
Performance of Public-Key-Enabled Kerberos Authentication in Large Networks

Alan H. Harbitter
PEC Solutions, Inc.
Aharbitter@pec.com

Daniel A. Menascé
George Mason University

Menasce@cs.gmu.edu

Abstract

Several proposals have been made to public-key-
enable various stages of the secret-key-based Kerberos
network authentication protocol. The computational
requirements of public key cryptography are much
higher than those of secret key cryptography, and the
substitution of public key encryption algorithms for
secret key algorithms impacts performance.

This paper uses closed, class-switching queuing
models to demonstrate the quantitative performance
differences between PKCROSS and PKTAPP—two
proposals for public-key-enabling Kerberos. Our
analysis shows that, while PKTAPP is more efficient for
authenticating to a single server, PKCROSS outperforms
the simpler protocol if there are two or more remote
servers per remote realm. This heuristic can be used to
guide a high-level protocol that combines both methods
of authentication to improve performance.

1. Introduction

Kerberos has become a mature, reliable, secure
network authentication protocol. Kerberos is based on
secret key encryption technology. It is the native network
authentication protocol in the Microsoft Windows 2000
operating system and may be a candidate for use as a
general-purpose authentication protocol for large user
communities on the Internet.

Several proposals have been developed that add
public key cryptography to various stages of Kerberos to
make the protocol work with large user communities and
Public Key Infrastructures (PKIs). But the computational
requirements of public key cryptography are higher than
those of secret key cryptography. As a result, the
substitution of public key encryption algorithms for
secret key algorithms impacts performance.

This paper examines the performance impacts of
PKCROSS and PKTAPP—two proposals to substitute
public key cryptography for the client-to-server
authentication and KDC-to-KDC (Key Distribution
Center) inter-realm authentication in Kerberos. The
context for this analysis is a large network with many
application hosts participating in the authentication
process.

Section 2 provides background information about
Kerberos and proposals to public-key-enable Kerberos.
Section 3 describes the performance modeling techniques
used to analyze PKCROSS and PKTAPP, and Section 4
analyzes the performance implications. Sections 5 and 6
describe related work, present the conclusions of this
analysis, and suggest areas for future research.

2. Kerberos and Public Key Variants

2.1 The Basic Operation of Kerberos

Kerberos is a network authentication scheme based on
the early work of Needham and Schroeder [1]. Two
popular Kerberos standards exist: Version 4 and Version
5 [2]. This paper considers the more current Version 5
and its variations.

Kerberos divides the world into realms, each with a
single primary Key Distribution Center, back-up KDCs,
applications servers, and user workstations. A single
realm corresponds to a community of interest with a
single security policy.

Many good, detailed descriptions of Kerberos
protocol operation exist [3,4] and will not be repeated
here. Briefly, the client—Alice—engages in a multiple-
step authentication to obtain access to the application
server—Bob. Alice must first obtain a ticket-granting
ticket (TGT) to a centralized Ticket-Granting Service
(TGS) offered by the KDC. She uses the TGT to obtain a
service ticket to Bob. She presents the service ticket to
Bob and authenticates herself by demonstrating

Proceedings of the IEEE Symposium on Security and Privacy (S&P�01)
1081-6011/01 $10.00 © 2001 IEEE

knowledge of a secret session key securely passed to her
by the KDC.

A truly large enterprise may consist of many realms,
and Alice may wish to gain access to an application
server in a remote realm. To support “cross-realm”
authentication, Alice’s KDC and the remote KDC must
have either a direct or indirect trust relationship
(Kerberos Version 4 requires a direct trust relationship).
This trust relationship is implemented by sharing
symmetric keys among the KDCs.

If such a trust relationship exists, Alice may gain
access to a remote server by first requesting a ticket to the
remote realm’s KDC from her local KDC. She will
receive a ticket (a data structure encrypted with the KDC
pair’s shared symmetric key) to the remote TGS. When
she presents the ticket to the remote KDC, she will
receive a service ticket for an application server in the
remote realm.

2.2 Motivation to Add Public Key Cryptography
to Kerberos

Kerberos offers at least two significant benefits as a
network authentication protocol. First, the message
formats are defined such that the session keys are always
included in some encrypted portion of the message. As a
result, Kerberos servers do not need to store session keys
or maintain a security association with each client.
Kerberos is stateless; state is represented through the
Kerberos tickets. Statelessness is extremely valuable
from the standpoint of scalability.

The second benefit is that client user Alice is only
required to provide her password once. Although many
Kerberos request messages contain authenticators, the
encryption is performed by Alice’s workstation. As a
result, Kerberos implements a “single sign-on”
mechanism.

A potential limitation in Kerberos scalability is its
reliance on symmetric key encryption [5]. Shared secrets
must be established and maintained between every user
and the KDC, between every application server and the
KDC, and between remote KDCs. The use of public key
cryptography shifts key management from the KDC to a
Certification Authority (CA) [6]. Public key
cryptography eliminates the need to establish a large
number of shared secrets (i.e., symmetric keys) between
KDCs, servers, and users.

Although the scaling merits of public-key- versus
secret-key-based systems have not been definitively

proven, several current proposals suggest adding public
key cryptography to Kerberos and hence changing the
key management model.

2.3 Proposals to Add Public Key Encryption to
Kerberos

Internet drafts exist for three alternatives: (1) Public
Key Cryptography for Initial Authentication in Kerberos
(PKINIT) [7], (2) Public Key Cryptography for Cross-
Realm Authentication in Kerberos (PKCROSS) [8], and
(3) Public Key Utilizing Tickets for Application Servers
(PKTAPP) [9]. PKINIT is the core specification. Both
PKCROSS and PKTAPP use variations of PKINIT
message types and data structures to apply public key
cryptography to different Kerberos authentication steps.

