
PARTITION SEMANTICS FOR INCOMPLETE INFORMATION
IN RELATIONAL DATABASES

D. LAURENT 
LIFO, University of Orléans 

BP 6759, 45067 Orleans Cedex 2 
France

uucp: mcvax!inria!univorl!laurent

N. SPYRATOS 
LRI, University of Paris-Sud 

91405 Orsay 
France

A B ST R A C T
We define partition semantics for databases 

with incomplete information and we present an algo
rithm for query processing in the presence of incom
plete information and functional dependencies. We 
show that Lipski’s model for databases with incom
plete information can be seen as a special case of our 
model.
1. IN T R O D U C T IO N

In the relational model of data one views the 
database as a collection of relations, where each rela
tion is a set of tuples over some domains of values. 
One notable feature of the relational model is the 
absence of semantics: a tuple in a relation represents 
a relationship between certain values, but from the 
mere syntactic definition of the relation, we know 
nothing about the nature of the relationship.
One approach in order to remedy this deficiency of 
the relational model is proposed in [11], where tuples 
are seen as strings of uninterpreted symbols. 
Interpretations for these symbols are provided using 
subsets of an underlying population of objects, and 
set containment provides the basic inference 
mechanism. Let us explain the approach informally, 
using an example.
Consider the following (very small) database, con
taining only two tuples

AGE SITUATION SITUATION SEX
young unemployed unemployed female
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The tuple young unemployed can be seen as a string 
of two uninterpreted symbols, young and unem
ployed. Now, think of a possible world, and let W be 
the set of all individuals in that world. Moreover, let 
I(young) be the set of all individuals of W that are 
young, and let I(unemployed) be the set of all indivi
duals of W that are unemployed. Call I(young) the 
in terp reta tio n  o f  th e  sy m b o l young, and 
I(unemployed)  the interpretation of the symbol 
unemployed. Clearly, the intersection I(young) n 
I(unemployed) is the set of all individuals of W that 
are both young and unemployed. It is precisely this 
intersection that we define to be the interpretation 
of the tuple young unemployed. That is,

I(young unemployed) =  I(young) Cl ¡(unemployed).
In other words, the interpretation of a tuple is the 
in tersection  of the interpretations of its constituent 
symbols.
This kind of set-theoretic semantics for tuples allows 
for a very intuitive notion of truth. Namely, a tuple 
t is called true in 7 iff I(t)  is nonempty. Thus, for 
example, the (atomic) tuple young is true iff 
I(young) is nonempty, that is, iff there is at least one 
individual in W which is young. Similarly, the tuple 
unemployed is true in I  iff there is an individual in 
W which is unemployed. Finally, the tuple young 
unemployed is true in I  iff there is an individual in 
W which is both young and unemployed.
The set-theoretic semantics just introduced allows 
for a very natural notion of inference trough set- 
containment. To see this, consider the following 
question:
Assuming that
(1) young unemployed is true in I  
and that
(2) unemployed female is true in I  
can we infer that
(3) young unemployed female is true in 7 .
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If we recall the definition of truth given earlier, then 
we can reformulate this question as follows:
Assuming that
(1’) I(young) D I(unemployed)  4= <f> 
and that
(2 ’) I(unemployed) fl I(fem ale) 4= <t>
can we infer that
(3’) I(young) fl I(unemployed) fl I(fem ale) <j>-
Clearly, the answer depends on the interpretation I, 
and the following diagram shows a configuration 
where the answer is n o .

I(young) I(unemployed) I(fem ale)

C " T 1  O  )
However, if we impose c o n stra in ts  on the interpre
tation I, for instance, if we require that
(4’) I(unemployed) Ç Ifyoung)
or
(5’) I(unemployed) Ç I(fem ale)
then the answer is y e s . Roughly speaking, we can 
summarize our example as follows:

[(1’) and (2’)] does not imply (3’) 
whereas

[(1’) and (2’)] and [(4’) or (5’)] implies (3’).
It turns out that constraints such as (4’) and (5’) 
provide the right interpretations for functional 
dependencies and other semantic constraints (see
[11]). Notice that (4’) and (5’) can be put into words 
as follows:
(4) all unemployed individuals axe young
(5) all unemployed individuals are female.
Thus, roughly speaking we can say that

[(1) and (2)] does not imply (3) 
whereas

[(1) and (2)] and [(4) or (5)] implies (3).
We have seen so far the basic ingredients of the 
model introduced in [11], known as the partition 
model. The partition model has been used to study 
variants of the weak instance assumption [l], as well 
as to derive algorithms for (deductive) query and 
update processing [6, 12, 13], In this paper we 
extend the partition model in order to provide 
semantics for databases with incomplete information.

