
High Contention in a Stock Trading Database:
A Case Study

Peter Peinl, Andreas Reuter
University of Stuttgart

Harald Sammer
Tandem Computers, Frankfurt

Abstract

Though in general, current database systems ade
quately support application development and opera
tion for online transaction processing (OLTP), in
creasing complexity of applications and throughput
requirements reveal a number of weaknesses with
respect to the data model and implementation techni
ques used. By presenting the experiences gained from
a case study of a large, high volume stock trading sys
tem, representative for a broad class of OLTP ap
plications, it is shown, that this particularly holds for
dealing with high frequency access to a small number
of data elements (hot spots). As a result, we propose
extended data types and several novel mechanisms,
which are easy to use and highly increase the expres-
sional power of transaction oriented programming,
that effectively cope with hot spots. Moreover, their
usefulness and their ability to increased parallelism is
exemplified by the stock trading application.

1. Functional and operational characteristics

Database systems, especially those of the relational
type, are regarded as the basic utility to manage the
operational data of an enterprise [1]. Data inde
pendence and the system-controlled data integrity
facilitate the integration and extension of increasingly
complex applications, especially in the online transac
tion processing (OLTP) field. Though in general, cur
rent database systems provide suitable means for
OLTP application development and operation, in
creasing complexity of applications and throughput
requirements reveal a number of serious weaknesses
in both, the data model and the implementation tech
niques used [2]. They mainly arise from the inap
propriate support for dealing with high frequency ac
cess to a small number of data elements present in the

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct com
mercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and / or specific permission.
© 1988 ACM 0-89791-268-3/88/0006/0260 $1.50

majority of applications. Though several proposals,
like the introduction of field calls into IMS/FP [3],
try to eliminate that problem, we claim that those
primitives still do not provide an adequate solution
for a wide range of real-life applications, and will
describe several novel mechanisms to cope with hot
spot data elements.
Our claims stem from observations made in a case
study [4], which included a prototype implementation
of a large high volume stock trading system, using the
features of a standard relational database system. To
make our point, the remainder of this section will out
line the functional and operational characteristics of
this application. Section 2 will provide some insight
into the actual implementation, the problems caused
by the use of standard data management primitives
and the tricks required to circumvent them. Section 3
then will draw some general conclusions from these
observations and come up with the definition of novel
data management requirements. Thereafter, in section
4, we propose practical solutions for the management
of hot spot data, and finally, in section 5, we put these
functional extensions into the perspective of an en
hanced DBMS.
Fig. 1 illustrates the general structure of the com
puterized stock trading system, which basically
provides three types of service. The user, typically a
stock broker, may enter bids to buy or sell a certain
number of shares of a specified stock into the system,
which then records the bid in a central database.
After the insertion of a new bid, the system has to
determine, whether that bid might result in a deal, i.e.
whether it can find matching bids of the opposite
type. If a deal is possible, the system automatically
performs it, which entails several book-keeping func
tions and the appropriate modification of the
database. In order to reflect a deal in the database, all
the bids involved in the deal have to be deleted, the
deal has to be recorded in a trade audit and the
brokers concerned have to be informed about the
completed deal. For the detailed description in the
following we use the relational schema shown in Fig.
2; all the names should be fairly self-explanatory.
The third major function, called notification service in
Fig. 1, broadcasts current stock prices to all con-

260

http://crossmark.crossref.org/dialog/?doi=10.1145%2F971701.50234&domain=pdf&date_stamp=1988-06-01

Figure 1: Overview of the computerized stock trading system

BROKER (Broker-ID......)

STOCK (Stock-Code, Highest-Buy-Price, Lowest-
Sell-Price,....)

BID (Stock-Code, Broker-ID, Bid-No, Bid-Type,
Bid-Price, Bid-Time, Bid-Quantity, Bid-Tag)

DEAL (Stock-Code, Buy-Broker, Sell-Broker,
Deal-No,.....)

