Adaptive Demand-Driven Multicast Routing
in Multi-Hop Wireless Ad Hoc Networks

Jorjeta G. Jetcheva
Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15213-3891 USA
jorjeta@cs.cmu.edu

David B. Johnson
Department of Computer Science
Rice University
Houston, TX 77005-1892 USA
dbjecs.rice.edu

http://www.monarch.cs.rice.edu/

Abstract

The use of on-demand techniques in routing protocols for multi-
hop wireless ad hoc networks has been shown to have significant
advantages in terms of reducing the routing protocol’s overhead
and improving its ability to react quickly to topology changes in
the network. A number of on-demand multicast routing protocols
have been proposed, but each also relies on significant periodic
(non-on-demand) behavior within portions of the protocol. This
paper presents the design and initial evaluation of the Adaptive
Demand-Driven Multicast Routing protocol (ADMR), a new on-
demand ad hoc network multicast routing protocol that attempts to
reduce as much as possible any non-on-demand components within
the protocol. Multicast routing state is dynamically established and
maintained only for active groups and only in nodes located be-
tween multicast senders and receivers. Each multicast data packet is
forwarded along the shortest-delay path with multicast forwarding
state, from the sender to the receivers, and receivers dynamically
adapt to the sending pattern of senders in order to efficiently balance
overhead and maintenance of the multicast routing state as nodes
in the network move or as wireless transmission conditions in the
network change. We describe the operation of the ADMR protocol
and present an initial evaluation of its performance based on detailed
simulation in ad hoc networks of 50 mobile nodes. We show that
ADMR achieves packet delivery ratios within 1% of a flooding-
based protocol, while incurring half to a quarter of the overhead.

1.

Multicast routing is becoming an important networking service in
the Internet for supporting applications such as remote conferencing,
resource discovery, content distribution, and distributed games. In
wireless ad hoc networks, these and other uses are expected to also

Introduction

This work was supported in part by the NASA Cross Enterprise Technology
Development Program under Grant Number NAG3-2534. The views and
conclusions contained here are those of the authors and should not be inter-
preted as necessarily representing the official policies or endorsements, either
express or implied, of NASA, Rice University, Carnegie Mellon University,
or the U.S. Government.

Permission to make digital or hard copies of part or al of this work or
persona or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citdion on thefirst page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or afee.

MobiHOC 2001, Long Beach, CA, USA

© ACM 2001 1-58113-390-1/01/10...$5.00

33

be important. An ad hoc network is a group of wireless mobile nodes
which self-organize into a network in order to communicate. Such
networks can operate without the need for existing infrastructure or
configuration. Each mobile node in the network acts as a router and
forwards packets on behalf of other nodes. This “multi-hop” for-
warding allows nodes beyond direct wireless communication range
of each other to communicate. Routing protocols for ad hoc net-
works must discover such paths and maintain connectivity when
links in these paths break due to effects such as node motion, radio
propagation, or wireless interference.

Most prior work in ad hoc network routing has focused on routing
of unicast packets, but a number of ad hoc network multicast routing
protocols have been proposed over the past few years as well [19,
25,8, 14, 13, 24, 23, 2, 4, 22], using a variety of basic routing algo-
rithms and techniques. Of these multicast routing protocols, a few
attempt to operate in an on-demand fashion [19, 22, 14, 13, 24, 12],
in which the operation of the protocol is driven by the presence of
data packets being sent rather than by continuous or periodic back-
ground activity of the protocol. For routing of unicast packets in
ad hoc networks, such on-demand operation has been shown to have
substantial advantages in terms of the routing protocol’s overhead
and ability to react quickly to routing changes in the network. We
believe that similar benefits also hold for multicast routing in ad hoc
networks.

However, designing an ad hoc network multicast routing protocol
that operates entirely on-demand is difficult, although several such
multicast protocols have been proposed [14, 12]. These protocols
perform well in scenarios with small groups [14] or in networks
in which mobility is very high and flooding is the only way to de-
liver packets successfully [12]. However, these protocols do not
scale well and are not efficient to use as general-purpose multicast
protocols.

Previous efforts to design general-purpose multicast protocols for
ad hoc networks have utilized various periodic (non-on-demand)
mechanisms within some portions of the protocol. The overall
on-demand nature of such protocols derives from the fact that
significant portions of the protocol operation are active only for
active multicast groups. However, the periodic mechanisms within
the protocol are responsible for core routing functionality and
may substantially limit the benefits of the protocol’s otherwise
on-demand operation. For example, the On-Demand Multicast
Routing Protocol (ODMRP) [19] builds multicast meshes through
periodic network-wide control packet floods. The protocol relies on
these floods to repair link breaks in the mesh that occur between the
floods. The Multicast Ad Hoc On-Demand Distance Vector protocol



(MAODV) [22] requires continuous periodic neighbor sensing for
link break detection, and periodic “group hello messages” for multi-
cast forwarding state creation. The hello messages are sent regard-
less of whether or not there are any senders for the multicast group
in the network, as long as there is at least one receiver. Similarly to
MAODYV, the Associativity-Based Multicast (ABAM) protocol [24]
requires continuous periodic neighbor sensing for link break de-
tection and distribution of link characteristics. In addition, these
protocols rely on explicit “prune” messages for deletion of forward-
ing state that is no longer needed. Loss of an explicit prune message
because of wireless interference or because the sender of the prune
message has moved out of range of the intended recipient of the
prune, leads to significant unnecessary overhead as nodes continue
forwarding packets even though there are no receivers for the group
that are interested in receiving them downstream.

This paper presents the design and initial evaluation of the
Adaptive Demand-Driven Multicast Routing protocol (ADMR), a
new on-demand multicast routing protocol for wireless ad hoc net-
works that attempts to reduce as much as possible any non-on-
demand components within the protocol.

In ADMR, source-based forwarding trees are created whenever
there is at least one source and one receiver in the network. ADMR
monitors the traffic pattern of the multicast source application, and
based on that can detect link breaks in the tree, as well as sources
that have become inactive and will not be sending any more data. In
the former case, the protocol initiates local repair procedures, and
then global repair if the local repair fails. In the latter case, multicast
forwarding state is silently expired without the need to send an ex-
plicit shutdown message. To enable monitoring for link breaks in the
multicast forwarding tree when the source is not sending data tem-
porarily, ADMR sends a limited number of keep-alives at increasing
inter-packet times. When the source has not sent any data for a pe-
riod of time that constitutes a significant deviation from its sending
pattern, the keep-alives stop and the entire tree silently expires. A
significant deviation from a source’s sending pattern is an indication
that the source is likely to be inactive for a while, in which case it
would be wasteful to maintain routing state in the network. ADMR
also prunes individual branches of the tree automatically, when they
are not necessary for forwarding. These pruning decisions are based
on lack of passive acknowledgements from downstream, instead of
relying on the receipt of an explicit prune message.

Each multicast data packet is forwarded from the sender to the
multicast receivers using MAC-layer multicast transmissions along
the shortest-delay path between nodes with forwarding state for the
group.

To deal with partitions, ADMR occasionally sends an existing
multicast data packet instead as a network flood, taking the place of
the multicast distribution of this existing packet. This data packet
flood is used only at infrequent intervals (e.g., once per several
tens of seconds) and only when new data is being sent to the given
multicast group; in addition, this flood is not a required protocol
mechanism and does not represent core functionality.

ADMR also detects when mobility in the network is too high
to allow timely multicast state setup and maintenance, without re-
quiring GPS or other positioning information or additional control
traffic. ' When such high mobility is detected, ADMR temporarily
switches to flooding of each data packet, and after a short time, the
protocol again attempts to operate efficiently with multicast routing,
as the mobility in the network may have decreased.

To summarize, the novel features of ADMR include:

o ADMR uses no periodic network-wide floods of control pack-
ets, periodic neighbor sensing, or periodic routing table ex-
changes; and requires no core (no other protocol has all these
properties in one protocol).

o ADMR adapts its behavior based on application sending pat-
tern, allowing efficient detection of link breaks and expiration
of routing state that is no longer needed.

e Bursty sources are handled by sending a limited number of
keep-alives along the multicast tree, in order to distinguish lack
of data from disconnection.

o ADMR uses passive acknowledgements for efficient automatic
tree pruning.

o If there are no receivers, sources only flood infrequent existing
data packets (to heal partitions) and do not transmit other data
or control packets.

e ADMR can detect high mobility without the use of GPS or
other positioning information or additional control traffic, and
can switch to flooding for some period of time before reverting
back to normal multicast operation.