PKINIT. The PKINIT Internet draft specifies that
considerable message content must be added to the initial
Kerberos Version 5 exchanges to replace the user secret
key authentication with public key authentication.

Figure 1 illustrates the flow of the PKINIT protocol.
The client must send a public key certificate and a chain
of certificates (“userCert” in the PKINIT specification) to
establish trust between the user and the KDC and relay
the user’s public key. The client must also send an
authenticating data structure (“SignedAuthPack”) signed
with the client’s private key. This information is included
in the Kerberos pre-authentication fields—defined in the
specification to support extensions to the protocol.

The KDC verifies the client’s identity by verifying the
digital signature in the SignedAuthPack. The KDC
replies to the client with a chain of certificates for the
KDC’s public key (“kdcCert”), the KDC’s digital
signature (“SignedReplyKeyPack”), and the session key
(“encTmpKeyPack”) encrypted with the client’s public
key. The client can confirm KDC identity by verifying its
digital signature.

Mandatory variations allow the substitution of a
certificate serial number for the certificate chain
(assuming that the KDC already has a trusted copy of the
user’s certificate) and the use of Diffie-Hellman to
establish a session key. PKINIT drafts have included
several interesting options such as storing the user’s
private key on the KDC and allowing the user to generate
the session key. Allowing the user to generate the session
key would reduce load on the KDC and potentially
change scaling characteristics.

Proceedings of the IEEE Symposium on Security and Privacy (S&P�01)
1081-6011/01 $10.00 © 2001 IEEE

Figure 1. The PKINIT transaction flow

PKCROSS. While PKINIT addresses the issue of
managing secret keys for a large number of clients, it
does not address the issue of key management among a
large number of realms. A logical extension of PKINIT
is the use of public key encryption for multiple-realm,
KDC-to-KDC authentications. This is the subject of the
PKCROSS Internet draft specification.

Figure 2 illustrates a possible flow for PKCROSS
authentication. PKCROSS picks up the multiple realm
authentication at the point at which the client has already
obtained a TGT. The client may or may not have
authenticated to its local KDC using PKINIT (Figure 2
shows a secret-key-based TGT request). Assume that
the client has requested access to a server in a remote
realm. Its local KDC initiates a PKCROSS transaction
with the appropriate remote KDC. With a few minor
variations, the KDC-to-KDC authentication is performed
using the PKINIT protocol.

One variation is that the remote KDC is responsible
for generating a “special symmetric key it uses for
PKCROSS requests” [8]. The local KDC can skip the

explicit exchange with the remote KDC if it currently
has an active, valid TGT sealed with a special
symmetric key. Once the client possesses a remote TGT,
it may request additional service tickets in the remote
realm without involving the local KDC.

PKTAPP. In Kerberos, the KDC issues all TGS,
remote KDC, and server tickets in its realm. Since most
authentication transactions have to transit the KDC, it
can become a performance bottleneck. Although
secondary KDCs can be included in the system, they are
typically used as backups in the event of a primary KDC
failure. The PKTAPP Internet draft seeks to eliminate
this potential bottleneck and reduce communications
traffic by implementing the authentication exchange
directly between the client and the application server.

This variation was originally introduced as the Public-
key-based Kerberos for Distributed Authentication
(PKDA) [10]. PKTAPP proposes to implement PKDA
using the PKINIT-specified message definitions and
exchanges.

AS-REP*

Client
Alice

AS-REQ*Initial TGT request to KDC. Pub lic
keys are used to au thenticate client
and KDC

R equest a ticket to application server
using secret key encryption

Authentica te to the re mote
application serve r us ing secre t key
encryption

TGS-REQ

TGS-REP

A uth entication Fun ction

Local
KDC

AP-REP

AP-REQ

Server
Bob

* a standard Kerberos Version 5 message that contains a PA-PK-AS-REQ pre-
authenticat ion field including the userCert and SignedAuthPack

** a standard Kerberos Version 5 message that contains PA-PK-AS-REP pre-
authenticat ion field including the kdcCert, SignedReplyKeyPack, and encTmpKeyPack

**

Proceedings of the IEEE Symposium on Security and Privacy (S&P�01)
1081-6011/01 $10.00 © 2001 IEEE

Figure 2. The PKCROSS transaction flow

PKTAPP is a more efficient protocol than traditional
Kerberos from a message exchange perspective. The
client may deal directly with the application server.
Figure 3 illustrates the PKTAPP authentication message
exchange. The AS-REQ message, the first message
submitted by the client, contains the client’s certificate
chain and the identity of the service ticket requested. The
server response, an AS-REP message, contains the
server’s certificate chain and the session key encrypted
with the server’s private key. After authentication, the
client requests an application service ticket using a
Kerberos Version 5 request. The entire authentication
process is reduced to a total of two message pairs.

In the above public key extensions, there is no explicit
requirement for pre-knowledge of identity between the
client and the KDC or between the two KDCs. There is
no need to pre-establish shared secrets or store a user
record in a Kerberos database. The only basis for trust
between these entities is the certificate chain.

These protocols substitute public key infrastructure as
the management mechanism in lieu of sharing secret
keys. Because of the additional processing requirements,
a performance price is paid each time a public key
calculation is substituted for a symmetric key calculation.

Additionally, because the public key messages are larger
than the corresponding Kerberos Version 5 messages and
more likely to fragment, the PKINIT draft recommends
the use of TCP as the underlying transport protocol.
UDP, which has a significantly lower overhead, is the
protocol commonly used for secret-key-based Kerberos
implementations.