Figure 2: Data structures of stock trading system
nected brokers on a regular basis. Though we will not
discuss that component further, because it does not
directly relate to our problem, it should at least be
mentioned, that the implementation of that service
also poses a challenging task. As a matter of fairness,
all the brokers have to be notified at approximately
the same time with strict bounds on the maximum al
lowable latency between the delivery to the first and
the last broker. Moreover, each broker is permitted to
define his own notification profile, specifying what
kind of information he actually wants, and those
profiles may be altered dynamically. The way in which
brokers react to the news broadcast via the notifica
tion service, however, strongly affects the trading ser
vice. As the broker follows the development of the
stock prices on his screens and relates them to the
bids issued by himself, he may probably decide to
modify some of his previous bids. Hence, bids are
modified frequently. From the system's perspective,
the change of a bid triggers the same kind of activities
as does the issuance of a new bid.
From a strictly functional point of view, it seems quite
obvious how to implement the application using
standard database services: Each incoming bid trig
gers a transaction, which first inserts the bid into the
database, and then tries to make a deal by examining
the outstanding bids for the same stock. If a deal is

possible, the corresponding bids have to be removed
from the database, the stock price has to be updated,
the deals have to be logged in the trade audit, and
finally messages have to be sent to the participating
brokers, at which point the transaction commits. Al
ternatively, the transaction is completed as soon as
the system realizes the impossibility of a deal.
Unfortunately, this solution will turn out to be a dis
aster under heavy load. The observed distribution of
bids among the available stocks (about 875) is highly
skewed. For instance, the 25 most heavily traded
stocks (2.86 %) receive roughly half the bids, another
100 stocks (11.4 %) receive an additional 40 % of the
total load, and the remaining 750 stocks (85.7 %)
share only 10 % of the load. And, of course, heavy
trading means many transactions per second per
stock. With standard two-phase locking our main ap
proach would make all transactions referring to the
same stock run in a strictly serial fashion. In that case,
the maximal throughput with respect to a specific
stock, irrespective of the number of available proces
sors, obviously is the inverse of the transaction length.
In contrast to the well-known debit-credit transaction
[5], a trading transaction is neither short nor simple.
In fact, matching sell bids to corresponding buy bids
turns out to be a rather complex, and therefore
lengthy procedure. To appreciate that, one has to un
derstand the fundamental algorithm of determining
stock prices. It is based on three pieces of information
associated with each bid. First, there is a price brack
et coming with every bid, meaning in the case of a buy
order, the highest price the customer is willing to pay,
and for a sell order, the lowest acceptable price of a
deal. Thus, regarding just that information, a deal
should be possible, if the lowest acceptable sell price
of all outstanding bids is below the highest acceptable
buy price. If the situation were that simple, there
would be no big problem. However, each bid also car

261

ries a quantitative information, specifying the exact
amount of stock to be traded, and a tag indicating,
whether or not a partial satisfaction of a bid is ac
ceptable. Obviously, the large majority of the bids is
sued is all-or-nothing, and that is one source of com
plexity. The second source originates from the re
quirement of satisfying bids according to an FCFS
discipline. Hence, every bid is timestamped, too. The
example in Fig. 3 will provide some insight into the
operation of the bid matching algorithm, the efficient
implementation of which is the cornerstone of an ac
ceptable performance of the whole stock trading ap
plication. Fig. 3 graphically sketches two different
situations in the trading history of the same stock.
In both diagrams of Fig. 3 the outstanding buy bids

should be noted that in order to determine the
feasibility of a deal after the reception of a new bid,
the following operations on the database have to be
performed:
First, determine the lowest sell and the highest buy
price pertaining to the respective stock. Second, if
those intervals overlap, select all the bids in that price
range, with their associated information from the
database and deliver them to the deal testing algo
rithm. The latter will make the decision and eventual
ly determine which bids participate in a deal. Certain
ly, a straightforward standard two-phase locking ap
proach would result in disastrous performance, in
particular on the heavily traded stocks. This is easily
seen from lug. 4 which sketches the naive solution. All