Section 2 of this paper describes the design of the ADMR protocol,
including the data structures and packet types used and the opera-
tion of the different aspects of the protocol. Section 3 describes
our simulation methodology in evaluating ADMR, and Section 4
presents an evaluation of ADMR based on detailed simulations in
ad hoc networks of 50 mobile nodes moving at average speeds of
1 m/s and at 20 m/s. We also compare this performance to that of
ODMRP [19] running on the same simulation scenarios; we compare
ADMR against ODMRP since it is the best-studied on-demand mul-
ticast protocol for ad hoc networks. In Section 5, we discuss related
work, and finally, Section 6 summarizes and presents conclusions.

2. ADMR Protocol Description
2.1. Overview

Multicast senders and receivers using ADMR cooperate to estab-
lish and maintain forwarding state in the network to allow multicast
communication. We assume that nodes in the network may move
at any time, and that any packet may be lost due to factors such as
packet collision, wireless interference, or distance. ADMR adap-
tively monitors the correct operation of the multicast forwarding
state and incrementally repairs it when one or more receivers or
forwarding nodes become disconnected from the sender.

ADMR supports the traditional IP multicast service model of al-
lowing receivers to receive multicast packets sent by any sender [6],
as well as the newer source-specific multicast service model in which
receivers may join a multicast group for only specific senders [10].
As in both multicast service models, a node need not be a receiver
for the group to be able to send to the group, senders need not declare
their intention to send multicast packets to the group before doing
so, and senders need not explicitly declare their intention to stop
being multicast senders.

The multicast forwarding state for a given multicast group G
and sender S in ADMR is conceptually represented as a loosely-
structured multicast forwarding tree rooted at S. Each multicast
packet is dynamically forwarded from S along the shortest-delay
path through the tree to the receiver members of the multicast group.

Only members of the multicast forwarding tree forward multicast
packets, and each node forwards each packet at most once. In addi-
tion, packets are not constrained to follow any particular branches or
parent/child links while being forwarded. For example, in Figure 1,



receiver R1 receives packet X through node B but receives packet Y
through node D. This can happen when node D acquires the me-
dia before B and forwards packet MHO®Y first, or when B does
not receive the packet correctly due to wireless interference and is
therefore unable to forward it. (All figures pertaining to the protocol
description depict transmission of packets as arrows. For clarity,
reception of a packet is generally only shown for nodes that will
forward the packet further, i.e., we do not depict each transmission
as a broadcast received by all nodes within range, even though the
wireless medium we are considering is a broadcast medium.)

We refer to the flood of a packet constrained to the nodes in
the multicast forwarding tree as a tree flood, and to the more gen-
eral type of flood of a packet through all nodes as a network flood
(Figure 2). This use of flooding within the multicast forwarding
tree is similar to the “forwarding group” concept introduced in the
FGMP protocol [4] and used also in ODMRP [19], except that our
forwarding state is specific to each sender rather than being shared
for the entire group. When a sender using ADMR sends a multicast
packet, it floods within the multicast distribution tree only towards
the group’s receivers, whereas with FGMP or ODMRP, the packet
also floods back towards any other senders that are not receivers.
Although this difference requires us to maintain source-specific state
in forwarding nodes, such state is required anyway in order to sup-
port the source-specific multicast service model [10]. In addition,
even FGMP and ODMRP require source-specific state at each node,
since they must detect duplicate packets during a flood within the
forwarding group, and any type of packet identifiers used for this
duplicate detection when there may be multiple group senders must
be source-specific.

If the MAC layer in use in the network supports multicast ad-
dressing and packet transmission, ADMR takes advantage of it by
causing receivers and nodes in the multicast forwarding tree to join
the MAC-layer multicast group corresponding to the network-layer
multicast group address. By utilizing MAC-layer multicast when
available, ADMR limits the overhead on other nodes in the network
due to multicast packet transmission.

Each multicast packet originated by some node S for multicast
group G contains a small ADMR header, including a number of
fields used by the protocol in forwarding the packet and in maintain-
ing the multicast distribution tree for S and G. The sequence number
in the ADMR header uniquely identifies the packet and is generated
as a count of all ADMR packets flooded in any way that originated
from S. The hop count is initialized by S to 0 and is incremented
by each node forwarding the packet. For a packet being forwarded,
the previous hop address in the ADMR header is the MAC-layer
transmitting source address from which this packet was received,
copied from the MAC-layer header of the packet before forwarding
it; when a packet is originated, this field is initialized to O.

—» Packet X

----- » PacketY

@®@

Figure 1

Multicast Data Packet Forwarding

35

—» Tree flood
----- = Network flood

Figure2 Tree Flood vs. Network Flood

The ADMR header also includes the inter-packet time (interval)
at which new packets should be expected from this sender S for
this group G. This field in the ADMR header is initialized by S
based on dynamically tracking the average interval at which it orig-
inates multicast packets for group G. If the application layer at
node S originates no new multicast packets for G within some mul-
tiple (e.g., 1.5) of this current inter-packet time, the routing layer
at S begins originating “keep-alive” packets for G; the keep-alive
packet is multicast to the group (not flooded through the network)
and is used to maintain the existing forwarding state for the multi-
cast distribution tree for S and G. The inter-packet time between
keep-alives is multiplied by some factor (e.g., 2) with each suc-
cessive keep-alive, until reaching a maximum interval; after some
further multiple of this interval, S is assumed to no longer be an
active sender for G, the keep-alives are stopped, and all forward-
ing state for this sender and group in the network is allowed to
expire. The ADMR header includes the multiplicative factor in-
creasing the time between successive keep-alives and a count of
keep-alives sent since the last real multicast data packet from the
application, allowing all nodes receiving any of these keep-alive
packets to know when the tree is scheduled to expire, if the sender
application does not begin to send new multicast data packets before
that time.

Absence of data packets and keep-alives within a multiple of the
inter-packet time is an indication of forwarding tree disconnection.
When a forwarding node F, for source S and group G, does not
receive data packets or keep-alives from S within a multiple of the
inter-packet time, it performs a local repair procedure to reconnect
to the tree. If the local repair procedure fails, receivers who got
their previous packet through F and are now disconnected from the
source, perform a global reconnect procedure by sending a network
flood.

ADMR performs automatic pruning of branches of the multicast
tree that are no longer needed for forwarding. Pruning decisions
are based on lack of passive acknowledgements from downstream,
instead of relying on the receipt of an explicit prune message.

ADMR is designed to work independently of the unicast protocol
used in the ad hoc network and can thus work with any unicast pro-
tocol or even without a unicast protocol. Although it may be useful
to share information between the unicast and multicast protocol,
not doing so improves modularity and portability. We are also cur-
rently studying the trade-offs of various levels of unicast-multicast
cooperation within ADMR.

ADMR currently operates only over bidirectional links. We are
working on extending the specification to handle unidirectional links
as well.



2.2. Data Structures

The multicast forwarding state for ADMR is maintained locally by
each node in the following three tables:

o Sender Table: Logically contains one entry for each multicast
group address for which this node is an active sender. Each
entry in the Sender Table includes the current inter-packet time
for this node sending to the group, and a count of consecutive
keep-alive packets sent to the group since the last data packet
sent to the group by this node.

o Membership Table: Logically contains one entry for each com-
bination of multicast group address and sender address for
which this node is either a receiver member or a forwarder.
Each entry in the Membership Table includes a flag to indicate
if this node is a receiver, a flag to indicate if this node is a
forwarder, the current inter-packet time for the sender sending
to this group, and the current value of the keep-alive count from
packets received for the group.

e Node Table: Logically contains one entry for each other node in
the network from which this node has received a tree flooded or
network flooded ADMR packet. Each entry in the Node Table
includes the sequence number from the ADMR header of the
most recent such packet, plus a bitmap representing a number
of previous sequence numbers of packets from this sender, used
to detect and discard duplicate packets during a flood: if the bit
corresponding to some sequence number in this bitmap is set,
the packet is assumed to be a duplicate; all sequence numbers
prior to that corresponding to the first bit in the bitmap are
also assumed to be duplicates (or are of no further interest and
are discarded). This use of a bitmap is similar to the data
structure suggested for anti-replay protection in the IP Security
protocols [18]. Each entry in the Node Table also includes the
previous hop address, taken from the MAC-layer transmitting
source address of the packet received from this sender with this
sequence number that contained the minimum hop count in its
ADMR header. To manage space in the Node Table, new entries
should be created only as needed, and existing entries should
be retained in an LRU fashion.