The paper is organized as follows. In Section 2 we 
give formal definitions of the following concepts: 
database, interpretation, truth, model and semantic 
implication. In Section 3, we study incomplete infor
mation by considering two kinds of tuples: sure and 
possible tuples; then, we restrict our attention to a 
specific case (that subsumes Lipski’s model of incom
plete information [7, 8]) and we give computational 
algorithms. Section 4 contains some concluding 
remarks and suggestions for further work. 
Throughout the paper, we assume some familiarity 
with the basic relational terminology.
2. T H E  M O D E L

We shall consider separately the syntax and 
the semantics of our model. The syntactic part is 
essentially the relational model. The semantic part is 
a formalization of the concepts already explained in 
the introduction.
2 .1 . S y n ta x

We begin with a finite, nonempty set U =
{ A y .j A ^ .  The set U is called the universe and the
A.’s axe called the attributes. Each attribute A. is 1 1associated with a countably infinite set of symbols 
(or values) called the domain of A. and denoted by 
dom(A.).
We assume that U n  dom(A.) is empty for all i, and 
that dom(A.) H dom(A.) = <j> for i 4= j (we shall dis
cuss the consequences of this last assumption in Sec
tion 4). A relation scheme over U is a nonempty 
subset of U; we call sch(U) the set of all relation 
schemes over U and a relation scheme is denoted by 
the juxtaposition of its attributes (in any order).
A tuple t over a relation scheme R is a function 
defined on R such that t(A.) is in dom(A.), for all A. 
in R. We denote by dom(R) the set of all tuples 
over R. Clearly dom(R) is the cartesian product of 
the domains of all the attributes in R. If t is a tuple 
over R =  Ax...An, and if t(Ap =  a., j =  l,...,n , then 
we denote the tuple t as a ,...a  . A relation over R isr I na set of tuples over R. Thus a relation over R is a 
subset of dom(R).
D efin itio n  2 .1  A database over U is a pair D =  
(£,E) such that
(1) 6 is a function assigning to every relation scheme 
R a fin ite  relation over R, and
(2) E is a set of ordered pairs (X,Y) such that X and 
Y are subsets of U.
Every pair (X,Y) in E is called a functional depen
dency and is denoted as X —*Y. O
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E x a m p le  2 .1  Consider a universe of three attri
butes, say U =  {A ,B ,C }, with the following associ
ated domains

dom(A) =  { a ,^ , . . . } ,  dom(B) =  {b ,,b2,...}, 
dom(C) =  {c ltc2,...}.

Define a function 8 on relation schemes over U as 
follows:

£(AB) =  {a ,b ,, a2b ,}
¿(BC) =  {b lCl> blC2}
£(R) =  4> for all R different than AB and BC.

Let S  be the set {A —+B, BC—+A}. The database 
(<J,E) just defined is shown in Figure 2.1(b). The 
function 8 is represented by two tables, with schemes 
AB and BC as headers and the corresponding tuples 
as rows. Clearly, the convention used here is that 
relation schemes that are assigned empty relations 
are not represented. o

2 .2 . S em a n tics
We assume that the 'real world" consists of a 

countably infinite set of objects, and we identify 
these objects with the positive integers. Let w be the 
set of all positive integers, and let 2“ =  (r  | r C u}  
be the set of all subsets of w. The set 2W is the 
semantic domain in which tuples and dependencies 
receive their interpretation.
Throughout our discussions, we consider fixed the 
universe of attributes U =  {A ,,A 2,...,A }, and the 
associated domains dom(A.). For notational con
venience, we denote by SYMBOLS the union of all 
attribute domains, and by TUPLES the union of all 
domains. That is:

SYMBOLS =  UA£Udom(A),
TUPLES =  U ^ ^ y jd o m iR ).