2.4 Using Closed Queuing Networks to Analyze
Protocol Performance

The KDCs, application server, communications
networks, and client workstations are finite resources that
process workload while Kerberos authentication
transactions are executing. One way to quantitatively
analyze the performance of alternative public-key-
enabled Kerberos variants is through the use of closed
queuing networks [11], which represent each system
resource with a queuing discipline and a stochastic
service distribution.

AS-REP

Client
Alice

AS-REQ

Initial secret key-based T GT request
to KDC

Request a ticket to the remote T GS

Pub lic key authen tication between
KDCs to estab lish a session key

Request a ticket to the remote
application serve r (a ll secre t key
encryption)

Authe ntica te to the remote
application serve r(all secret key
encryption)

TGS-REQ

AS-REQ*

TGS-REP

AS-REP**

Auth entication Fun ction

AP-REP

AP-REQ

Local
KDC

Server
Bob

TGS-REP

TGS-REQ

Rem ote
KDC

* a standard Kerberos Version 5 message that includes PA-PK-AS-REQ pre-
authenticat ion field

** a standard Kerberos Version 5 message that includes PA-PK-AS-REP pre-authenticat ion
field

Proceedings of the IEEE Symposium on Security and Privacy (S&P�01)
1081-6011/01 $10.00 © 2001 IEEE

Figure 3. The PKTAPP transaction flow

Figure 4 presents the topology of a two-realm
Kerberos closed queuing network model. Customers
circulate among the servers in the closed network and
sequentially wait for service, consume processing
resources, and then proceed to the next service station.

Figure 4. The topology of a two-realm Kerberos
closed queuing network model

The topology envisioned in Figure 4 anticipates that
the local KDC may be connected to the client by a local
area network (LAN) and the remote KDC and application
server may be connected by a wide area network (WAN).
The mathematical solution to the queuing network
produces metrics for each queuing station and the system
as a whole—metrics such as the average number of
customers, the average delay time, and the customer
throughput. These metrics can be used to compare the
performance of the alternative Kerberos proposals.

The brute-force mathematical solution to the closed
queuing network can be obtained by enumerating all
possible states (that is, all possible combinations of
customers at each server) and solving the simultaneous
set of equations representing balanced probability flow
into and out of each state. This is called the global
balance solution [12]. For any practical number of
customers and servers, the state space is extremely large,
and the global balance equations are impractical to solve.

If the closed queuing network meets a certain set of
criteria—primarily concerning the independence of
servers and customers—the closed queuing network can
be represented by a “product form” solution [13]. In a
product form solution, the probability that the system is
in a given state N = (n1, n2, ..., nk) representing the
number of customers at all k servers is proportional to the
product of the marginal probabilities Pi(ni) that server i
has ni customers. The product form queuing network can
be solved efficiently even for large numbers of servers
and customers [11, 14].

A typical problem with this solution approach is the
practicality of the assumptions required to achieve
product form. For example, it is difficult to assume, when

AS-REP**

AS-REQ*

Auth entication Fun ction
Service request to app lica tion
serve r. Public keys a re used to
au thenticate client and serve r

Authentica te to the application
service AP-REP

AP-REQ

Server
Bob

Client
Alice

* a standard Kerberos Version 5 message that includes PA-PK-AS-REQ pre-
authenticat ion fie ld

** a standard Kerberos Version 5 message that includes PA-PK-AS-REP pre-authenticat ion
field

WAN

Remote
Application

Server 1

Remote
Application

Server n

.

.

.

Remote
KDC

. . .

LAN Local
KDC

Proceedings of the IEEE Symposium on Security and Privacy (S&P�01)
1081-6011/01 $10.00 © 2001 IEEE

analyzing authentication protocols, that all customers at a
“first-come, first-served” resource have the same average
service times. Public key encryption will be applied at
specific points in the protocol. A message undergoing
public key encryption will require much more processor
service time than a message undergoing secret key
encryption. Hence, it is impractical to assume that all
messages arriving at a server will experience the same
average service time. One way around this dilemma is to:

• assume that the server performing the encryption
follows a processor sharing [14] queuing scheme,

• assume that messages undergoing public key
encryption are in a different class [14] than messages
undergoing secret key encryption, and

• implement a class-switching [11, 13] model in
which a transaction will switch from one class to another
as it requires different types of encryption and
correspondingly different service times.

In the above construction, each closed set of customer
classes forms an independent Markov chain [12], and a
product form solution is maintained.

2.5 Authentication Performance Problems in
Large Networks

The context for this analysis is authentication in a
large, multi-realm network. Consider the following
example as an illustration.

An intelligent software agent representing a law
enforcement official is collecting information for an
investigation. The agent “visits” on-line town halls and
virtual sheriff’s offices in a nationwide search for
evidence and investigative intelligence. At each stop, the
agent must show well-accepted electronic credentials.
The source and level of these credentials will be used to
grant the agent access to records tightly controlled for
reasons of confidentiality and security. Further, the agent
may be requested to pay for information with electronic
currency. The infrastructure to support this type of
electronic investigation will require scalable, robust
authentication protocols.

The intelligent agent will probably be transiting
multiple security realms in the course of the cyber
investigation. Both PKTAPP and PKCROSS are
candidates for the authentication protocol. A quick
analysis might conclude that PKTAPP would have better
performance characteristics because the agent would
authenticate directly at the application server with only

two message pairs. However, the agent may be interested
in authenticating to several servers within a single
realm—as would be the case for a visit to the cyber town
hall, courthouse, police station, and sheriff’s office for
the same township.