2.3. Multicast Packet Forwarding

Any packet with a multicast or broadcast destination address con-
taining an ADMR header will be flooded. The type of flooding
is indicated by the flood type flag in the packet’s ADMR header.
For most packets, the flood type flag is set to cause a tree flood
of the packet, such that the packet will be forwarded only among
those nodes belonging to the multicast forwarding tree indicated by
the source address (the original sender) and destination address (the
multicast group address) in the packet (Figure 2). When a node
receives such a packet, it checks its Membership Table entry for this
group and source to determine if it should forward the packet; the
packet thus flows along the tree from the sender to the group re-
ceivers but is not constrained to follow specific branches in the tree
and is thus able to automatically be forwarded around temporarily
broken links or failed forwarding nodes in the tree (Figure 1). If,
instead, the flood type flag in the ADMR header indicates a network
flood for the packet, the packet will be flooded among all nodes.For
either type of flood, each node’s Node Table and the sequence num-
ber in a packet’s ADMR header reliably limit any node that should
forward the packet to do so at most once.

When a node receives such a packet, whether or not it forwards the
packet, the receiving node compares the hop count in the received

36

packet’s ADMR header to the hop count in this node’s Node Table
entry for the source of the packet. If the new hop count is less than
that already recorded in the Node Table entry, this node updates the
entry with the new hop count and sets the previous hop address in
the entry to the MAC-layer source address from which it received
the packet. In addition, if the node forwards the packet, before doing
so, it increments the hop count field in the packet’s ADMR header
and copies the packet’s MAC-layer source address into the ADMR
header previous hop address field.

Finally, if the packet has a payload following the ADMR header,
the node checks its Membership Table to determine if it is a receiver
member for this group and source. If so, it passes the packet up
within the protocol stack to allow the packet to be processed as a
received multicast packet.

2.4. New Multicast Source

When a node S originates a multicast packet for some group G for
which it is not currently an active sender, it will not have a Sender
Table entry for G. In this case, node S creates and initializes a new
Sender Table entry for G. The inter-packet time in this entry may be
set to a default value, may be assumed based on the IP port numbers
used in the packet, or may be specified by the sending application if
an API is available for this purpose. Node S also inserts an ADMR
header in the packet and flags it to send the packet as a network
flood, as described in Section 2.3.

After sending this packet, node S buffers for a short time subse-
quent multicast packets that it might originate to group G, rather than
sending them immediately as they are generated, in order to allow
the routing state in the network to be formed for receivers interested
in this group and sender. Once S receives at least one RECEIVER JOIN
packet, S then begins sending any buffered packets to the group as
normal multicast packets. The packet exchange which takes place
when a new source becomes active is depicted in Figure 3. Most sub-
sequent multicast packets for group G from node S will be flooded
only within the members of the multicast forwarding tree established
for this group and sender (a tree flood). However, it is possible that
some interested receivers did not receive this initial packet from S.
To allow for such occurrences, node S uses a network flood rather
than a tree flood for certain of its subsequent existing multicast data
packets. The time between each packet selected to be sent as a
network flood is increased until reaching a slow background rate,
designed to tolerate factors such as intermittent wireless interference
or temporary partition of the ad hoc network. For example, in our
simulations, the first data packet after 5 seconds since the initial
network flood data packet, is sent as a network flood; the first data
packet after 10 additional seconds is also sent as a network flood, as
is one data packet after each subsequent 30 seconds. These network
floods are sent only when there is data to be sent by S to G.

2.5. Receiver Application Join

When an application on some node R requests to join a group G, the
ADMR routing layer on node R sends a MULTICAST SOLICITATION
packet as a network flood, with the group address G as the destina-
tion address of the packet. If the group is a source-specific multicast
group, the specific sender address S requested by the application is
included after the ADMR header in the packet.

The forwarding of the packet through the network follows the
procedure described in Section 2.3. However, in the case of
source-specific multicast, the specified source does not forward the
MULTICAST SOLICITATION packet. Also in this case, if a node receiv-
ing the MULTICAST SOLICITATION has a Node Table entry for this



----- » Data flood
-+—— RECEIVER JOIN

Figure 3 New Source S

source, and has a Membership Table entry for this group and source
indicating that it is a forwarder, this node will instead unicast the
MULTICAST SOLICITATION only to the previous hop address indicated
in that Node Table entry; the packet thus follows the tree towards the
source, decreasing the overhead and speeding up the receiver join.

When any source S for multicast group G receives the MULTICAST
SOLICITATION packet (or the single source, in the case of a source-
specific multicast group join), the source replies to the MULTICAST
SOLICITATION to advertise to R its existence as a sender for the group.
This reply may take one of two forms. If the next scheduled network
flood of an existing multicast data packet (Section 2.4) is to occur
soon, S may choose to advance the time for this network flood and
use it as the reply for the MULTICAST SOLICITATION from R. This
form of reply is appropriate, for example, when many new receivers
attempt to join the group at about the same time, since S would then
receive a MULTICAST SOLICITATION from each of them, but could
use the single existing network flood of the next data packet to reply
to all of them. The other form that this reply may take is for S to send
an ADMR keep-alive packet unicast to R, following the path taken
by R’s MULTICAST SOLICITATION packet; each node forwarding this
unicast keep-alive packet unicasts it to the address recorded in the
previous hop address field of that node’s Node Table entry for R,
created when it forwarded R’s MULTICAST SOLICITATION as it trav-
eled toward S (Figure 4). When forwarding this unicast keep-alive
packet toward R, each node updates its Node Table entry for S in
the same way as it would for a flood from S, recording the path back
to S in each entry’s previous hop address field.

When node R receives the reply from its MULTICAST
SOLICITATION, it will process it as described in Section 2.6, since R
will view this reply as a packet from a multicast source that it is
not yet connected to. R also sends a RECEIVER JOIN packet back
to S, creating the forwarding state to connect it to the multicast
forwarding tree for this group and source (Figure 5).

G ~a—— MULTICAST SOLICITATION

----- » Unicast keep-alive

Figure4 Sources S1 and S2 Respond to
Receiver R’'s MULTICAST SOLICITATION

37

)

@ ~4—— RECEIVER JOIN

Figure 5 Receiver R Sends RECEIVER JOINS

If node S replies to the MULTICAST SOLICITATION from R by send-
ing a unicast keep-alive, as described above, then S also sets a timer
and expects to receive the RECEIVER JOIN from R within a short
time. If S does not receive the RECEIVER JOIN, it will retransmit its
reply to R’s MULTICAST SOLICITATION (which again, may be in the
form of S’s next network flood of an existing multicast data packet or
may use a unicast ADMR keep-alive packet). If the timer expires a
second time and S has not received a RECEIVER JOIN from R, then S
assumes that the path that the unicast keep-alive is trying to traverse,
created by the forwarding of R’s MULTICAST SOLICITATION to S, is
broken, and S advances its next scheduled network flood of a mul-
ticast data packet to reply to R. No further specific retransmissions
of the reply are attempted, although the normal occasional network
flood mechanism of selected existing multicast data packets from S
to the group will eventually reach R.

2.6. Receiving from a New Multicast Source

‘When a node R receives any multicast packet, in addition to forward-
ing the packet if required by the forwarding procedure described in
Section 2.3, node R also checks the entry for this sender and group
in its Membership Table to determine if it is a receiver member. If
so, then R processes it as a multicast packet that it is intended to
receive, passing the packet up to the next layer within its receiving
protocol stack.

In addition, if the packet was sent as a tree flood (rather than as
a network flood), this indicates that the receiver node R is currently
connected to the multicast forwarding tree for this sender and group.
The node considers itself to remain connected until detecting that it
has become disconnected, as described in Section 2.8.

