for the agent is a triplet (wi, di, li).

In classical game theory, given the actions of the other agents a−i, the

agent is (implicitly) assumed to be capable of responding by the optimal ai.

As the action space is typically very complex, this assumption is not natural

in many real-life situations. The concept of feasibly dominant actions re-

formulates the concept of dominant actions under the assumption that the

agent has only a limited capability of computing her response. It is meant

to be used in the context of revelation games.

Definition 8 (strategic knowledge) Strategic knowledge (or response

function) of agent i is a partial function bi : A−i → Ai.

Knowledge is a function by which the agent describes (for herself!) how

she would like to respond to any given situation. The semantics of ai =

bi(a−i) is “when the others’ actions are a−i, the best action which I can

think of is ai”. The fact that a−i is not in the domain of bi means that the
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agent does not know how to respond to a−i or alternatively will not regret

her choice of action when the others played a−i. Naturally we assume that

each agent is capable of computing her own knowledge and henceforth that

bi is of degree d.

Definition 9 (feasible best response) An action ai for agent i is called

feasible best response to a−i if either a−i is not in the domain of the agent’s

knowledge bi or ui((bi(a−i), a−i)) ≤ ui(a).

In other words, other actions may be better against a−i but at least

when choosing her action the agent was not aware of these.

The definition of feasibly dominant actions now follows naturally.

Definition 10 (feasibly dominant action) An action ai for agent i is

called feasibly dominant if it is a feasible best response against any a−i. We

also call such an action FDA .

It was argued in [13] that if an agent has feasibly dominant actions

available, then it is irrational not to choose one of them.

4.5.2 When is it rational to tell the truth to the mechanism?

Recall that the overall utility of each agent i equals gŝ(ṽ) where ŝ denotes

the chosen allocation and ṽ = (vi, w−i). It is not difficult to see that when

the agent declares a falsified valuation, there are cases where she will con-

sequently lose. The agent needs therefore a good reason for lying to the

mechanism. When the appeals of the agents are time-limited (i.e. of degree

d) it was shown in [13] that the existence of FDAs for the agents must rely on

further assumptions on the agents’ knowledge. Here we formulate two such

assumptions and show how to construct computationally efficient truthful

FDAs for the agents.
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Definition 11 ([13]) (declaration based knowledge) Knowledge bi(.) is

called declaration based if it is of the form bi(w−i, d−i) = (wi, di).

The semantics of declaration based knowledge is: “If I knew that the

others declare (w−i, d−i), regardless of their appeals, I would like to declare

(wi, di)”. In our OR bids example of section 3, such knowledge for Agent1

may be: ”If Agent2 has a high valuation for item B, I would like to give it

up”.

A declaration based knowledge naturally defines an appeal function

which we also denote by bi(.): bi(w, d) = (bi(w−i, d−i), d−i).

Theorem 4.3 If bi(.) is a declaration based knowledge for agent i then

(vi, di, bi) is feasibly dominant for the agent.

Proof: Let ŝ denote the chosen allocation. Let ṽ = (vi, w−i). Recall that

the utility of agent i equals gŝ(ṽ). Also let φ denote the empty appeal.

Assume by contradiction that there exists a−i = (w−i, d−i, φ−i) that con-

tradicts the agent’s knowledge. Note that the appeals of the other agents

can be assumed empty and also that it must be that a−i is in the domain of

bi(.). Let (w′i, d′i) = bi(a−i). Let s = k(d) and let s′ = k(d′i, d−i) denote the

allocation when she lies. By the assumption, gs(ṽ) < g′s(ṽ). However when

the agent truthfully submits (vi, di, bi) the mechanism computes s = k(d)

and s′ = k(d′i, d−i) and takes the better among them according to ṽ. A

contradiction.

Definition 12 ([13])(appeal independent knowledge) Knowledge bi(.)

is called appeal independent if it is of the form bi(w−i, d−i) = (w′i, d′i, li).

Theorem 4.4 If bi(.) is an appeal independent knowledge of agent i then

there exists a truthful FDA of degree d for the agent.
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Proof: Define an appeal li as follows. Given (w−i, d−i) let (w′i, d′i, l′i) =

bi(w−i, d−i). li computes k(d′i, d−i), k(l′i((w′i, w−i), (d′i, d−i))) and takes the

best according to (vi, w−i). Since all the functions involved are of degree d,

so is li(.). Similarly to theorem 4.3, (vi, li) is an FDA.

The semantics of declaration based knowledge is the same as declaration

based except that the agent also submits an appeal li.

Agents who are not capable of reasoning about others’ appeals or do

not want to count on them would have appeal independent knowledge. We

argue that this would be the most common case. In all of the examples of

section 4.4 the agents’ knowledge was appeal independent.