If the agent uses PKCROSS, an expensive public key
authentication would be required only once—between the
local KDC and the remote KDC. After the cross-
authentication and the provision of a TGT to the remote
TGS, only secret key encryption calculations would be
required. At some application-server-to-realm ratio, it
would be more efficient to use the PKCROSS protocol.

This is the specific performance question we will
explore: Under what circumstance is it more efficient to
authenticate to a central KDC than to individual
applications servers?

3. Methodology

Any analysis of PKTAPP and PKCROSS should start
with reference implementations of the two protocols.
Unfortunately, there are no such sources for PKCROSS
and PKTAPP. Consequently, we began our analysis by
building “skeleton” implementations of these two
protocols.

The objective of the skeleton design was to consume
computing resources similar to actual implementations of
the protocol (resulting from communications, encryption,
and message processing), but to avoid many of the
complexities presented by implementing the real
protocols. For example, we excluded error processing
and many optional Kerberos features from the skeleton.
The implementation also included more detail in the
servers than in the clients because the servers are the
shared resources.

We developed the skeletons in standard C and used
the RSA reference library, RSAREF [15], for public key
encryption and Karn’s DES library [16] for symmetric
key encryption. We implemented the KDCs and
application servers on Microsoft Windows NT and the
clients on Microsoft Windows 98. However, we did not
use any operating-system-specific extensions in the C
programs.

Figure 5 presents the software architecture. In the
PKCROSS transaction, the client process steps through
the standard Kerberos authentication message sequence
to request service from an application server in a remote
realm.

Proceedings of the IEEE Symposium on Security and Privacy (S&P�01)
1081-6011/01 $10.00 © 2001 IEEE

Figure 5. The PK-enabled Kerberos skeleton software architecture

Client Workstation

Rem ote KDC

Local KDC

Pkclient Process

KDC Process L1

KDC Process R2

TG S-REQ /REP
thread

AS-REQ/REP
thread

TG -REQ/REP
thread

KDC Process R1

UDP
datagrams

PK-AS-REQ/REP
thread

TCP
connection

Application Server

App Server Process A1

AP-REQ/REP
thread

UDP
datagrams

PKCROSS Skeleton Implementation

Application Server

App Server Process A1

PK-AS-REQ/REP
thread

TCP
connection

Client Workstation

Pkclient Process

PKTAPP Skeleton Implementation

App Server Process A2

AP-REQ/REP
thread

UDP
datagrams

Thread Names
AS-REQ/REP: Handles initial Kerberos V authentica tion requests and replies
TG -REQ/REP : Hand les in itia l Kerbe ros V ticke t requests and replies
PK-AS/REQ/REP: Handles public key Kerberos authen tication requests and rep lies
AP-REQ/REP: Handles Kerberos V app lica tion se rver authen tications

Proceedings of the IEEE Symposium on Security and Privacy (S&P�01)
1081-6011/01 $10.00 © 2001 IEEE

The primary purpose of the skeleton software on the
client is to issue requests, quickly confirm the validity of
the response, and timestamp the transaction to report
response time statistics. The client side processing has
been simplified to focus on the shared resources: KDCs
and Application Servers. The client process will loop
through many transactions for the purpose of reporting
average response time statistics.

A single process runs on the local KDC to accept
client requests in UDP datagrams and cross-authenticate
with the remote KDC using PKINIT. Two processes run
on the remote KDC: one waits for standard Kerberos
requests arriving as UDP datagrams, and the other opens
a TCP listening socket and waits for PKINIT
transactions. All KDC and Application Server processes
are multi-threaded—when they receive a message, they
dispatch a thread to process and respond to the request.
In the final step of the transaction, the client authenticates
to the Application Server using a ticket received from the
remote KDC.

In the PKTAPP transaction, the client process has the
same role and interacts with two server processes. It
conducts a PKINIT exchange over a TCP connection to a
multi-threaded process and obtains a service ticket. The
client completes the authentication by sending a UDP
datagram (a Kerberos Version 5 AP–REQ message) to a
multi-threaded process running on the same physical
server.

With the availability of measurable, skeleton versions
of PKCROSS and PKTAPP, we followed a five-step
approach to answer the questions posed in Section 2
concerning public-key-enabled Kerberos variants:

1. Establish a test bed to measure Kerberos service
times. Figure 6 illustrates a multi-domain Kerberos test

bed. We used instrumented code, an IP-layer packet
monitor, and software monitors to capture the service
times and message sizes for a cross-domain
authentication transaction. The test bed uses simple, low-
level PCs for all clients and servers and connects them
with a 10-Mbps Ethernet LAN. All servers used the
Microsoft Windows NT operating system; all clients used
the Microsoft Windows 98 operating system.

2. Develop a closed queuing network model of
Kerberos multidomain authentication. We constructed a
queuing model, similar in topology to that illustrated in
Figure 4, to represent the operation of Kerberos Version 5
with public key extensions. The queuing model uses a
class-switching formulation so the service times can be
varied for each step in the protocol.

3. Calibrate the queuing model against the test bed.
We ran automated authentication scripts on each client
workstation in Figure 6 to generate load on the servers.
We measured transaction throughput and response times
for several levels of workload submission. Then we
entered similar workload profiles into the queuing model
to calibrate the model against the test bed emulations. This
step demonstrated the predictive accuracy of the queuing
model.

4. Execute the model with different numbers of realms
and servers. We executed the model with varying
numbers of realms and servers per realm to observe the
effects on throughput and response time.

5. Analyze sensitivity to changes in service time and
network delay. Any conclusions about the situations
favoring PKTAPP and PKCROSS performance will
depend on the capacity and the resources that support the
protocols, primarily server speed and network delay. We
varied these parameters in our model in order to
understand the dependencies.