If, instead, this received packet was sent as a network flood or
the packet is a unicast keep-alive (Section 2.5), and if the receiver R
is not currently connected to the multicast forwarding tree for this
sender and group, then R replies with a RECEIVER JOIN packet, to
cause the necessary nodes along the path back to the sender S to
become forwarders. Node R initializes the inter-packet time field in
its RECEIVER JOIN packet to the inter-packet time from the ADMR
header of the received packet. The RECEIVER JOIN packet then fol-
lows the path established by the forwarding of the received multicast
data packet or keep-alive packet, as recorded in the previous hop ad-
dress field in each node’s Node Table entry for this sender S. Each
node that forwards the RECEIVER JOIN, if it does not already have
a Membership Table entry for this group and source, creates a new
entry, with the inter-packet time initialized from the RECEIVER JOIN
packet’s header; each node that forwards the RECEIVER JOIN also
sets the forwarder flag in its Membership Table entry.

If there are multiple new receivers for a given multicast group G
near each other in the network, many RECEIVER JOIN packets will
traverse the same paths or subpaths on their way to the source S.
However, in order to make each node along these paths a forwarder



for G and S, as necessary, it is enough for one RECEIVER JOIN packet
to be received and forwarded by each such node. It would thus be
possible to filter all but the first of these multiple RECEIVER JOIN
packets received by each of these nodes, but doing so would leave
the connection of these new receivers susceptible to the loss of the
single RECEIVER JOIN packet forwarded. To reduce overhead and
yet provide resilience to such packet loss, each node will forward at
most 3 RECEIVER JOIN packets for the last sequence number it has
recorded in its Node Table entry for G and S.

To further deal with the possibility of loss of a RECEIVER JOIN
packet, each new receiver, after sending its RECEIVER JOIN, sets a
timer to a multiple of the inter-packet time contained in the ADMR
header of the received packet that triggered its RECEIVER JOIN; in
our simulations, we use a timer value of 3 times the inter-packet
time. If this timer expires before any new multicast packets have
been received from the source, the receiver resends its RECEIVER
JOIN and resets the timer. If this timer expires again with no new
multicast packets received from the source, the receiver sends a new
MULTICAST SOLICITATION, as described in Section 2.5.

2.7. Local Subtree Repair

Forwarders or receiver members of some multicast group may be-
come disconnected from the multicast forwarding tree for the group,
as nodes in the network move or as wireless transmission conditions
change. Each forwarder or receiver for some multicast group G and
source S detects that it has become disconnected from the multi-
cast forwarding tree when it fails to receive a number of successive
expected multicast data (or keep-alive) packets (e.g., 3) from S for G.

Each node maintains a disconnection timer for each group G and
sender S for which it is either a forwarder or a receiver member, and
resets this timer each time it receives a packet for the group. The
timer value is based on the inter-packet time value in the ADMR
header of the last received packet, plus a time proportional to the
node’s hop count from the source S, as determined by the forward-
ing of the last packet from S that updated the node’s Node Table
entry for S. This small increase in disconnection timeout value as
a function of hop count is intended to generally allow nodes closer
to S (i.e., closer to a broken link on the path from S) to detect the
disconnection before nodes further from S. This property is not
required for correct operation of the protocol, but it improves the
efficiency of the repair process.

When some node C detects disconnection, it initiates a local
repair of the multicast forwarding tree, as illustrated in Figure 6.
Node C first sends a REPAIR NOTIFICATION packet to the other nodes
in the subtree “below” node C in the multicast distribution tree for
group G and sender S. Here, the subtree “below” is defined by
the previous hop address recorded in each node’s Node Table for
sender S, such that any node whose previous hop for S is node C
or is some other node below C is defined to be below C in the tree.
Although as described in Section 2.3, each multicast packet is for-
warded through the tree without regard to such relationships, this
relationship represents the set of nodes that received the previous
multicast packet through C and who will thus possibly detect the
disconnection themselves later, due to the increase in disconnection
timer values with hop count from S.

To forward the REPAIR NOTIFICATION packet to the nodes in the
subtree below C, each node accepts and forwards the packet only if
the MAC-layer transmitting source address of the packet matches the
previous hop address stored in that node’s Node Table entry for the
multicast sender S. In addition, the sequence number and bitmap

38

----- » Links followed by
last multicast packet

—» REePAIR NOTIFICATION

Figure6 Node C Downstream of Break Initiates Local Repair

in each node’s Node Table entry (Section 2.2) are used to avoid
duplicates in the forwarding of the REPAIR NOTIFICATION packet.

After sending the REPAIR NOTIFICATION, node C waits for a repair
delay period of time before proceeding with its local repair. If,
during this delay, node C receives a REPAIR NOTIFICATION initiated
by an upstream node for this same group and source, then C cancels
its own local repair, since this other node will perform the repair.

The REPAIR NOTIFICATION packet serves two purposes. It is a
notification to nodes in the subtree below C that a local repair is in
progress and that they should not initiate their own local repair. It
is also a chance to double-check that the link to node C’s parent is
indeed the one that is broken. The REPAIR NOTIFICATION will be
received by nodes directly below C in the forwarding tree, and if
the link from C to its parent B in the tree (Figure 6) is actually not
broken, may also be received by B. In the REPAIR NOTIFICATION
packet, C lists the address of the node that is currently its parent, as
represented by the previous hop address in its Node Table entry for
the multicast source S. If the REPAIR NOTIFICATION is received by
this parent node, it recognizes that one of the nodes directly below
it in the tree (node C) is performing a local repair. The parent then
sends a one-hop REPAIR NOTIFICATION to C, causing it to cancel its
local repair as described above.

When a receiver member of the group receives a REPAIR
NOTIFICATION, it postpones its disconnection timer for an interval
of time determined by an estimate of the amount of time the local
repair is expected to take.

After the short delay described above, if node C has not received
a REPAIR NOTIFICATION initiated by an upstream node for this group
and source, node C sends a hop-limited RECONNECT packet as a
form of network flood (Figure 7). The RECONNECT packet identifies
the group and source for which the local repair is being performed.
The hop count limit (TTL) for the RECONNECT packet (e.g., 3) limits
this flood to only reaching nodes near C.

In addition to the normal handling of a network flood in deciding
whether or not to forward the RECONNECT packet, nodes that are
forwarders for the group G and source S being repaired treat the
packet specially. Such a node (e.g., node A in Figure 7), if it has not
received a REPAIR NOTIFICATION for this repair, assumes that it is
upstream of the repair node C and that it is therefore still connected

----- » Existing tree links
~4—— RECONNECT

Figure 7 Disconnected Node C Sends RECONNECT



to the source S in the tree. Rather than forwarding the RECONNECT
packet as part of the hop-limited network flood, the node instead
reinitializes the packet’s hop count limit (TTL) to the default value
and unicasts the packet to the node listed as its parent in the previous
hop address field in its Node Table entry for S. This packet is no
longer treated as a network flood packet, and is instead forwarded
by each node in turn to its parent in the same way, until reaching S.
If the node is in fact not upstream from the repair node C and its
unicast RECONNECT reaches C, node C will discard the packet.

If the RECONNECT reaches S, node S responds with a RECONNECT
REPLY packet, as illustrated in Figure 8. This RECONNECT REPLY
packet is unicast back to the repair node C along the path the
RECONNECT took to reach S, as recorded in the Node Table en-
try at each node for C. Each node through which the RECONNECT
REPLY packet is forwarded on the path to C becomes a forwarder
for the multicast group G and source S, and creates an entry in its
Membership Table to record this if it is not already a forwarder for it.

2.8. Receiver-Initiated Repair

If the local repair procedure as described in Section 2.7 succeeds,
the multicast forwarding tree will be reconnected and the receiver
members will continue to receive data as expected. If the discon-
nection timer expires at some receiver member R for a group G
and source S, this is an indication that the local repair has probably
failed, perhaps because the amount of mobility in the network has
been too great to allow the type of hop-limited repair attempted. In
this case, node R performs its own individual repair by rejoining the
group and source in the same way as when it originally joined, as
described in Section 2.5.