5 Mechanism2: moving information around

A major difficulty that arises when coping with incomplete languages is

the asymmetric knowledge of the agents regarding their own valuations.

For example, in the setting of section 3, it is reasonable to assume that

Agent1 can compute her own l∞-approximation but Agent2 cannot compute

it. Thus, Agent1 might face the following considerations:

• The result of the algorithm improves significantly when all agents re-

port their l∞-approximations.

• Reporting my l∞-approximation instead of my truthful description,

will enable Agent2 to compute the optimal result.

In other words, in mechanism1, agents may want to misreport in order to

pass useful information about their own valuation to the others. In order to

prevent this we modify the mechanism to allow the agents to convey such

information.

Definition 13 (information structure) An information structure Ii

for agent i is a sequence of descriptions (possibly with repetitions)
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(d0, d1, . . . , dk) such that d0 is a valid description.

In addition we require each agent to provide for each dj an example

(w−i, d−i) such that k(dj , d
−i) is a better allocation than k(d0, d

−i). This is

done in order to force the agents to submit only useful information.

Ii contains additional information that the agent can pass to the others’

appeals. The semantics of Ii is ”My valid description is d0. Nevertheless, I

suggest that you first try to work with d1, after that with d2, etc”. Many

alternative ways to define such information structures are possible. It may

be interesting to compare between different structures.

We can now define our second mechanism.

Definition 14 (mechanism2) Given an allocation algorithm k(d), and

consistency checker for the bidding language we define mechanism2 as fol-

lows:

1. Each agent submits to the mechanism:

• an oracle wi. (let w = (w1, . . . , wn))

• an information structure Ii. (let I = (I1, . . . , In))

• an appeal function of the form li(w, I) = d.

2. The mechanism computes the allocations

k(d), k(l1(w, I)), . . . , k(ln(w, I)) and chooses among these alloca-

tions the one that maximizes the declared total welfare.

3. The mechanism calculates the payments according to the VCG formula.

We can now expand the definition of knowledge under which the exis-

tence of truthful FDAs is guaranteed. This definition refers to knowledge

that was obtained by checking a representative family of (tuples of) appeals

of the other agents.

25



Definition 15 [13] (d-obtainable knowledge) Knowledge bi(.) is called

d-obtainable if the following holds:

1. bi is of degree d.

2. Every appeal function that appears in the domain or in the range of

bi(.), is of degree d.

3. There are at most nd appeal functions that appear in the domain or

in the range of bi(.). Moreover there exists a representative family Li

of no more than nd (n− 1)-tuples of appeals such that for every tuple

ϕ−i that appears in the domain of bi there exists a ψ−i ∈ Li such that

for all (w−i, I−i), bi(((w−i, I−i), ϕ−i)) = bi(((w−i, I−i), ψ−i)).

The assumption that agents’ knowledge is d-bounded is justified by the

immense complexity of the appeal space. It assumes that an agent cannot

think about more than a small family of representative cases Li. For a more

comprehensive discussion on this assumption see [13]. We need an additional

assumption on the appeal class that the agent considers. We will remove

this assumption later on.

Definition 16 (monotonic appeal) We say that an appeal function l(.)

is monotonic if for every w and for every two structures I = (I1, . . . , In)

and I ′ = (I ′1, . . . , I ′n) such that Ij is a subset of I ′j for all j, k(l(w, I ′)) is

at least as good as k(l(w, I ′)).

In other words, giving more information to the appeal can just help it

to compute a better result. We cannot expect the appeals to be monotonic

as such monotonicity usually requires exponential time. However, it is rea-

sonable to think that appeals will be monotonic in general, that is that the

addition of useful information and, in particular, of truthful descriptions,
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usually helps the appeals to improve the overall result. Changing the order

of the dis in the information structures does not affect monotonic appeals.

Definition 17 (monotonic d-obtainable knowledge) Knowledge for

agent i is called monotonic d-obtainable if it is d-obtainable and all the

appeals that appear in its domain or in its range are monotonic.

Theorem 5.1 If the agent’s knowledge is monotonic d-obtainable, she has

a truthful FDA of degree 3 · d.

Proof: Let Ii denote a maximal sequence of useful information that an

agent i can compute (i.e. it contains all the cases that the agent finds

useful). Let bi be a d-obtainable knowledge for agent i. Given (w−i, I−i) we

shall define an appeal li as follows: Let L be the family of all appeals that

appear in the domain or in the range of bi. Let Li be the representative

family. We define ω to denote the set of all the ”useful lies” ω = {wi|∃ψ−i ∈

Li, ϕis.t.(wi, Ii, ϕi) = bi(w−i, I−i, ψ−i)}. Obviously |W |, |L| are bounded by

a polynomial of degree d.