Figure 6. A multiple-realm Kerberos test bed

Remote Realm Local Realm

10 Mbps Ethernet

Application Server Remote KDC Local KDC
Client Workstations

Proceedings of the IEEE Symposium on Security and Privacy (S&P�01)
1081-6011/01 $10.00 © 2001 IEEE

4. Analysis

4.1 Model Calibration

The flow of the PKCROSS and PKTAPP transactions
follows the message exchanges illustrated in Figures 2
and 3. These baseline transactions are constructed with
one application host in a remote realm. Because the
environment under study is a large, multi-realm network,
it is assumed that the client and KDCs must present
certificates for authentication (that is, no parties store
certificate serial numbers and local copies of certificates).
Further, it is assumed that the remote server must validate
two certificates in a chain corresponding to the certificate
signed by the local CA and a certificate signed by the
remote CA. The same assumptions are applied to the
authentication of the local KDC to the remote KDC.

We configured the client, KDCs, and application
server implementations to perform all encryption
operations with 1024-bit RSA keys or standard DES.
Table 1 summarizes the encryption operations performed.
The number of public and private key operations for
authentication to a single application server is identical.
PKCROSS requires more secret key operations.

The model’s predictive accuracy for PKCROSS and
PKTAPP transactions is shown in Figures 7 and 8,
respectively. Both graphs demonstrate good calibration
between the model and observed test bed results. The
predicted response times and throughputs are within 3
percent of measured results.

4.2 PKCROSS and PKTAPP Performance
Predictions

We used the calibrated model to investigate
performance with an increased number of application
servers. As the number of application servers increases,
the number of “visits” made to the corresponding servers
in each transaction increases. The PKTAPP transaction
will include an additional set of public key authentication
calculations for every additional application server. In the
PKCROSS transaction, there is only one public key
authentication—between the local and remote realm
KDCs—regardless of the number of application servers
in the remote realm.

Figure 9 presents the comparative performance—
transaction response time plotted as a function of
throughput—for the PKCROSS and PKTAPP protocols
as the number of application servers are increased. The
transactions for PKCROSS represent authentication to
one and sixteen application servers in the remote realm.
The transactions for PKTAPP represent authentication to
one, two, and four servers in the remote realm. We
expect that uses similar to the example offered in
Paragraph 2.5 could require authentication to four or
more servers in a single realm.

The transaction rates for both protocols were
increased until the overall response time became unstable
and grew rapidly. In the PKCROSS transaction, the first
bottleneck was the remote KDC processor, which had
two processes running (one monitoring UDP traffic and
the other listening for PKINIT transactions over TCP
connections) and handled half the public key calculations
for the KDC-to-KDC PKINIT exchange.

Table 1. A summary of the encryption operation performed for PKCROSS and PKTAPP
authentication transactions

Authentication
Transaction

No. Private Key
Operations

No. Public Key
Operations

No. Secret Key
Operations

PKCROSS
Client 0 0 7
Local KDC 2 3 5
Remote KDC 1 4 4
Application Server 0 0 3
Totals 3 7 19

PKTAPP
Client 2 3 3
Application Server 1 4 4
Totals 3 7 7

Proceedings of the IEEE Symposium on Security and Privacy (S&P�01)
1081-6011/01 $10.00 © 2001 IEEE

Figure 7. Calibration results for the PKCROSS transaction

Figure 8. Calibration results for the PKTAPP transaction

0

5

10

15

20

25

30

35

40

45

50

55

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

Throughput (1/secs)

R
e

sp
o

n
se

T
im

e
(s

e
c

s)

measured

predic ted

Throughput (trans/sec)

0

5

10

15

20

25

30

35

40

45

50

55

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

Throughput (1/secs)

R
e

sp
o

n
se

T
im

e
(s

e
c

s)

measured

predic ted

Throughput (trans/sec)

0

5

10

15

20

25

30

35

40

45

50

55

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

Throughput (1/secs)

R
e

sp
o

n
se

T
im

e
(s

e
c

s)

measured

predic ted

Throughput (trans/sec)

0

5

10

15

20

25

30

35

40

45

50

55

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

Throughput (1/secs)

R
e

sp
o

n
se

T
im

e
(s

e
c

s)

measured

predic ted

Throughput (trans/sec)

0

20

40

60

80

100

120

0.05 0.06 0.06 0.07 0.07 0.08 0.08

Throughput in trans/se c

R
e

sp
o

n
se

ti
m

e
in

se
c

.s

Meas. Rsp.

Pred. Rsp.

R
es

p
o

n
se

T
im

e
(s

ec
s)

Throughput (trans/sec)

0

20

40

60

80

100

120

0.05 0.06 0.06 0.07 0.07 0.08 0.08

Throughput in trans/se c

R
e

sp
o

n
se

ti
m

e
in

se
c

.s

Meas. Rsp.

Pred. Rsp.

R
es

p
o

n
se

T
im

e
(s

ec
s)

Throughput (trans/sec)

0

20

40

60

80

100

120

0.05 0.06 0.06 0.07 0.07 0.08 0.08

Throughput in trans/se c

R
e

sp
o

n
se

ti
m

e
in

se
c

.s

Meas. Rsp.

Pred. Rsp.

R
es

p
o

n
se

T
im

e
(s

ec
s)

Throughput (trans/sec)

0

20

40

60

80

100

120

0.05 0.06 0.06 0.07 0.07 0.08 0.08

Throughput in trans/se c

R
e

sp
o

n
se

ti
m

e
in

se
c

.s

Meas. Rsp.