Each receiver keeps track of how many times it had to perform
a re-join to a group because of disconnection. When this number
reaches a threshold, the receiver sets the “high mobility” flag in the
ADMR header of the RECEIVER JOIN packet. When the source re-
ceives some number of RECEIVER JOINs with this flag set, it switches
to flooding mode in which each subsequent multicast packet is set
as a network flood. The high number of re-joins indicate that the
multicast state setup cannot keep up with the high mobility in the
network and only flooding can deliver the data successfully. After
flooding for some period of time, the protocol reverts back to its
normal mode of operation, as mobility in the network may have
decreased.

2.9. Tree Pruning

Each forwarder node in the multicast forwarding tree for some
group G and source S automatically expires its own state and leaves
the tree when it determines that it is no longer necessary for multicast
forwarding. Similarly, the multicast source S automatically expires
its state and stops transmitting multicast data packets when it deter-
mines that there are no downstream receiver members of the group
for this source; the sender continues to send certain of its subsequent

-4—— RECONNECT

----- » RECONNECT REPLY

Figure 8 Source S Responds with RECONNECT REPLY

39

multicast packets as infrequent background network flood packets,
but otherwise defers sending other multicasts for this group until
receiving at least one new RECEIVER JOIN packet, as described in
Section 2.4. This mechanism helps to prune nodes from the forward-
ing tree that are no longer needed because a downstream receiver
has left or crashed or because, as a result of a disconnection and an
ensuing repair, some forwarding state may no longer be necessary.
The decision to expire this state is based at each such node on
whether the multicast packets that it originates (at S) or forwards
(at forwarder nodes) are subsequently forwarded by other nodes
that received them from this node. In order to determine this for
each multicast packet, a node B expects to hear at least one other
node C that received the packet from B forward it. As described in
Section 2.1, when node C receives and forwards a packet, C copies
the MAC-layer source address of the received packet (i.e., node B’s
address) into the previous hop address field in the packet’s ADMR
header, before forwarding the packet. If node B overhears C transmit
this packet, B considers this as confirmation that it should continue
forwarding subsequent multicast packets, so that nodes such as C
can continue to receive them. On the other hand, if B fails to receive
such confirmation for a number of consecutive multicast packets
that it sends, then B decides that it is no longer necessary in the
multicast forwarding tree for this group and source (or in the case of
the source S itself, that no receiver members or forwarders remain).
This technique is similar to the use of passive acknowledgements.

3. Evaluation Methodology

We evaluated the performance of ADMR through detailed packet-
level simulation in a variety of mobility and communication sce-
narios. In addition, we have simulated the On-Demand Multicast
Routing Protocol (ODMRP) [19], which has been shown to perform
well in previous studies, and we compared its performance to that
of ADMR.

3.1. Simulation Environment

‘We conducted our simulations using the ns-2 network simulator [7]
with our Monarch Project wireless and mobile ns-2 extensions [3,
21]. The ns-2 simulator is a publicly available discrete-event simula-
tor, widely used in networking research. The Monarch Project wire-
less and mobile extensions incorporate models of signal strength,
radio propagation, propagation delay, wireless medium contention,
capture effect, interference, and arbitrary continuous node mobility.
The radio model is based on the Lucent/Agere WaveLAN/OriNOCO
IEEE 802.11 product, which provides a 2 Mbps transmission rate
and a nominal transmission range of 250m, depending on capture
effect and colliding packets. The link layer model is the Distributed
Coordination Function (DCF) of the IEEE 802.11 wireless LAN
standard [11]. We have extended the existing simulation models
to enable multicast simulations with ADMR and ODMRP in the
simulator.

3.2. Simulation Scenarios

In each simulation run, we simulate the behavior of 50 nodes forming
a mobile ad hoc network in a 1500 m x 300 m area, operating over
900 seconds of simulated time. Each run of the simulator executes
a scenario containing all movement behavior of the ad hoc network
nodes and all application-layer communication originated by the
nodes, generated in advance so that it can be replayed identically for
the different routing protocols and variants studied. Each routing
protocol was thus challenged by an identical workload.



The nodes in our simulations move according to the Random
Waypoint model [3, 16]. Each node independently starts at a random
location in the simulation area and remains stationary for a period
of time called the pause time. The node then chooses a random new
location to move to and speed to move at, both uniformly randomly
generated, and once it reaches that new location, again remains
stationary for the pause time. Each node independently repeats this
movement pattern over the duration of each simulation run.

For our simulation experiments, we study runs with a maximum
node movement speed of 20 m/s and others with a maximum node
movement speed of 1 m/s. For each maximum node movement
speed, we studied 7 different pause times: 0, 30, 60, 120, 300, 600,
and 900 seconds; a pause time of O represents a network in which all
nodes move continuously, whereas a pause time of 900 represents
a stationary network. For each of these pause times and maximum
node movement speeds, we randomly generated 10 different scenar-
ios, and we present here the average over those 10 scenarios.

The multicast application-layer sources in our simulations gen-
erate constant bit rate (CBR) traffic, with each source originating 4
64-byte packets per second. This sending rate was chosen to sig-
nificantly challenge the routing protocols’ abilities to successfully
deliver data packets in a mobile ad hoc network. It was not cho-
sen to represent any particular application or class of applications,
although it could be considered to abstractly model a very simple
broadcast audio distribution application.

We used 4 different combinations of number of multicast groups,
sources, and receivers. The first 3 cases consist of 1 multicast source
and 5, 15, and 30 multicast receivers, respectively. These cases were
designed to allow us to observe the behavior of the routing protocol
in an environment that is understandable and possible to analyze.
The fourth case consists of 3 groups with 3 sources and 10 receivers
each. This case is designed to explore the behavior of the routing
protocol in the presence of multiple, larger groups. The multicast
sources start sending data and the multicast receivers join a group at
uniformly randomly generated times between 0 and 180 seconds.

3.3. Performance Metrics

We evaluated the performance of ADMR and compared it to that of
ODMRP using the following metrics:

o Packet delivery ratio: The fraction of multicast data packets
originated by the application layer on a multicast source that
are received by the application layer of the multicast receivers.
For example, in a multicast group with 1 sender and 2 receivers,
each multicast data packet originated should be received a total
of 2 times across the 2 receivers; if 100 data packets were orig-
inated, 150 total received packets represents a packet delivery
ratio of 0.75.

o Normalized packet overhead: The total number of all data and
control packets transmitted by any node in the network (either
originated or forwarded), divided by the total number of all data
packets received across all multicast receivers. This metric rep-
resents the total packet overhead normalized by the successful
results obtained in terms of data packets delivered.

o Forwarding efficiency: The average number of times each orig-
inated multicast data packet was transmitted by the routing
protocol. This metric represents the efficiency of the basic
multicast forwarding within the routing protocol.

e Delivery latency: The average time from when a multicast data
packet is originated by a source until it is successfully received
by a multicast receiver, counting each receiver individually.

40

3.4. Summary of the ODMRP Protocol

We use the On-Demand Multicast Routing Protocol (ODMRP) as a
point of comparison for ADMR because it has been demonstrated
to perform well and is well documented by its designers [19, 20]. In
addition, our multicast forwarding tree flooding operates similarly
to the forwarding group flooding in ODMRP, allowing us to better
compare the other aspects and overall behavior of the two protocols.

ODMREP operates by periodically flooding the network with a
control packet to re-create the multicast forwarding state. This
mechanism serves two goals: to set up multicast forwarding state
when a source first starts sending multicast data, and to recover from
partitions and breaks in the forwarding tree as a result of node move-
ment or a change in propagation conditions. The main trade-off in
the protocol design is between overhead and the latency until tree
breakage is repaired. Frequent network floods reduce the latency to
tree breakage discovery and increase the packet delivery ratio but
create a significant amount of packet overhead. Reducing the fre-
quency of the floods reduces the overhead but increases the latency
to tree breakage discovery and decreases the packet delivery ratio.

In particular, while a multicast source using ODMRP is active,
the source periodically floods the network with a JOIN QUERY con-
trol packet. This packet is forwarded by every node in the network.
In addition, nodes remember the address of the previous hop node
from which they received the JOIN QUERY, so that when receivers for
the group respond by sending a JOIN REPLY packet, this packet can
be forwarded along the path that the JOIN QUERY took to reach the
receiver. Each node that forwards the JOIN REPLY sets a group for-
warding flag for the group indicated in the header of the packet. Each
JOIN QUERY flood entirely re-creates the forwarding state for the
group (reinitializes which nodes will be forwarders for the group),
but this forwarding state expires after a multiple of the interval be-
tween successive JOIN QUERY floods.