For every pair (wi ∈ ω, l ∈ L) we let li compute the result of l as if she

had submitted (wi, Ii, l), i.e. compute k(l(wi, w−i), (Ii, I−i)). The appeal

returns the best of these allocations according to (vi, w−i).

As all the functions involved are of degree d, it is not difficult to verify

that the appeal is of degree 3 · d.

We now show that submitting (vi, Ii, Li) is an FDA. Otherwise there ex-

ists a triplet (w−i, I−i, l−i) that contradicts bi(.). Since bi(.) is d-obtainable

we can assume that l−i is in the representative family. Let (wi, ιi, δi) =

bi(w−i, I−i, l−i). Because of the monotonicity we can assume that ιi con-

tains all the useful information that i can think of (i.e. ιi = Ii). However

the appeal li checks the case where i submits (wi, Ii, δi). Therefore lis result

must be at least as good as the result of the mechanism in this case – a

contradiction.
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6 Mechanism3: adding meta-appeals

In section 5 we assumed that the agents’ appeals are monotonic. Our final

step is to get rid of this assumption. We first define the notion of a meta-

appeal.

Definition 18 (meta appeal) A meta appeal is a function that gets a

vector of information structures I = (I1, . . . , In) and returns a list of vectors

of the form I ′ = (I ′1, . . . , I ′n) such that I ′j is a subset of Ij.

In other words, the meta appeals compute a list of alternative informa-

tion structures for the group. Note that many variants of this definition are

possible. We assume that all the meta-appeals are of degree d.

Definition 19 (mechanism3) Given an allocation algorithm k(d), and a

consistency checker for the bidding language we define mechanism3 as fol-

lows:

1. Each agent submits to the mechanism:

• An oracle wi. (let w = (w1, . . . , wn))

• An information structure Ii. (let I = (I1, . . . , In))

• An appeal function of the form li(w, I).

• A meta appeal χi(.).

2. The mechanism computes a list Γ containing all the results of the meta-

appeals as well as the original tuple of information structures I.

3. The mechanism computes, for every pair (lj , I ′) such that I ′ ∈ Γ and lj

is an appeal, the allocation k(lj(w, I ′)). It also computes k(d). It then

chooses among these allocations the one that maximizes the declared

total welfare.
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4. The mechanism calculates the payments according to the VCG formula.

Note that the mechanism is of degree d+ 3.

We can now define d-obtainable knowledge similarly to the previous sec-

tion. We add however the condition that it ignores the meta appeals of the

other agents.

Definition 20 [13] (d-obtainable knowledge of mechanism3) We say

that knowledge bi(.) of mechanism3 is d-obtainable if the following holds:

1. bi(.) is of degree d.

2. bi(.) ignores the meta-appeals of the other agents, i.e it is of the form

bi(w−i, I−i, l−i) = (wi, Ii, li).

3. Every appeal function that appears, in the domain or in the range of

bi(.), is of degree d.

4. There are at most nd appeal functions that appear in the domain or

in the range of bi(.). Moreover there exists a representative family Li

of no more than nd (n− 1)-tuples of appeals such that for every tuple

ϕ−i that appears in the domain of bi(.) there exists a ψ−i ∈ Li such

that for all (w−i, I−i), bi(((w−i, I−i), ϕ−i)) = bi(((w−i, I−i), ψ−i)).

The main justification behind the assumption that bi ignores the meta-

appeals is that the space of meta-appeals is extremely complex. Moreover,

properties of the meta-appeals are only partially connected to the actual

bidding language or the algorithm. The only potential profit from lying

that we can imagine are ”extra-trials” of the allocation algorithm when the

others’ appeals are forced to use the agent’s false description. We presume

that such potential gains are negligible compared to the obvious loss caused

by lying. It is also natural to think that if the appeals of the other agents
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ignore the agent’s recommendation to use d1, they have a good reason to do

so. We argue that knowledge which is not d-obtainable is unlikely to exist.

However, this ”thesis” needs to be checked experimentally.

Theorem 6.1 If the agent’s knowledge is d-obtainable, then she has a truth-

ful FDA (vi, I, li, χi) such that li is of degree 3 · d and χi of degree d.

Proof: Similarly to the proof of 5.1, given (w−i, I−i), we define the set of

”useful lies” ω = {wi|∃ψ−i ∈ Li, ϕis.t.(wi, Ii, ϕi) = bi(w−i, I−i, ψ−i)}, and

the family L of appeals which appear in bi(.). In addition we define the

set of useful information structures χi = {Ii|∃ψ−i ∈ Li, ϕis.t.(wi, Ii, ϕi) =

bi(w−i, I−i, ψ−i)}. We define I to be a union of all I ∈ χi, an appeal li like

in the proof of 5.1. The proof that (vi, I, li, χi) is an FDA is similar to 5.1.