Pred. Rsp.

R
es

p
o

n
se

T
im

e
(s

ec
s)

Throughput (trans/sec)

Proceedings of the IEEE Symposium on Security and Privacy (S&P�01)
1081-6011/01 $10.00 © 2001 IEEE

Figure 9. Comparative PKCROSS and PKTAPP performance

The next bottleneck, with very similar workload, was
the local KDC. The application server was under-
utilized—it conducted the final user authentication with
only secret key encryption. Under PKCROSS, the KDCs
remain the saturation point regardless of the number of
remote realm application servers participating in the
authentication.

The indifference of the PKCROSS protocol to number
of servers in the remote realm is clear in Figure 9. The
analysis demonstrates that, while PKTAPP is a
significantly better performance choice for a single
remote server, PKCROSS is significantly more stable for
anything greater than two servers in the remote realm.

Our model accounts only for application server
workload generated by authentications. In general, the
application server will carry additional processing
workload. If we had added that workload to the model, it
would make PKCROSS look even more favorable.

4.3 Sensitivity to Resource Capacity

We call the number of servers per realm favoring
PKCROSS performance over PKTAPP the “cross-over.”
The cross-over may vary with server and network
capacity. The test bed was constructed with low-
performance servers and a high-performance network—a
10-Mbps local area network has much better performance
than the typical Internet connection.

We repeated the model variations studied in Section 4.2
over a range of server and network performance. We
increased the performance of both KDCs and the
application servers (that is, service times were reduced)
by one and two orders of magnitude. As a result, we
studied a range of processor performance that varied
from a “1” to “100” SPEC CINT95 [17] rating—from a
very-low-end Intel Pentium processor to a high-end
server. Network performance ranged from LAN speeds
to a network throughput of 12,750 bytes per second to
characterize slow Internet links [18].

The results of our fast-processor/slow-network model
are documented in Figure 10. This analysis indicates that
performance benefits of PKCROSS when more than two
application servers are accessed in the remote realm hold
for increased processor capacity and reduced network
throughput. It might appear that the increased network
delay would favor PKTAPP because PKCROSS includes
more message exchanges. The increased network delay
does result in more separation between the PKCROSS
response time curves for 1, 8, and 16 application server
authentications. However, because PKTAPP sends large
messages carrying certification chains to each application
server, we observe the same cross-over result.

-

10

20

30

40

50

60

- 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

Throughput (trans./sec.)

R
e

sp
o

n
se

ti
m

e
(s

e
c

s.
)

PKTA PP

1 server

PKTA PP

4 servers

PKTA PP

2 servers

PKDIST

1&16 servers

crossover

line

PKCROSS

R
es

p
o

n
se

T
im

e
(s

ec
s)

Throughput (trans/sec)

-

10

20

30

40

50

60

- 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

Throughput (trans./sec.)

R
e

sp
o

n
se

ti
m

e
(s

e
c

s.
)

PKTA PP

1 server

PKTA PP

4 servers

PKTA PP

2 servers

PKDIST

1&16 servers

crossover

line

PKCROSS

R
es

p
o

n
se

T
im

e
(s

ec
s)

-

10

20

30

40

50

60

- 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

Throughput (trans./sec.)

R
e

sp
o

n
se

ti
m

e
(s

e
c

s.
)

PKTA PP

1 server

PKTA PP

4 servers

PKTA PP

2 servers

PKDIST

1&16 servers

crossover

line

PKCROSS

-

10

20

30

40

50

60

- 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

Throughput (trans./sec.)

R
e

sp
o

n
se

ti
m

e
(s

e
c

s.
)

PKTA PP

1 server

PKTA PP

4 servers

PKTA PP

2 servers

PKDIST

1&16 servers

crossover

line

PKCROSS

R
es

p
o

n
se

T
im

e
(s

ec
s)

Throughput (trans/sec)

-

10

20

30

40

50

60

- 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

Throughput (trans./sec.)

R
e

sp
o

n
se

ti
m

e
(s

e
c

s.
)

PKTA PP

1 server

PKTA PP

4 servers

PKTA PP

2 servers

PKDIST

1&16 servers

crossover

line

PKCROSS

R
es

p
o

n
se

T
im

e
(s

ec
s)

Throughput (trans/sec)

-

10

20

30

40

50

60

- 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

Throughput (trans./sec.)

R
e

sp
o

n
se

ti
m

e
(s

e
c

s.
)

PKTA PP

1 server

PKTA PP

4 servers

PKTA PP

2 servers

PKDIST

1&16 servers

crossover

line

PKCROSS

R
es

p
o

n
se

T
im

e
(s

ec
s)

-

10

20

30

40

50

60

- 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

Throughput (trans./sec.)

R
e

sp
o

n
se

ti
m

e
(s

e
c

s.
)

PKTA PP

1 server

PKTA PP

4 servers

PKTA PP

2 servers

PKDIST

1&16 servers

crossover

line

PKCROSS

-

10

20

30

40

50

60

- 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

Throughput (trans./sec.)

R
e

sp
o

n
se

ti
m

e
(s

e
c

s.
)

PKTA PP

1 server

PKTA PP

4 servers

PKTA PP

2 servers

PKDIST

1&16 servers

crossover

line

PKCROSS

R
es

p
o

n
se

T
im

e
(s

ec
s)

Throughput (trans/sec)

Proceedings of the IEEE Symposium on Security and Privacy (S&P�01)
1081-6011/01 $10.00 © 2001 IEEE

Figure 10. Comparative PKCROSS and PKTAPP performance with increased server capacity and
decreased network throughput

5. Related Work

Developers of security protocols and encryption
algorithms have long recognized the importance of
performance. In many cases, researchers applied either
complexity analysis to evaluate algorithm performance or
measurement techniques to analyze system performance
[19-22]. Protocol performance has become an
increasingly important topic as security algorithms have
become more commonly used in production and high-
workload computing and networking environments.