When a node receives a packet for a multicast group for which it
has a set forwarding flag, the node forwards the packet if it is not
a duplicate. The individual unique identifiers of recently forwarded
multicast packets are kept by each node for duplicate detection in
the flooding process.

These procedures allow for redundant forwarding to each receiver,
increasing the packet delivery ratio of the protocol: if a packet is
dropped on one path as a result of collision or a link break, the
receiver can receive it along another path. The benefits of this re-
dundancy come at the cost of additional overhead and additional
load on the network. A packet sent by one source is forwarded by
all nodes that have their forwarding flags for the group set, allowing
packets to traverse paths that may even lead “away” from the re-
ceivers and only towards the other sources. The more sources there
are per group, the more redundancy and overhead is generated by
each packet sent by any of the multicast sources.

Redundancy in ODMRP forwarding is also created by the fact
that the lifetime of each forwarding flag setting is equal to a multi-
ple of the periodic JOIN QUERY flooding interval. For example, in
the published simulation results for ODMRP, the forwarding state
lifetime is 3 times the JOIN QUERY flood interval, allowing some of
the JOIN QUERY packets to be lost without losing forwarding state.
However, in the worst case, there may be three sets of forwarding
nodes for the traffic of each multicast source at any one time, if the
network is highly mobile or the JOIN QUERY floods take different
paths through the network. This redundancy again increases the
packet delivery ratio of the protocol but also increases the overhead
for each data packet and the overall load on the network.



3.5. ADMR and ODMRP Simulation Parameters

In our simulations of ADMR, we used 30 seconds for the periodic
data flood interval, 1.2 for the multiplicative factor for the average
inter-packet time in the absence of data, and 2 missing packets to
trigger disconnection detection.

To compare different aspects of ADMR’s performance to that of
ODMRP, we evaluated three different variations on the ODMRP
parameters. The “ODMRP-baseline” variation represents ODMRP
using the parameter values chosen by ODMRP’s designers in their
published simulations of the protocol: 3 seconds for the JOIN QUERY
flooding interval, and a forwarding state lifetime of 3 times this in-
terval (a total of 9 seconds). The “ODMRP-3-1.1" and “ODMRP-4-
1.1” variations both reduce the forwarding state lifetime to 1.1 times
the JOIN QUERY flooding interval (rather than 3 times this inter-
val); this change attempts to evaluate the effect of the forwarding
redundancy present in the way that ODMRP rebuilds the forward-
ing state before the lifetime of the existing state has expired. The
“ODMRP-4-1.1” variation also lengthen this JOIN QUERY flooding
interval from 3 seconds up to 4 seconds, allowing us to evaluate the
effect of the frequent complete rebuilding of the forwarding state in
ODMRP.

4. Simulation Results

For each set of simulations of ADMR and the three variants of
ODMRP to which we compared it, we studied 7 different pause
times, 2 different maximum node movement speeds, and 4 different
combinations of number of multicast groups, sources, and receivers.
Each point in our performance graphs represents the average of 10
simulation runs for that combination of parameters and scenarios.

Figure 9 shows the packet delivery ratio of ADMR and ODMRP-
baseline as a function of pause time in the 1-source, 15-receivers
scenarios. The y-axis scale in this graph and other graphs in this pa-
per for packet delivery ratio ranges from 0.8 to 1.0 to better show the
detail in the performance curves plotted. Both ADMR and ODMRP
deliver over 98% of the originated multicast data packets, even in
highly mobile networks (small pause times). ODMRP-baseline de-
livers about 1% more packets on average than ADMR. However, to
achieve this packet delivery ratio, ODMRP expends close to twice
as much overhead as ADMR (Figure 10). In addition to frequently
flooding the network and rebuilding its forwarding tree, ODMRP
owes a large fraction of its overhead to redundant data packet for-
warding (Figure 11); whereas ADMR forwards each data packet
roughly 10 times on average in these scenarios, ODMRP forwards
each packet roughly 17 times.

As described in Section 3.4, ODMRP creates forwarding state
within nodes in the network, that is not expired when it is no longer
needed but instead expires after a fixed timeout. This timeout is
set to a multiple of the periodic JOIN QUERY flood interval in order
to ensure that loss of the flood packets will not cause disruption in
the delivery of multicast data. However, this mechanism leads to
the creation of redundant state in the network, since new nodes may
become forwarders for a group, while forwarders created during
a previous periodic flood still have a set forwarding flag and may
overhear packets for that group. While the redundancy that ODMRP
creates increases its resilience to losses, it significantly increases the
load on the network and the battery consumption of the nodes in the
network. As a result of the high load, overall network performance
degrades, and packet latency goes up slightly (Figure 12). ADMR
also creates redundant state in the network when, as a result of
tree breakage and repair, the forwarding tree no longer includes

41

certain nodes that were part of the tree before the tree breakage.
However, nodes that forward for a source in ADMR expire their
forwarding state adaptively when there are no receivers downstream
that are interested in receiving the multicast packets through them,
as described in Section 2.9.

ODMRP-3-1.1 and ODMRP-4-1.1 incur a much lower overhead
than ODMRP-baseline (Figures 10 and 11). However the packet
delivery ratio of the protocol suffers dramatically under these pa-
rameterizations, especially in highly mobile networks at lower pause
times (Figure 9). Since ODMRP does not explicitly react to link
breaks but instead relies on redundant state and fixed periodic con-
trol floods to maintain multicast connectivity, it is not able to keep
up with the link breaks introduced at high levels of mobility. In
addition, ODMRP-3-1.1 and ODMRP-4-1.1 produce a higher de-
livery latency than ODMRP-baseline. This increase is due to a
corresponding increase in the average path length (number of hops)
used to deliver multicast data packets in the ODMRP-3-1.1 and
ODMRP-4-1.1 cases (data not presented here to conserve space).
Since ODMRP-3-1.1 and ODMRP-4-1.1 create less redundant for-
warding nodes, packets are more constrained to follow a limited
set of paths, whereas in ODMRP-baseline, the greater redundancy
allows the data packet flooding among the forwarding nodes to au-
tomatically produce more direct paths by finding the shortest path
through the nodes involved in the flood.

The performance results are similar in the other two 1-source
scenarios (5 and 30 receivers). The difference in the 30-receiver
from the 15-receiver results is that when a larger fraction of the
nodes are receivers, a larger fraction of the nodes have forwarding
state, and the density of nodes with forwarding state is higher. This
creates a natural redundancy which both protocols exploit through
the flood forwarding of the multicast data packets within the for-
warding nodes. Also, since a larger number of forwarding nodes
are required to connect the larger number of receivers, the num-
ber of other nodes that can redundantly become forwarding nodes
in ODMREP is reduced. Furthermore, since the packet overhead
is presented normalized to the number of receivers (the number of
total received packets), these cases with more receivers generally
show lower overhead. The opposite holds in the 5-receiver case:
ODMRP incurs four times the overhead of ADMR, and delivers a
similar fraction of the data packets, except in the ODMRP-3-1.1
and ODMRP-4-1.1 parameterizations, whose packet delivery ratio
drops even more at high mobility rates than in the 15-receiver sce-
narios.

In terms of packet delivery ratio, at a maximum node movement
speed of 1 m/s rather than 20 m/s, ADMR and all three variants of
ODMREP deliver almost all of the originated multicast data packets.
ODMRP-3-1.1 and ODMRP-4-1.1 perform better than they did at
20 m/s because the mobility in these scenarios is much lower and
the need for redundant forwarding nodes is less. Overall overhead
in these lower mobility scenarios also is less than in the cases with
speeds of 20 m/s. In ADMR’s case, this decrease is due to the
fact that there are fewer tree breakages. In ODMRP’s case, this
is due to the creation of less redundant state, since the multicast
forwarding tree is mostly the same between periodic rebuilds of the
tree.