Clearly, SYMBOLS is a subset of TUPLES.
U -  {A ,B ,C }, dom(A) = {a,,«*.»}, 

dom(B) =  { b ,,^ ,...} , dom(C) =  {c ,,c2,...}
(a)

* ! - { ! ,3 }  * ,-+{2,4}
bj_ ► {1,2,3,4} b2—+{5,6}

I c ,—+{3} c2- { l }
x—*<f>, for every x  different than

a i> a2> b l> t>2, C,, C2<

(b)
AB
aib!
a2bl

BC
V i
b l C2

I(aA )  =  I(aJ n  10»,) =  {1,3}
I(aA )  =  I(a2) n  lib ,)  =  {2,4}
I(blCl) =  lib ,)  n lie ,)  =  {3}

(c) I(b,c2) =  l(b ,) n I(C2) =  {1}
I(aiblCl) =  lia ,)  n l(b ,) n I(c,) =  {3} 
I(aib lC2) =  % )  n I(b,) n i(Ca) =  {1}

FIGURE 2.1

Given a database D =  (£,E), call database scheme 
the set of all relation schemes that are assigned 
non-empty relations under 8. That is, the relation 
scheme of D is the set

{R 6  sch(U) I £(R) +  <j>}.
Thus, the database scheme in Example 2.1 consists 
of the relation schemes AB and BC.

D efin itio n  2 .2  An interpretation  of U is a func
tion I from SYMBOLS into 2W such that

\ /A  €  U, Va, a’ €  dom(A),
[ a ^  a’ 1(a) D I(a’) =  <f> ]. Q

Thus the basic property of an interpretation is that 
different symbols of the same domain are assigned 
disjoint sets of integers. In Figure 2.1(a) we see a 
function I satisfying this property. The intuitive 
motivation behind this definition is that an attribute 
value, say a, is a (atomic) property, and 1(a) is a set 
of objects having property o. Furthermore, an 
object cannot have two different properties a, a ’ of 
the same "type"; hence 1(a) PI I(a’) =  <f> (we shall 
discuss the consequences of this restriction in Section
4).
Given an interpretation I, we extend it from SYM
BOLS to TUPLES as follows:

\ /R  €  sch(U), t y a ^ . . ^  £  dom(R),
=  ! (ai) n - n  ^»ki

ln Figure 2.1(c) we see some examples of computar 
tions. The intuitive motivation for this extension is 
that a tuple, say ab, is the conjunction of the 
(atomic) properties a and b. Accordingly, I(ab) is 
the set of objects having both properties a and b; 
hence we have I(ab) =  1(a) fl 1(b). Notice that the 
basic property of an interpretation is satisfied by the 
extension, namely:

V R  €  sch(U), y t ,  t ’ €  dom(R),
( t =#= t* =* I(t) n I(t’) =  <f> ].
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Our definition of an interpretation suggests an intui
tive notion of truth: a property (tuple) t is true in 
an interpretation I, if there is at least one object 
having property t under I.
D efin itio n  2 .3  Let D =  (6,E) be a database 
over U. An interpretation I of U is called a model of 
D if
(1) V R  €  sch(U), \ / t  6  6(R), I(t) *  <f>
(2) V X ^ Y  €  E, \ / x  €  dom(X), \ /y  S dom(Y),

[ I(x) n  I(y) =£ 4> =» I(x) C I(y) ]. O

Roughly speaking, we say that I is a model of D if
(1) I verifies every tuple t in <5 (in the sense I(t) =£ 

4>), and
(2) I satisfies every functional dependency X—*Y in 

E (in the sense that the set {(x,y) | x G 
dom(X), y £  dom(Y), I(x) O I(y) =# ^} is a 
function).

In Figure 2.1 we see an interpretation I and a datar 
base (¿,E). Using I and the results of the computa
tions of Figure 2.1(c) we can verify that I is a model 
of (6,E), as follows:
(1) The tuples appearing in the database are axb , 

a2^x’ bici> ^iC2> 3X1 d they all receive non-empty 
interpretations under I.