No. o f
shares

A 0O
X 0

X X O O O O 0
X X X 0 0 0 0 0 0

X X x x o o o o o o
x x x x x o o o o o o
x x x x x o o o o o o
x x x x x o o o o o o

No. of A
shares

3 5 7 9 I 13 P r ic e l$)

00
X 0

X X 0 0 0 0 0
X x x o o o o o o

X X X X B O O O O O
X X X X X H B O O O O
X X X X X H B O O O O
X X X X X H B O O O O ^

3 5 7 9 H 33

Figure 3: Two different trading scenarios
are represented by the symbol x, sell bids by o. Prices
of the bids are plotted on the x-axis, the volume of a
bid on the y-axis, and a bid is registered with its
respective maximal (x) or minimal (o) price. Distinct
bids at the same price are separated by horizontal
bars and are arranged bottom-up in timestamp order.
Obviously, there is no overlapping of the price range
in the lefthand diagram of Fig. 3, and thus no deal is
possible. The righthand diagram shows the status of
the trading system after the insertion of two more buy
bids at prices $8 and $9. Now the lowest sell price is
below the highest buy price and overlapping bids are
symbolized by ® . Under the assumption that all
registered bids are of the all-or-nothing type, a buy
bid of 3 shares at maximally $9 may either be matched
to sell bids of 6 or 9 shares at $8, and $9, resp. The
second buy bid, 4 shares at maximally $8, can only be
matched to the sell bid of 6 shares at minimally $8.
Since there is no combination of bids that results in a
complete matching, no deal is possible. However, the
insertion of a buy bid of 2 shares at maximally $9,
enables a deal involving 2 buy bids (4 and 2 shares)
and one sell bid (6 shares) at a price of $8. To arrive
at that solution, all the bids in the price range be
tween $8 and $9 had to be examined.
Since the specific regulations governing the im
plementation of the matching algorithm, which may
even differ slightly from one stock exchange to
another, are irrelevant with respect to the database
problem, we will not further dwell on it. However, it

the activities pertaining to the processing of a bid
have to be performed in a single transaction protected
Begin-of-transaction
INSERT this bid into BID
SELECT price range from STOCK
IF this bid falls into the current price range or opens a
new one THEN

{SELECT all bids in price range from STOCK
try to find a deal
IF deal is possible THEN

{DELETE bids participating in deal from BID
INSERT tuples into DEAL}

UPDATE price range in STOCK}
COMMIT WORK
Figure 4: BIDDING-TRADING-transaction pseudo
code in the straightforward solution

by long term locks, effectively serializing bid process
ing on a per stock basis. However, what can be done
using current technology, to alleviate the problem, will
be discussed in the following section.
2. The current solution

The only way to build a system fulfilling the perfor
mance requirements within the boundaries of current
database technology is by the combination of a tricky
application program design and an appropriate layout
of the logical and the physical schema of the database.

262

We make the following assumption about the schema
shown in Fig. 2: Primary keys are in bold-face, and
there is a primary index in the physical schema. In ad-
diton to that, we have the following secondary indices
on BID: Broker-ID, Bid-No and Stock-Code, Bid-
Price, Bid-Time
The flow of control in the application program is sum
marized in Fig. 5, which in contrast to Fig. 1 focusses
on the trading part.
Fig. 5 shows that in the real solution processing of a
bid has been split into two distinct transactions. The
rationale behind this was to keep transactions and

making process. That advantage, on the other hand, is
partly offset by the creation of a crucial hot spot,
which every transaction referring to the same stock
must at least read, and, as has been pointed out
before, the reference distribution is highly biased
towards a small number of heavily traded stocks.
However, contention can be minimized by performing
the comparison as close as possible to the end of the
transaction. But if the price range changes due to the
new bid, there is no way to avoid an update of the
stock record, which may become a bottleneck, unless
more flexible synchronization mechanisms are
provided by the database system. Fig. 6 summarizes
the flow of control in both transactions in pseudo