Figures 13 through 16 show the results for the higher load case
of 3 groups, with 3 sources and 10 receivers each. Since in this
scenario, there is more than 1 source per group, forwarding nodes in
ODMREP for one source also forward packets on behalf of all other
sources, creating additional redundancy and additional overhead. In



1 — * " =
—— == S
- BT g
? -
20.95’ - ]
5 ~y
[a]
[2]
k)
S 09} |
a
k]
c
2
50.85’ —— ADMR |
T = ODMRP-baseline
-+ ODMRP-3-1.1
ODMRP-4-1.1
08 : : : :
0 200 400 600 800

Pause Time (seconds)

Figure 9 Packet Delivery Ratio: 1 group,
1 source, 15 receivers, 20 m/s

35 ‘ ‘ ‘ ‘
_ —— ADMR
I % ODMRP-baseline
$300 -+ ODMRP-3-1.1 ||
£ ODMRP-4-1.1
®251 |
[a)
S20; )
S20r .
° - e LA
S5 |
(e}
w
S 1o 3
g g = e e T TR T T
E 5/ 7
=z

0 : : : ‘

0 200 400 600 800

Pause Time (seconds)

Figure 11  Forwarding Efficiency: 1 group,
1 source, 15 receivers, 20 m/s

particular, packets may be forwarded not only towards the receivers
but also towards other sources in the group.

In these scenarios, the load on the network is significantly higher
than in the previous cases discussed. As a result, the packet delivery
ratio for all protocols decreases to an average of 96%. ODMRP
performs slightly better than ADMR in these scenarios due to the
extra redundancy it creates in the network (Figures 14 and 15).
However, ODMRP causes 4 times the number of transmissions per
packet than ADMR. In addition to maintaining its low overhead,
ADMR maintains a similar level of latency as it did in the 1-source
scenarios (Figure 16 and 12).

ODMRP-3-1.1 and ODMRP-4-1.1 incur a much lower overhead,
as expected. Their throughput does not drop as significantly as it
did in the 1-source scenarios at high levels of mobility, however,
as there is still a lot of redundant forwarding that compensates for
losses (Figure 15).

ODMREP performs well when a large percentage of the nodes in
the network are receivers. ADMR also performs well in this case,
though it achieves a more marked performance improvement when
the receiver membership in the network is sparse. Itis hard to find a
parameterization of ODMRP that is able to deliver a large fraction of
the data packets, yet has as small an overhead as ADMR. ODMRP
is also very sensitive to mobility, especially if only a small fraction
of the nodes in the network participate in forwarding its packets.
ADMR’s adaptive behavior allows it to scale its overhead as needed
and to deliver its data efficiently and at a low latency.

42

[y}

—— ADMR

g ~». ODMRP-baseline
g, -+~ ODMRP-3-1.1
s ODMRP—4-1.1
a
°
e
.0_)3— 7
o
jo)
[:3
b2
o ¥ -
jo}
= e
G
c
8
s

o ‘ ‘ ‘ ‘

0 200 400 600 800

Pause Time (seconds)

Figure 10 Normalized Packet Overhead: 1 group,
1 source, 15 receivers, 20 m/s

5

4, 4
o)
°
c
Q
83«—7—:---___ o e o e o o 1 e e
k2]
£
B2r 1
c
o
©
-

l —— ADMR l

= ODMRP
-+ ODMRP-3-1-1
ODMRP-4-1-1
0 . . . :
0 200 400 600 800

Pause Time (seconds)

Figure 12  Delivery Latency: 1 group,
1 source, 15 receivers, 20 m/s

5. Related Work

A number of protocols have been proposed for multicast routing in
wireless ad hoc networks. Some are based on on-demand mech-
anisms [19, 22, 14, 24, 13, 12, 9], driven by data that needs to be
delivered, whereas others rely on proactive (periodic) mechanisms
to operate [4, 25, 2, 8, 23]. Our protocol falls in the former category
and we therefore limit our discussion in this section to on-demand
multicast protocols. We omit here discussion of ODMRP here as it
was discussed in detail in Sections 3.4 and 4.

In the MAODV protocol [22], a “group leader” for each multicast
group periodically floods a Group Hello control message throughout
the ad hoc network. Multicast sources and receivers reply to this
message, and these replies enable group forwarding state on the
paths to the source. The resulting tree is rooted at the group leader.
This tree is similar to the tree built by ODMRP in that packets sent by
asource travel not only toward receivers for the group but also toward
sources for the group. Unlike ODMRP, where only an active source
floods control packets to rebuild the tree, in MAODYV both multicast
receivers and sources can become group leaders, and thus a multicast
receiver may periodically flood the network even though there are
no senders for the group. In addition, MAODYV requires periodic
neighbor sensing for link breakage detection. This neighbor sensing
uses Hello messages which are periodically broadcast locally by
each node in the network, if the node has not sent another broadcast
packet within the periodic interval.



o
©
a

Fraction of Packets Delivered

0.9r ]
0851 —— ADMR I
= ODMRP-baseline

-+ ODMRP-3-1.1

ODMRP-4-1.1

0'80 200 400 600 800

Pause Time (seconds)

Figure 13  Packet Delivery Ratio: 3 groups,
3 sources, 10 receivers/group, 20 m/s

45 : : : :

- —— ADMR

2401 = ODMRP-baseline f

& -+ ODMRP-3-1.1

%357 ODMRP-4-1.1

kS|

0301 . e, IO ]

g o

257 ]

B

[ L d

£20

© @ e A D L T e -

L15pee h

o

210r ]

E

2 5r ,
O0 200 400 600 800

Pause Time (seconds)

Figure 15 Forwarding Efficiency: 3 groups,
3 sources, 10 receivers/group, 20 m/s

The LAM [13] protocol operates only in conjunction with
TORA [5], an on-demand protocol for unicast routing in ad hoc
networks. LAM’s design is inspired by the Core Based Trees proto-
col [1]. Each group in LAM has a core associated with it. Receivers
join a multicast group by establishing a route to the core node for
the group they wish to join. Each source also establishes a route to
the core and unicasts all of its packets to the core, which then for-
wards them to the multicast receivers. Core election algorithms are
not discussed in LAM’s specification. Detection and repair of link
breaks is performed by TORA as part of its normal unicast operation.
TORA, and as aresult LAM, relies on the following assumptions for
correct operation: that a lower-layer protocol ensures that each node
has complete neighbor information; that all transmitted packets are
received correctly and in order of transmission; and that each node
is able to “broadcast” to all of its neighbors.

ABAM [24] is an on-demand protocol based on associativity.
Associativity refers both to the stability of a link between two
node and to the stability of a path which consists of multiple links.
Stability information is acquired by each node through beacons, and
can incorporate factors like signal strength and battery life. When
a multicast source first becomes active, it floods a control packet
in the network. This packet collects information on the “temporal,
connection, and power stability” of each node that forwards it. The
receivers wait until they receive some predefined number of copies
of the flooded control packet and send a response back towards the
source along the path that has the “best” associativity. ABAM reacts

43

—— ADMR

£ = ODMRP-baseline
&l -+ ODMRP-3-1.1
g ODMRP-4-1.1
a
el
g
6 6,
(5]
Q
o
i 4% *
el
o -
= PR i Skt R kL T T TSP,
g of
C
S
=

0 ‘ ‘ ‘ ‘

0 200 400 600 800

Pause Time (seconds)

Figure 14 Normalized Packet Overhead: 3 groups,
3 sources, 10 receivers/group, 20 m/s

5
a0 . ]
g les
B potmrgminn o b
c TTsma
g -
83 1
=
&2r 1
c
o
Gl
—
il —— ADMR I
~x ODMRP
-+ ODMRP-3-1-1
ODMRP-4-1-1
0 ‘ ‘ ; :
0 200 400 600 800

Pause Time (seconds)

Figure 16  Delivery Latency: 3 groups,
3 sources, 10 receivers/group, 20 m/s

to tree breakage by first attempting a local repair, and if that fails,
a global repair initiated by the receivers. Tree breakage is detected
through periodic neighbor sensing similar to MAODV.

The DDM [14] multicast routing protocol logically encodes all
multicast receivers in each data packet. It relies on the unicast for-
warding information at each node along the path to each receiver
to know the correct next hop towards that receiver. DDM is not
a general-purpose multicast routing protocol because its header-
encoded destination mechanism can only handle groups of limited
size, and because it relies on the unicast routing protocol for all of
its routing information.