(2) For A—>B: the only true tuples over AB with
respect to I are a b , a2b , and we have I(a1) C 
IfbJ and I ^ J  C I(bj). Thus A—>B is satisfied. 
For BC—+A: the only true tuples over ABC 
with respect to I are a ^ C j and axb c^ and we 
have libjC^ C I(ax) and 1(^0,^ C I(a1). Thus 
BC—*A is also satisfied. O

Having defined the concepts of interpretation, truth, 
and model, we can now define the concept of con
sistency. A database D is called consistent iff D 
possesses at least one model; and otherwise D is 
called inconsistent. For example, the database D =  
(<5,E) of Figure 2.1 is consistent as the interpretation 
shown in that same figure is a model of D. On the 
other hand, the following database is inconsistent, as 
no interpretation I can verify the tuples ab and ab’, 
and the dependency B—>A, all at the same time.

Indeed, assume that there is a model, say I. Then, 
Definition 2.3(1) implies that

1(a) O 1(b) ±  4> and I(a’) n 1(b) +  <j>
and, using Definition 2.3(2), we obtain (because of 
B—A)

1(b) Ç 1(a) and 1(b) Ç I(a’).
It follows that 1(b) Ç 1(a) D I(a’) and, as 1(b) =£ <f> 
(this follows from 1(a) fl 1(b) =£ <f>) we obtain that

1(a) n I(a’) *  <f>.
On the other hand, as a and a’ belong to the same 
domain, it follows, from Definition 2.2, that 1(a) Pi 
I(a’) =  <f>, a contradiction. Thus the database 
possesses no model and, therefore, it is inconsistent. 
In our discussions, for the remaining of this paper, 
we shall always assume that databases are con
sistent. □
Now, given a (consistent) database D and a model I 
of D, all tuples appearing in the database are true in 
I (by definition). However, it may happen that some 
tuples that do not appear explicitly in the database 
are also true in I. For example, in the database of 
Figure 2.1, tuples a ^ c  , a b ^  fall into this 
category, as I(a b c ) =£= <j> and Ifa^ C j) ^  <j>. (Note, 
however, that tuples a2b c1( a2b1c2 are not true in 
that interpretation.)
D efin itio n  2 .4  Let D =  (<5,E) be a database 
over universe U. Let t be any tuple in TUPLES. We 
say that D implies t, denoted D (= t, if t is true in 
every model of D. □
Clearly, D implies all tuples appearing in D. For 
example, in Figure 2.1, D |= a b^ a2b1, b1c1, b ^ .  
This follows immediately from the definition of a 
model. As a consequence, D also implies the symbols
a., b„ c. for i = 1 , 2. Indeed, consider for instance a,.l* r  i 1 1 1In every model m of D, we have:

m K bi) =  n  m (bi) ^
Thus, m (a1) is not empty for any model m of D; 
that is, by Definition 2.4, D |= a .
On the other hand, D does not imply the tuples 
a2bic i> a2bic2’ 88 tbey are in the model I shown 
in Figure 2.1.
Notice that D does not imply the tuples a1b 1c1, 
a1b1c2 either. Indeed, although these tuples are true 
in the model I of Figure 2.1, we can find a model P 
of D in which these tuples are false. Indeed, define P 
such that F ^ )  =  {2,4}, and I^aJ =  {1)3}, and 
I’(x) =  I(x) for all x =£ a^ a2- Then P is a model of 
D falsifying a b ^ ,  a1b1c2 (and, moreover, verifying
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a 2b lCl> a 2b lC2)‘ □

Given a model m of D, we denote by T(m) the set of 
all tuples in TUPLES which are true in m. Let us 
denote with mod(D) the set of all models of D, then 
we define

T(D) —
Clearly, T(D) is the set of all tuples which tire true 
in every model of D, hence

\ / t  G TUPLES, D t= t O  t e  T(D).
3 . IN C O M P L E T E  IN F O R M A T IO N
3.1 . In fo rm a tio n  S y s te m s

In many applications the information to be 
recorded in the database may be uncertain. For 
example, we may know that:

"John is a clerk or a driver"
without knowing exactly what John’s job is. Of 
course, we will have to record both possibilities in 
our database, and we will have to take them into 
account when processing queries and updates. Con
ceptually, having to deal with these two possibilities 
is tantamount to having to deal with two possible 
databases, one containing the information "John is a 
clerk", and the other containing the information 
"John is a driver". As the two databases refer to the 
same application they are likely to have the same set 
of dependencies. However, in general, there may be 
uncertainty not only at the level of tuples, as in our 
example, but also at the level of dependencies as 
well. Leaving aside the general case, we shall concen
trate to sets of databases having the same set of 
dependencies.
D efin itio n  3 .1  Let U be a universe. An infor
mation system  over U is a finite set of consistent 
databases over U, having the same set of dependen
cies. O
In Figure 3.1 we see tin information system consist
ing of two databases, D x =  (^,1!) and D2 =  (62,E).

H  H
C AB BĈ CAB Be''] f B-+c'|

ab be i a b ’ bc i A- c J

vÌ b' b ’c J 1 a ’b ’ b ’c ;

FIGURE 3.1
It is important to note that our information systems

generalize the information systems proposed and stu
died by Lipski in [7, 8]. Indeed, Lipski’s systems can 
be viewed as satisfying the following properties.
(1) All databases in the system have the same 

scheme which contains a single relation 
scheme, namely, the universe U itself.

(2) There is a distinguished attribute O (represent
ing the set of objects in the system) in U, and 
all functional dependencies in E are of the 
form O—*A, where A is an attribute.

(3) If the system contains the tuples oat and oa’t ’ 
then it must also contain the tuples oa’t and 
oat’.

It is easy to see that these properties define an infor
mation system in the sense of Definition 3.1. Now, 
given an information system IS we shall be 
interested in tuples that either are implied by every 
database of IS, or are implied by at least one data
base of IS.
D efin itio n  3 .2  Let IS be an information system  
over a universe U. Let t be a tuple in TUPLES. 
Then

t is called sure iff D (= t, for all D in IS 
t is called possible iff D f= t, for some D in IS. D

For example, in the information system of Figure
3.1, the tuple a’b’c is a sure tuple as it is implied by 
D 1 and by D2 (this is so because of the dependency 
B—»C). Similarly, the tuple ac is a sure tuple. 
Indeed, D 1 implies abc because of the dependency 
B—>C, and therefore, D x implies ac. Similarly, ab’c 
and thus ac are implied by D2.
On the other hand, the tuple abc is not sure, as it is 
implied by D x but not by D2; nevertheless, this tuple 
is possible as it is implied by
Finally, let us consider a", a symbol in dom(A) 
different than a and a’. The tuple a"c is not possi
ble (and therefore not sure either), as it is not 
implied neither by D x nor by D2- O

Given an information system IS =  {D 1,D2,...,D }, let 
Ts(IS) denote the set of all sure tuples of IS, and let 
Tp(IS) denote the set of all possible tuples of IS. 
Clearly, Tg(IS) C Tp(IS).
Now, recall from the previous section, that T(D) 
denotes the set of all tuples implied by D (where D 
is a given database). It follows from Definition 3.2 
that:

Ts(IS) =  T (D X) n T fD J n...n T (D J
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T p(IS) =  T (D X) U T p J  U...U T (D J .

Clearly, in order to process queries in an information 
system IS, we must be able to compute the sets 
Ts(IS) and Tp(IS). To do this, we need the concept 
of a model M for an information system. In order to 
understand this concept, consider an information 
system IS =  {D 1,D2,...,D n}, and let m x, m2,..., mn be 
n models, one for each database in the system. Now, 
for each symbol x in SYMBOLS, define

Mt(x) =  {(k,i) | k €  m^x)},
for every i in { l,2 ,...,n }  and, using M.(x), define 
M(x) as follows:

M(x) =  M1(x) U M2(x) U...U Mn(x).
The model thus defined is extended to the set 
TUPLES as in Section 2: if t is the tuple axa ...ak, 
then

M (aia2"-ak) =  M (aJ n M faJ n...n M (aJ.
For example, in order to construct a model M for 
the system of Figure 3.1, let us consider two models 
mx and m2, one for each database in the system:
mia-+{l} a’-*{2,3} a'->{4}

b—*{1,2} b’—>{3} c—>{1,2,3,4}
x—y<j> for every x different than a, a’, a ', b, b’, c.

a—>{1,4} a’—>{2,3} a ’ —*4>
b—>{2,4} b’—>{1,3} c—>{1,2,3,4}
x—><f> for every x different than a, a’, a ', b, b’, c.