Transaction Flow:
Bidding and Trading

Transaction
Control

Message ou.t- I'rocess

S e r u i c e ^ s ^ ^ S

Message in

35.16% ^ ^ In s e r t New Bid

Figure 5: Flow of control in the trading part of the application
thereby the duration of locks as short as possible to
reduce data contention. Moreover, the second part of
processing, called trading service in Fig. 5, need not
be performed in all cases. As outlined before, the
feasibility of a deal depends on the bid's price to fall
into the proper range. Now, as preliminary studies
pointed out, the vast majority of newly inserted or
modified bids (84.4 %) will not affect the critical
price range, and hence immediately rule out the pos
sibility of a deal. In that case, the transaction ter
minates directly after the insertion of the bid tuple. If,
on the other hand, the bid's price is in the proper
range, the transaction terminates, too, and releases
its locks, but at the same time triggers a second trans
action to perform the bid matching algorithm on the
respective stock. The most time-critical portion within
that first transaction, the comparison of the bid's
price to the current price range, is accelerated con
siderably by the maintenance of the highest buy and
the lowest sell price as part of the stock tuples.
Though that information, of course, is redundant and
could be derived dynamically in each situation, its in
troduction obviates the examination of the BID rela
tion altogether and immensely shortens the decision

code.
Implementation of the trading part of bid processing
is the real problem, because the second transaction
touches more data and hence tends to be much
longer. Due to the deficiencies of standard
synchronization mechanisms, data contention has to
be reduced primarily by cautious programming and
the exploitation of knowledge about the real load. For
instance, it is a well-established fact in that environ
ment, that only a small fraction (12.2 %) of the bids
reaching the trading service will finally result in a
deal, in other words only 1.9 % of the total requests
transform into a deal. This allows for the following
strategy: The bid matching algorithm first obtains its
input without requesting any locks (the optimistic ap
proach [6]), and repeats its computation under lock
protection, if the preliminary analysis indicated a pos
sible deal. Thus, it keeps the number and duration of
locks at a minimum (see Fig. 6).
To actually perform the bid matching, the algorithm
has to analyze all bids pertaining to the price range
specified in the co: sponding stock record. To
facilitate processing, tl should be further sorted by

263

BIDDING-TA:
Begm-of-transaction
INSERT this bid into BID
SELECT price range from STOCK
IF this bid falls into the current price range or opens
a new one THEN

{UPDATE price range in STOCK
trigger trading-ta}

COMMIT WORK
TRADING-TA:
Begin-of-transaction
SELECT price range from STOCK
SELECT all bids in price range from BID
try to find a deal
IF no deal is possible THEN COMMIT WORK
ELSE

{SELECT price range from STOCK
SELECT all bids in price range from BID
compare selected bids to first run
IF change occurred THEN Restart-of-transaction
ELSE

{DELETE bids participating in deal from BID
INSERT tuples into DEAL
UPDATE price range in STOCK
COMMIT W ORK}}

Figure 6: Pseudo-code of the transaction in the real
solution
price and timestamp, which in the current implemen
tation is supported by a secondary index on the BID
relation. Thus the data necessary for decision making
can be quickly retrieved by first examining the stock
tuple and subsequently reading along the index. With
those provisions, though succeeding trading transac
tions on the same stock are effectively serialized in
their final phase, the application as a whole meets its
performance requirements. Finally, when a deal has
taken place, some bookkeeping activity, for instance
the deletion of bids, the creation of deal tuples, etc. is
performed and the stock tuple is updated, if the price
range changed due to the deletion of bids.

3. Novel data management requirements

The previous chapter has demonstrated some applica
tion specific request and processing patterns, which
are not well-supported by current database systems
and therefore have to be handled in the application
program by ‘handmade* solutions. But our claim is
that the problems with this stock trading system indi
cate some general deficiencies in current relational
data models and query languages that should lead to
an extension of both the data types in the model and
the primitives for accessing and synchronizing them.
Before we start investigating these extensions, let us
first identify the unsupported features of our case
study in a way which helps us recognize the type of
the problem, independent of the given application.