Early work examined the impact of security protocols
on network throughput, seeking to determine whether
encryption calculations would put a damper on rapidly
increasing data rates. In [23], Zorkadis identifies the
communications performance impacts of five basic
security services: authentication, access control,
confidentiality, integrity, and non-repudiation. Zorkadis
begins his exploration of the impacts by constructing a
simple queuing model for secure communications.

Because Kerberos was the standard network
authentication protocol in the Open Software
Foundation’s Distributed Computing Environment
(DCE) [24, 25], it has been analyzed in that context.
DCE security services have been benchmarked and
analyzed in [26]. The performance characteristics of
Kerberos have been loosely measured in some of its pilot
applications [27], with good results.

The predominant role of public key cryptography in
electronic commerce has motivated several performance
studies. In [28], Apostolopoulos and Peris look at ways to
reduce the impact of the private key encryption step in
the Transport Layer Security (TLS) protocol. In [29],
Menascé and Almeida use analytical modeling to assess
the tradeoff between performance and security in e-
commerce applications using protocols such as TLS and
payment services such as SET. Lambert, in [30],
performs a high-level, benchmark-supported analysis of
performance improvements anticipated from the use of
elliptic curve cryptography in e-commerce transactions.

Finally, in previous work, the authors analyzed public-
key-enabled Kerberos [31] without the benefit of
PKINIT and PKCROSS skeleton implementations. As a
result, that analysis contained only speculative
observations.

6. Summary and Future Work

We have demonstrated, through the use of validated
analytical queuing models, the quantitative performance
differences between two proposals to public-key-enable
Kerberos: PKCROSS and PKTAPP. Our analysis shows
that, over the range of server and network capacity
studied, PKCROSS outperforms the simpler protocol,
PKTAPP, for authenticating to more than one application
server in a remote realm. This finding can be used to

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14 16

Throughput (trans./sec.)

R
e

sp
o

n
se

ti
m

e
(s

e
c

s.
)

PKTA PP

1 server

PKTA PP

2 servers

PKDIST

1, 8, & 16

servers

crossover

line

PKTA PP

4 servers

8 servers
PKCROSS

Throughput (trans/sec)

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14 16

Throughput (trans./sec.)

R
e

sp
o

n
se

ti
m

e
(s

e
c

s.
)

PKTA PP

1 server

PKTA PP

2 servers

PKDIST

1, 8, & 16

servers

crossover

line

PKTA PP

4 servers

8 servers
PKCROSS

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14 16

Throughput (trans./sec.)

R
e

sp
o

n
se

ti
m

e
(s

e
c

s.
)

PKTA PP

1 server

PKTA PP

2 servers

PKDIST

1, 8, & 16

servers

crossover

line

PKTA PP

4 servers

8 servers
PKCROSS

Throughput (trans/sec)

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14 16

Throughput (trans./sec.)

R
e

sp
o

n
se

ti
m

e
(s

e
c

s.
)

PKTA PP

1 server

PKTA PP

2 servers

PKDIST

1, 8, & 16

servers

crossover

line

PKTA PP

4 servers

8 servers
PKCROSS

Throughput (trans/sec)

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14 16

Throughput (trans./sec.)

R
e

sp
o

n
se

ti
m

e
(s

e
c

s.
)

PKTA PP

1 server

PKTA PP

2 servers

PKDIST

1, 8, & 16

servers

crossover

line

PKTA PP

4 servers

8 servers
PKCROSS

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14 16

Throughput (trans./sec.)

R
e

sp
o

n
se

ti
m

e
(s

e
c

s.
)

PKTA PP

1 server

PKTA PP

2 servers

PKDIST

1, 8, & 16

servers

crossover

line

PKTA PP

4 servers

8 servers
PKCROSS

Throughput (trans/sec)

Proceedings of the IEEE Symposium on Security and Privacy (S&P�01)
1081-6011/01 $10.00 © 2001 IEEE

guide a high-level protocol that combines both PKTAPP
and PKCROSS to improve performance.

Use of such a high-level protocol would require that
each application server provide support for both
PKTAPP and traditional Kerberos. It would also require
that the client know, a priori, the number of servers that
will be authenticated to in a given realm.

Neither requirement is onerous. The application server
could support both PKTAPP and traditional Kerberos on
two well-known ports. PKTAPP would be listening on a
TCP socket. Kerberos would be awaiting UDP
datagrams.

The client, in the process of searching for information
over a large number of servers, is often presented with a
“hit-list” before beginning the process of server
authentications. This would allow the client to use either
PKTAPP or PKCROSS based on the number of servers
for each realm. This type of scenario fits well within the
criminal investigation example offered in Section 2.5.

Our analysis, as shown in Figures 9 and 10, provides a
small range of variation in server and network capacity.
The development of a more comprehensive heuristic for
selecting between PKCROSS and PKTAPP remains as
future work. We would also like to use the model to
evaluate the performance of a larger variety of encryption
algorithms including comparison to baseline, secret-key-
based Kerberos, an AES version of Kerberos, and an
elliptic curve version of public-key-enabled Kerberos. In
addition, the analysis we conducted does not consider the
performance implications of the practical aspects of key
management in a PKI, such as CRL distribution and
review.

Finally, we have shown that the class switching
queuing formulation is an effective way to quantitatively
analyze the performance of protocols that combine secret
and public key cryptography. The application of this
analysis technique to a broader range of protocols will
also be the topic of future research.