Now, we define the functions M1 and M2 and we
construct M.

a—{(1 ,1 )} a*-{(2,l),(3,1)}
a' —{(4,1)} b—{(l,l),(2 ,l)}
b*->{(3,l)} c—>{(l,l)i(2,l),(3,l),(4,l)}
x—><t> for every x different than a, a’, a ', b, b’, c.

a—>{(1,2),(4,2)} a’-{(2,2),(3,2)}
a '->0 b—>{(2,2),(4,2)}
b’—>{(1,2),(3,2)} C—>{(l,2),(2,2),(3,2),(4,2)}
x—>0 for every x different than a, a’, a ', b, b’, c.

M
a—>-{(1,1),(1,2), (4,2)} a’—>{(2,l),(3,l),(2,2),(3,2)}
a '^{(4 ,l)}  b—+{(l,l),(2,l),(2,2),(4,2)}
b’—>{(3,l),(l,2),(3,2)}
c—>{(l,l)i(2,l),(3,l),(4,l),(l,2),(2,2),{3,2),(4,2)}

x—>0 for every x different than a, a’, a ',  b, b’, c.

In the model just defined the interpretation of the 
tuple a’b’c is computed as follows:

M(a’b’c) =  M(a’) n M(b’) n M(c) =  {(3,1),(3,2)}. 
Similarly, for the tuple a 'c , we have:

M (a”c) =  M(a") n M(c) =  {(4,1)}. □
So a model for an information system can be seen as 
a way to deal with a model of each database in the 
system without having to explicitly store all of them. 
This concept of a model for an information system is 
used in the computation of the sets T g(IS) and 
Tp(IS) because it allows us to take into account the 
information present in all databases without having 
to examine all of them separately. Our approach is 
the following: first, we compute a special model of IS 
incorporating the information necessary for the com
putation of the sets T g(IS) and Tp(IS), then we 
proceed to the actual computation.
In what follows we give the details of the computa
tional algorithms.
3.2. A lgorithm s

First, let us recall that all databases of an 
information system have the same set of dependen
cies, say E. Let us also recall that, given a set of 
dependencies E we can always find an equivalent set 
E’ such that each dependency in E ’ has a single 
attribute on the right-hand side (see [9] for details). 
Thus, without loss of generality, we shall assume 
that each dependency of E has a single attribute on 
the right-hand side. Under this assumption, we 
present now our main algorithm.
ALG O R ITH M  1
INPUT : An information system IS =  {D x,D 2,...,D n}
OUTPUT : A model of IS
Initialization
Step 1 With every distinct tuple t in IS associate a 
distinct positive integer it.
Step 2 With every distinct tuple t in IS associate 
the set of pairs {(it,k) | t is in Dk}.
Step S For every symbol x of SYMBOLS define 

M°(x) =  {(it,k) | t contains x}.
Closure
Step 4 For j >  0 compute M,+1 from MJ as follows: 
if  there is X —>A in E, and x in dom(X), and 

a in dom(A) such that M^(x) D M'(a) tf>
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then MP+1(a) =  M^(a) U
{(iik)|(iik) €  MJ(x), k e tt2(Mj(x) n MJ(a))}

and for all a’ different than a,
Mj+1(a’) =  Mj(a’)

else Mi+1 =  Mj
( Note: ?r2 denotes the projection of the pairs from 
w x  {1,2 ,...,n} over their second component.)
Step 5 Set Mq =  M1, where 1 is the least integer 
such that M1+1 =  M1. t3
Let us apply ALGORITHM 1 to the system of Fig
ure 3.1.
Step 1 The tuples in the system are ab, ab’, a’b’, 
be and b’c. We number them as follows:

ab—*1, ab’—»2, a’b’—>3, be—>4, b’c—»5.
Step 2 We now associate each tuple with the 
appropriate set of pairs:

ab-+{(l,l)} ab’—+{(2,2)}
a’b’̂ {(3,l),(3 ,2)} be—+{(4,l),(4,2)}
b’c—+{(5,1),(5,2)}