3.1 Types of processing requests.
Looking at the problem itself as well as the current
implementation, we can identify six properties which
are significantly different from those supported by
‘state-of-the-art* database systems and their im
plementation techniques. Here is the list:
a) The two values required to make the guess as to

whether or not a deal might be possible are ag
gregate fields which can be handled by so-called
hot-spot synchronization techniques [7,8].

b) While the trading transaction is active, the group of
bid tuples it works on becomes a (potential) hot
spot. There is no single hot spot element, but a set
of objects (identified by a predicate) exhibits this
property.

c) For coping with generalized hot spots (which
should better be called ‘hot sets“) the implementa
tion chose to read without locks, or with short
locks at best, while doing the analysis. If a deal is
possible, it acquires exclusive locks, performs the
deal, provided the bid tuples have not changed
meanwhile, and commits within a comparatively
short time. This is an application of a well-ap
proved Fast-Path-technique [3], which should be
available as a general feature.

d) Bids at the same price must be traded in time-
stamp ordering. This means, in general we need
the concept of a queue in our data model.

e) In the implementation, access paths are used for
maintaining the processing order of bid tuples.
This gives rise to new and more efficient
synchronization techniques, because the attributes
used for this access path cannot be subject to ‘nor
mal* update operations. Rather, they reflect inser
tions in a queue, and sequences of pop-operations
from the top of a stack, which can interfere only in
very special situations.

f) Once a bid tuple has been inserted - and the cor
responding transaction has committed - a very
strict obligation is put on the system: It has to
guarantee that this bid will be processed according
to its timestamp position as soon as a trade at the
bid price is possible. So there are semantic de
pendencies between transactions (which have to
be maintained by the application program, be
cause the system has no means for expressing
them), and moreover: The trading transaction
must not fail on any bid tuple, because a rollback
would imply the tuple not being processed in time
stamp order.

Some of these special features have been discussed in
the literature occasionally. There are suggestions for
handling hot spot data, there are attempts to intro
duce new datatypes, and there are proposals for bind
ing transactions in order to maintain complex integrity

264

constraints. However, the scope of most of these solu
tions is too narrow to be readily applicable to our
stock trading application. Before we sketch possible
solutions, we will go through the item list again and
explain, where and why existing proposals are insuffi
cient.
3.2 Where to extend existing proposals.
- Requirement a: The methods for allowing a high de

gree of parallelism on hot spot data [7,8] are
designed for incremental updates on counters and
sum fields. The DO-UNDO-REDO semantics are
very simple, and consequently efficient implementa
tions can easily be incorporated into existing sys
tems. An extension to other kinds of aggregations
like the max/min operators in our application is not
quite as trivial for the UNDO case. Since, however,
we will definitely not perform UNDO on the bid
tuples (see requirement f))> the obvious extension
will work efficiently.

- Requirement b: Hot spot synchronization on
dynamically qualified sets of tuples is not possible
with the techniques proposed so far.

- Requirement c: The Fast Path field call facility [3] is
an optimization for incremental updates on fields
with high update contention. It does, however, not
easily carry over to tuple sets with inserts and
deletes being the only high contention update opera
tions. The general principle is applicable by recog
nizing that increase in parallelism can be achieved
by executing relative updates depending on a condi
tion which is very unlikely to be invalidated by the
updates. And in fact, incrementing and decrement
ing a numeric field allows the same degree of paral
lelism like insertion and deletion of tuples in a set -
we only need a simple and general means for deriv
ing and checking the conditions on sets.

- Requirements d/e: Existing data models do not con
tain queue-type structures, and there are no access
structures for implementing them efficiently. From
the problem description it is quite obvious that due
to the specific operations on queues, there is poten
tial for high parallelism.

- Requirement f: There are papers on transaction
scripts [9] for maintaining semantic integrity con
straints, and on so-called transaction scenarios [10]
for scheduling general transaction execution pat
terns. None of these schemes, though, can deal with
the problem of executing transactions on existing
tuples according to their queueing order with
guaranteed delivery at the earliest possible moment.