6.1 Example: Mechanism3 with OR bids

Consider mechanism3 for CA with OR bids (section 3). Suppose that Agent1

notices the following phenomena:

1. When all agents perform l∞-approximations the result of k(.) usually

improves considerably.

2. The result also typically improves if agents perform singleton conces-

sions on different items. The improvement however is less significant

than in the first case.

Such an agent may anticipate three kinds of appeals:

• Appeals of agents that notice the first phenomenon and will therefore

leverage from her l∞-approximation.

• Appeals of agents who notice only the second phenomenon and will

only be disturbed by her l∞-approximation.
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• Appeals that will work best with her valid description.

Mechanism3 gives Agent1 the possibility of constructing a strategy that

will dominate every case that she can think of! She just needs to include

in her meta appeal three information structures. One that includes only her

valid description, one that will include her singleton concessions as well and

one that will also include her l∞-approximation.

We note that there exist additional ways to justify why truth-telling

is the rational strategy for the agents. Those are omitted from the paper

mainly due to space constraints.

7 Other implementation issues

In this section we address two additional issues which a designer may face

when implementing our mechanisms: guaranteeing individual rationality

and forcing reasonable time limitations on the agents.

In [13] it was shown that the allocation algorithm can be transformed

in polynomial time to an algorithm which satisfies additional monotonicity

requirements. With such an algorithm it is possible to define the function

hi(.) of our mechanisms similarly to Clarke’s mechanism [1]. The proof that

the resulting mechanisms satisfy individual rationality is similar to [13].

This paper shows that if enough computational time is given to the

agents, they can construct truthful FDAs. On the other hand the mechanism

needs to find a way to enforce reasonable time limits on the computational

time of the agents, i.e. to enforce time limits on the appeals and meta

appeals. This issue was discussed in [13]. In particular it was suggested that

knowledge-reflecting structure will be chosen for description of the appeal

functions. Such a structure enables the limitation of the computational time

of the appeals according to the agents’ own limitations and thus preserves

the existence of truthful FDAs. We presume that severe limitations can
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be imposed on the length of the lists produced by the meta appeals while

preserving the existence of FDAs. Finally, we think that it is a good heuristic

to charge small fees for extra computational time.

At a first glance our protocols may seem to put a lot of burden on the

agents. However we argue that with the right tools (e.g. tools for building

oracles), mechanisms like ours can become even more ”agent friendly” than

non-revelation mechanisms.

8 Conclusions and further research

In this paper we propose a general way to overcome the deficiencies of VCG

mechanisms with incomplete languages. Given an intermediate language, a

consistency checker, and an algorithm for the computation of the outcomes

(e.g. allocations) we construct three mechanisms, each more powerful but

also more time-consuming than its predecessor. All our mechanisms have

polynomial computational time and satisfy individual rationality.

We adopt the strong concept of feasible dominant strategies of [13] which

is a bounded rationality version of dominant strategies and showed that un-

der reasonable assumptions on the agents’ knowledge, truth-telling is feasibly

dominant for the agents. In addition when an agent lies to the mechanism,

there are cases where she will consequently lose.

When the agents are truth-telling the results of our mechanisms are at

least as good as the mechanisms’ algorithm. Our methods are general and

can be applied to any VCG , weighted VCG or compensation and bonus [14]

mechanism.

The paper assumes that in practice, agents will have only limited knowl-

edge and thus will not be able to do better than their truthful FDAs. This

thesis can and should be checked by experiments with ”real” agents. On

the other hand we feel that this assumption will remain true even when
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severe time limitations are forced on the agents. In fact it will not even be

a surprise if even in a VCG mechanism, if the bidding language and the

allocation algorithm are reasonably designed, the agents will not be able to

do better than truth-telling! This too can be checked experimentally.

Very little is currently known about the revenue of mechanisms for com-

plex problems. In particular note that when a non-optimal VCG mechanism

is naively used for a combinatorial auction, there are even cases where the

mechanism must pay to the agents instead of vice-versa!

In our constructions, there are several tools that the designer must pro-

vide to the agents. Tools to construct oracles, descriptions, appeals etc.

Methods for providing such tools were not discussed in this paper and are

crucial for the success of our mechanisms.

Finally we note that it might be fruitful to explore the possibility of using

appeal functions in situations where the agents have budget limits. When

such limits exist, agents may have incentives to cause others to run out of

budget and it is not likely that dominant strategy mechanisms exist. One

natural way to deal with budget limits, is to truncate the agent’s valuation

to her limit and then use VCG [12]. Truth-telling in this mechanism is a

safe strategy for the agent as she never pays more than her budget. We

argue that appeals of certain forms can play the role of threats and prevent

the worth-willingness of causing others to run out of budget.
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