Step S Then, M° is defined as follows:
*-»{(1,1),(2,2)} »’-»{(3,1),(3,2)}
b-+{(l,l),(4,l),(4,2)} b’—+{(2,2),(3,1),(3,2),(5,1),(5,2)}
c-+{(4,l),(4,2),(5,l),(5,2)} 
x—><j> for every x different than a, a’, b, b’, c.
Continuing with Steps 4 and 5, we obtain the follow
ing model Mq of IS:
»"»{(1.1),(2,2)} a’—+{(3,1),(3,2)}
b—»{(l.l)i(4,l),(4,2)} b’—+{(2,2),(3,l),(3,2),(5,l),(5,2)}
c—+ {(lil),(2,2),(3,1),(3,2),(4,1),(4,2) ,(5,1) ,(5,2)} 
x—><f> for every x different than a, a’, b, b’, c. a
The following theorem guarantees that ALGO
RITHM 1 terminates and states formally how the 
sets Ts(IS) and Tp(IS) are computed, thus summar
izing the main results of this paper.
T h eo rem  3 .1  ALGORITHM 1 terminates and 
we have:

t €  T s(IS) iff x2(Mq(t)) =  { l,2 ,...,n }  
t e  Tp(lS) iff Mq(t) +  <f>. a

P r o o f
We give here only a sketch of the proof because of a 
lack of place. The interested reader will find the 
complete proof in [5].

ALGORITHM 1 terminates because there is a finite 
number of tuples recorded in an information system, 
and thus Step 1 defines a finite number of pairs.
For all k in { l,2 ,...,n }, let m k be the function from
SYMBOLS into 2“ defined as follows:
\ / x  e SYMBOLS, mk(x) = {i | (i,k) e Mq(x)}.

In the same way as in [12], we show by induction on
the integer j of Step 4 that the mk’s are models of
the databases D, of IS and moreover that these kmodels characterize the sets T(D k); that is, for all k 
in { l,2 ,...,n }, we have:
V t 6  TUPLES, t e T(Dk) <=* mk(t) *  <f>.

Thus M is a model of IS and the theorem follows qfrom this result and from Definition 3.2. O
Referring to Figure 3.1, we can apply Theorem 3.1 
to compute the sets Tg(IS) and Tp(IS). We obtain, 
as said in Section 3.1, that a’b ’c and ac are in Tg(IS) 
because we have:

M J a’b’c) =  {(3,1),(3,2)} and 
Mq(ac) =  {(1,1),(2,2)} 

and thus:
7r2(Mq(a’b’c)) =  7r2(Mq(ac)) =  {1,2}.

Similarly, abc is not in Tg(IS). Indeed,
Mq(abc) =  {(1,1)} so 7r2(Mq(abc)) =  { l} .

But this tuple belongs to Tp(IS) because Mq(abc) is 
not empty.
Finally, a 'c  is not in Tp(IS) because Mq(a") and 
thus Mq(a'c) are empty. □