The Simple Multicast and Broadcast Protocol [12] is based on
the DSR [15, 16, 17] protocol. It does not incur any overhead when
there is no data to be delivered to the multicast group. When data
needs to be delivered, each data packet is flooded. The protocol
is suitable for small networks or for networks characterized by a
high level of mobility that makes the creation and maintenance of
forwarding state hard or impossible to do.

ZRP [9] is a unicast routing protocol that can be used also to
support multicast. However, few details of its multicast operation
have been described.

6. Conclusion

In this paper, we have introduced the Adaptive Demand-Driven
Multicast Routing protocol (ADMR) for multicast routing in wire-
less ad hoc networks. Previous efforts to design a general-purpose



on-demand multicast routing protocol for ad hoc networks have uti-
lized periodic (non-on-demand) mechanisms to enable some core
routing functionality. ADMR uses no periodic network-wide floods
of control packets, periodic neighbor sensing, or periodic routing ta-
ble exchanges, and requires no core. The protocol adapts its behavior
based on application sending pattern, allowing efficient detection of
link breaks and expiration of routing state that is no longer needed.
ADMR handles bursty sources by sending limited keep-alives for a
period, to distinguish disconnections from lack of data. If there are
no receivers in the network, sources only flood existing data at in-
frequent intervals (to heal partitions) and do not transmit other data
or control packets. Furthermore, this is optional functionality and
does not affect the main routing mechanisms used by the protocol.

We have presented an initial performance evaluation of ADMR
and compared it to ODMRP, which has been shown to perform
well and is perhaps the previously best-studied on-demand multi-
cast protocol for ad hoc networks. ADMR delivers within 1% of
the multicast data packets at approximately half to a quarter of the
overhead generated by ODMRP. As a result of the lower load that
ADMR imposes on the network, packet latency is up to 1.6 times
lower than with ODMRP. ADMR’s overhead scales gracefully with
group size and with increased mobility. In addition, ADMR can
detect when mobility in the network is too high to allow timely
multicast state setup, without requiring GPS or other positioning
information or additional control traffic; when such high mobility is
detected, an ADMR source can switch to flooding for some period of
time, after which it may attempt to operate efficiently with multicast
again in case the mobility in the network has decreased.

Acknowledgements

We would like to thank the other members of the Monarch Project
for their valuable feedback on the design and presentation in this
paper. We also thank the anonymous reviewers for their helpful
suggestions on the paper’s presentation.

References

[1] A.Ballardie. Core Based Trees (CBT) Multicast Routing Architecture.
RFC 2201, September 1997.

[2] Bommaiah, McAuley, and Talpade. AMRoute: Adhoc Multicast
Routing Protocol. Internet-Draft, draft-talpade-manet-amroute-00.txt,
February 1999. Work in progress.

Josh Broch, David A. Maltz, David B. Johnson, Yih-Chun Hu, and
Jorjeta G. Jetcheva. A Performance Comparison of Multi-Hop Wireless
Ad Hoc Network Routing Protocols. In Proceedings of the Fourth
Annual ACM/IEEE International Conference on Mobile Computing
and Networking, pages 85-97, October 1998.

3

=

[4] C.-C. Chiang, Mario Gerla, and Lixia Zhang. Forwarding Group
Multicast Protocol (FGMP) for Multihop, Mobile Wireless Networks.
ACM Baltzer Journal of Cluster Computing: Special Issue on Mobile
Computing, 1(2):187-196, 1998.

M. Scott Corson and Anthony Ephremides. A Distributed Routing
Algorithm for Mobile Wireless Networks. Wireless Networks, 1(1):61—
81, feb 1995.

Steve Deering. Host Extensions for IP Multicasting. RFC 1112, August
1989.

[5

[t}

[6

=

[7

—

Kevin Fall and Kannan Varadhan, editors. ns Notes and Documentation.
The VINT Project, UC Berkeley, LBL, USC/ISI, and Xerox PARC,
November 1997. Available from http://www-mash.cs.berkeley.edu/ns/.

[8

[ut

J.J. Garcia-Luna-Aceves and E.L. Madruga. A Multicast Routing
Protocol for Ad-Hoc Networks. In Proceedings of the IEEE Conference

[9

—

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(171

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

on Computer Communications, INFOCOM 99, pages 784—792, March
1999.

Zygmunt J. Haas. A Routing Protocol for the Reconfigurable Wireless
Network. In 1997 IEEE 6th International Conference on Universal
Person Communications Record. Bridging the Way to the 21st Century,
ICUPC ’97, volume 2, pages 562-566, October 1997.

Hugh Holbrook and Brad Cain. Source-Specific Multicast for IP.
Internet-Draft, draft-holbrook-ssm-arch-01.txt, November 2000. Work
in progress.

IEEE Computer Society LAN MAN Standards Committee. Wireless
LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications, IEEE Std 802.11-1997. The Institute of Electrical and
Electronics Engineers, New York, New York, 1997.

Jorjeta G. Jetcheva, Yih-Chun Hu, David A. Maltz, and David B.
Johnson. A Simple Protocol for Multicast and Broadcast in Mobile Ad
Hoc Networks. Internet-Draft, draft-ietf-manet-simple-mbcast-01.txt,
July 2001. Work in progress.

L. Ji and M. S. Corson. A Lightweight Adaptive Multicast
Algorithm. In Proceedings of IEEE GLOBECOM 98, pages 1036—
1042, December 1998.

L. Ji and M. S. Corson. Differential Destination Multicast (DDM)
Specification. Internet-Draft, draft-ietf-manet-ddm-00.txt, July 2000.
Work in progress.

David B. Johnson. Routing in Ad Hoc Networks of Mobile Hosts. In
Proceedings of the IEEE Workshop on Mobile Computing Systems and
Applications, pages 158-163, December 1994.

David B. Johnson and David A. Maltz. Dynamic Source Routing
in Ad Hoc Wireless Networks. In Mobile Computing, edited by
Tomasz Imielinski and Hank Korth, chapter 5, pages 153-181. Kluwer
Academic Publishers, 1996.

David B. Johnson, David A. Maltz, Yih-Chun Hu, and Jorjeta G.
Jetcheva. The Dynamic Source Routing Protocol for Mobile Ad Hoc
Networks. Internet-Draft, draft-ietf-manet-dsr-05.txt, March 2001.
Work in progress.

S.Kentand R. Atkinson. Security Architecture for the Internet Protocol.
RFC 2401, November 1998.

S.-J. Lee, Mario Gerla, and C.-C. Chiang. On-Demand
Multicast Routing Protocol. In Proceedings of the IEEE Wireless
Communications and Networking Conference, WCNC 99, pages
1298-1304, September 1999.

S.-J. Lee, W. Su, J. Hsu, M. Gerla, and R. Bagrodia. A Performance
Comparison Study of Ad Hoc Wireless Multicast Protocols. In
Proceedings of IEEE INFOCOM 2000, pages 565-574, March 2000.

The Monarch Project. Rice Monarch Project: Mobile
Networking Architectures, project home page. Available at
http://www.monarch.cs.rice.edu/.

Elizabeth M. Royer and Charles E. Perkins. Multicast Operation of the
Ad-hoc On-Demand Distance Vector Routing Protocol. In Proceedings
of the Fifth Annual ACM/IEEE International Conference on Mobile
Computing and Networking, Mobicom 99, pages 207-218, August
1999.

P. Sinha, R. Sivakumar, and V. Bharghavan. MCEDAR: Multicast
Core Extraction Distributed Ad-Hoc Routing. In In Proceedings of the
Wireless Communications and Networking Conference, WCNC ’99.,
pages 1313-1317, September 1999.

C.-K. Toh, Guillermo Guichala, and Santithorn Bunchua. ABAM: On-
Demand Associativity-Based Multicast Routing for Ad Hoc Mobile
Networks. In Proceedings of IEEE Vehicular Technology Conference,
VTC 2000, pages 987-993, September 2000.

C.W. Wu, Y.C. Tay, and C-K. Toh. Ad hoc Multicast Routing protocol
utilizing Increasing id-numberS (AMRIS). Internet-Draft, draft-ietf-
manet-amris-spec-00.txt, November 1998. Work in progress.