7. References

[1] Needham, R.M. and M.D. Schroeder, Using
encryption for authentication in large networks of
computers. Communications of the ACM, 1978.
21(December 1978): p. 993-999.

[2] Kohl, J., The Kerberos Network Authentication
Service (V5), C. Neuman, Editor. 1993:
http://www.ietf.org/rfc/rfc1510.txt?number=1510.

[3] Kaufman, C., R. Perlman, and M. Speciner,
Network Security, Private Communication in a Public
World. 1995, Englewood Cliffs, New Jersey: PTR
Prentice Hall.

[4] Schneier, B., Applied Cryptography. Second ed.
1996, New York: John Wiley & Sons, Inc. 758.

[5] Ashely, P. and B. Broom, A Survey of Secure
Multi-Domain Distributed Architectures, 1997,
Queensland University of Technology, Faculty of
Information Technology.

[6] RSA, S., Understanding Public Key Infrastructure
(PKI), 1999, RSA Security Inc.

[7] Tung, B., et al., Public Key Cryptography for
Initial Authentication in Kerberos, January 15, 2001
(expiration): http://www.ietf.org/internet-drafts/draft-ietf-
cat-kerberos-pk-init-12.txt.

[8] Tung, B., et al., Public Key Cryptography for
Cross-Realm Authentication in Kerberos, 1998:
http://www.internic.net/internet-drafts/draft-ietf-cat-
derberos-pk-cross-03.txt.

[9] Medvinsky, A., et al., Public Key Utilizing Tickets
for Application Servers (PKTAPP), 1997:
http://www.ietf.org/internet-drafts/draft-ietf-cat-kerberos-
pk-tapp-03.txt.

[10] Sirbu, M.A. and J.C.-I. Chuang. Distributed
Authentication in Kerberos Using Public Key
Cryptography. in Symposium on Network and
Distributed System Security. 1997. San Diego,
California: IEEE Computer Society Press.

[11] Bruell, S.C. and G. Balbo, Computational
Algorithms for Closed Queuing Networks. The Computer
Science Library, ed. P.J. Denning. 1980, New York:
Elsevier North Holland, Inc.

[12] Gross, D. and C.M. Harris, Fundamentals of
Queuing Theory. Third ed. 1998, New York: John Wiley
& Sons, Inc. 439.

[13] Baskett, F., et al., Open, Closed, and Mixed
Networks of Queues with Different Classes of Customers.
J. ACM, 1975. 22(2).

Proceedings of the IEEE Symposium on Security and Privacy (S&P�01)
1081-6011/01 $10.00 © 2001 IEEE

[14] Menasce, D.A., V.A.F. Almeida, and L. Dowdy,
W., Capacity Planning and Performance Modeling.
1994, Englewood Cliffs, New Jersey: Prentice-Hall, Inc.

[15] Johnson., M., North American Cryptography
Archives, October 26, 2000 (last accessed):
http://cryptography.org/cgi-bin/noexport.cgi.

[16] Karn, P., Index of /cryptocd/source/cyphers/des/c/
karn, October 26, 2000 (last accessed): http://www
.cryptocd.org/cryptocd/source/cyphers/des/c/karn/.

[17] Standard, P.E.C., SPEC CPU95 Benchmarks, July
2000: http://www.spec.org/osg/cpu95/.

[18] Menasce, D.A. and V.A.F. Almeida, Capacity
Planning for Web Performance. 1998: Prentice-Hall Inc.

[19] Bosselaers, A., Fast Implementations on the
Pentium, in http://www.esat.kuleuven.ac.be/~
bosslae/fast.html.

[20] Schneier, B., et al., Performance Characteristics of
the AES Submission, 1999.

[21] Bassham, L.E., Efficiency Testing of ANSI C
Implementations of Round 1 Candidate Algorithms for
the Advanced Encryption Standard, 1999, Computer
Security Division, Information Technology Laboratory,
National Institute of Standards and Technology.

[22] Blaze, M., High-Bandwidth Encryption with Low-
Bandwidth Smartcards. Lecture Notes in Computer
Science, 1996. Number 1039.

[23] Zorkadis, V. Security versus Performance
Requirements in Data Communications Systems. 1994.

[24] OpenGroup, Distributed Computing Environment,
1998, http://www.camb.opengroup.org/dce/.

[25] OpenGroup, DCE 1.1: Authentication and Security
Services, 1997: http://www.opengroup.org/publications/
catalog/c311.htm.

[26] Martinka, J., et al. A Performance Study of DCE
1.0.1 Cell Directory Service: Implications for
Application and Tool Programmers. in Lecture notes in
computer science. 1993.

[27] Stallings, W., Kerberos Keeps the Enterprise
Secure, in Data Communications. 1994. p. 103-111.

[28] Apostolopoulos, G., V. Peris, and D. Saha.
Transport Layer Security: How much does it really cost?
in IEEE INFOCOM. 1999.

[29] Menasce, D.A. and V.A.F. Almeida, Scaling for E-
Business: Technologies, Models, Performance, and
Capacity Planning. 2000: Prentice Hall.

[30] Lambert, P., Elliptic Curve Cryptography Delivers
High Performance and Security for E-commerce.
Computer Security Journal, 1998. XIV(4): p. 23-29.

[31] Harbitter, A. and D. Mensasce. Performance Issues
in Large Distributed System Security. in Computer
Measurement Group 98. 1998. Anaheim, CA.

Proceedings of the IEEE Symposium on Security and Privacy (S&P�01)
1081-6011/01 $10.00 © 2001 IEEE