4. CO NCLUDING  REM A R K S
We have seen a set-theoretic interpretation of 

the relational model, that allows for a natural 
interpretation of truth and inference in a common 
framework. We have then argued that sets of data
bases with common set of dependencies describe an 
important aspect of incomplete information. We 
have called such sets information systems, and we 
have shown that they include those introduced by 
Lipski as a special case. Finally, we have given algo
rithms for computing sure tuples (i.e. tuples implied 
by every database in the system), and possible 
tuples (i.e. tuples that are implied by at least one 
database in the system).
So, in this paper, we have studied query processing 
in information systems for queries such as: "Give all 
tuples over scheme R that are sure (or possible) in 
the information system". Selection conditions as
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defined in [4] can also be treated in the present 
framework (see [5]) as follows: we use the particular 
model that we have considered here in order to 
"translate" the condition of the selection into a set 
of sets of pairs; then we compute the sure and possi
ble answers to the query in the same way as shown 
in Theorem 3.1.
One must notice that our method is correct in the 
sens that it avoids the problems of soundness and 
completeness that are dealt with in [7, 8, 10]. More
over, the translation process of the conditions of 
selection may be compared with the "Two Phase 
Query Processing" considered in [2].
First of all, that approach allows for computing only 
what we called here the sure answers to queries. 
Moreover, the translation process developed in [2] 
refers to databases in which the information is 
recorded following a fixed  scheme, which is not the 
case in our model. So, it turns out that we have con
sidered a more general case than in [2], but an 
important aspect of our approach that we have to 
study is the update problem.
Indeed, while in [2] updates do not alter the calcu
lated expression of a given query, such is not the 
case in our approach, because, for any modification 
in the information system, we must in fact update 
the model of the system.
However, the set-theoretic semantics that we have 
used seems to be adapted for the processing of 
updates because this problem is treated in [6, 13] for 
databases without incomplete information.
Now, let us recall that in the set-theoretic interpre
tation that we have used, we have required that 
attribute values in the same domain be interpreted 
by disjoint sets. This requirement which allows for a 
natural interpretation of functional dependencies, 
has an important consequence on the expressive 
power of the model.
Namely, our set-theoretic semantics is not adequate 
in the case where two different attributes have the 
same domain. Indeed, if a tuple ab is in the system, 
where a and b belong to the same domain, then we 
must have, at the same time, 1(a) fl 1(b) =  <f> , 
because a and b are in the same domain and 1(a) D 
1(b) <f> , because ab is in the system (and, there
fore, ab is true in every model). We are currently 
investigating appropriate extensions of our model, in 
order to deal with this difficulty.

REFERENCES
[1] S. S. Cosmadakis, P. C. Kanellakis, N. Spyratos, 

'Partition Semantics for Relations', Proc. ACM 
PODS 1985, JCSS, 33-2, 1986.

[2] T. Imielinski, 'Query Processing in Deductive Data
bases with Incomplete Information', In ACM SIG- 
MOD, 1986.

[3] D. Laurent, 'Information Incomplète Explicite dans 
le Modèle Partitionnel de Bases de Données', In 2e 
Journées Bases de Données Avancées, Giens 
(France), INRIA Ed., 1986.

[4] D. Laurent, 'La Logique des Partitions : Applica
tion à l’Information Disjonctive dans les Bases de 
Données', Thèse de troisième cycle, University of 
Orléans, Jan. 1987.

[5] D. Laurent, N. Spyratos, 'Partition Semantics for 
Query-Answering in Relational Databases with 
Incomplete Information', rep. LIFO n°87-6, Univer
sity of Orléans.

[6] Ch. Lecluse, 'Une Sémantique Ensembliste pour les 
Bases de Données, Application au Modèle Relation
nel', Thèse de troisième cycle, University of Paris- 
Sud, March 1987.

[7] W. Lipski Jr, 'On Semantic Issues Connected with 
Incomplete Information Databases', ACM  TODS, 
4-3, Sept. 1979.

[8] W. Lipski Jr, 'On Databases with Incomplete Infor
mation', J  ACM, 28, pp 41-70, 1981.

[9] D. Maier, 'The Theory of Relational Databases', 
Pitman, 1983.

[10] R. Reiter, 'A  Sound and Sometimes Complete 
Query Evaluation Algorithm for Relational Data
bases with Null Values', JACM, 33-2, 1986.

[11] N. Spyratos, 'The Partition Model: a Deductive 
Database Model', AC M  TODS, March 1987.

[12] N. Spyratos, Ch. Lecluse, 'Incorporating Functional 
Dependencies in Deductive Query Answering', 
Proc. International Conference on Data Engeneer- 
ing, Los Angeles, Feb. 1987.

[13] N. Spyratos, Ch. Lecluse, 'The Semantics of 
Queries and Updates in Relational Databases', rep. 
INRIA n°561, Aug. 1986.

73