4. Proposed solutions
Since in this paper we cannot discuss functional ex
tensions to solve all the problems mentioned above,
we will therefore focus on the generalized hot spot
handling.

The generalization of the existing solutions to incre-
ment/decrement parallelism with interval tests to
max/min parallelism with interval tests is straightfor
ward and left as an exercise to the reader - provided
you do not require efficient UNDO. But, as was ex
plained, there is no UNDO in our application for
these transactions. Except for this simple extension,
we propose three functional enhancements that might
help in a variety of situations where there are no fixed
hot spots, but dynamically evolving areas of high con
tention in the database due to lengthy computations
like those for finding the trading price.

4.1 The CHECK/REVALIDATE-access
This is a generalization of the Fast-Path-technique.
Without caring for any syntactic beauty, one might im
agine features like the following added to standard
SQL:
- SELECT CHECK < check-expression > AS

< check-name >
The < check-expression > is either a list of values or
a predicate on the attributes in the select list, which
is evaluated for each result tuple of the query. The
system is asked to remember either the attribute
values or the predicate value under the < check-
name > . This name can be used multiple times in a
transaction, thus adding things to be remembered to
the set. The key point is that all reads with a
CHECK-option will grab no locks. Later on, one
can refer to a < check-name > by:

- REVALIDATE < check-name > as an option in an
update DML-statement. The update will only be
performed if all items checked evaluate to the same
result as before. If such a transaction fails, one can
issue FORGET < check-name > . As a general fea
ture, it would be desirable to be free to use
REVALIDATE in a different transaction than the
corresponding CHECK This is no problem, be
cause the context can be kept by the DBMS. The
only question is how the < check-name > gets
passed from one transaction to another one.

By the way: The use of the CHECK option identifies
a set of tuples as a potential hot-spot item to the sys
tem, which can then optimize its buffer and access
strategy such that these things are accessible fast, at
least until REVALIDATE/FORGET has been issued.
The implementation of this general scheme poses no
serious problems, and allows to define the current
solution in terms of a system-supported interface. Fig.
7 illustrates the basic idea.

4.2 The tuple passing primitive
In many situations, a set of tuples becomes a hot spot
because some non-tririal execution is going on on
these tuples, which may eventually result in an update
on some or all of them, and at the same time other
transactions try to ins t tuples into the set or delete

265

ata or predicate required
,gs an invariant for further^

processing _

P1

r /\
BOT .. CHECK AS P1 .. COMMIT BOT . . REVALIDATE P1 .. UPDATE .. COMMIT

Transaction 1 doing the long Transaction 2 doing the actual modification
preparation work

Total duration of the logical transaction

Total duration of the
exclusive locks

Figure 7: Use of the CHECK/RE VALID ATE mechanism to bind two transactions into one logical unit
or modify easting ones. If the computation is of
moderate length, the revalidate method can be used
to support that. If, however, the computation is more
or less permanently going on (as can be the case with
heavily traded stocks) and the selection predicate of
the ‘hot set* is being changed due to the updates per
formed, we would have to do CHECKS and
REVALIDATEs at unnecessarily short intervals,
which decreases performance due to the overhead
caused by the revalidation procedure. In this situation
we could make use of a primitive supporting com
munication among ongoing transactions, as is shown
in Fig. 8. The key idea here is to talk to the owner of
a hot set rather than trying to access it.
Let us assume the following scenario:
Transaction A is the trading transaction, trying to
compute the trading price for a ‘hot* stock. Transac
tion B tries to insert a bid tuple which is in the price
range currently being investigated by A. Hence, B is
either blocked, or A ’s eventual revalidation will fail.
Now since we know that for each stock, there will be
at most one trading transaction running at any instant,
we can directly associate that transaction (A in our

example) with the hot spot it creates. So rather than
storing the bid tuple in the database, running into the
synchronization problems mentioned, it could be
passed to the transaction working on the hot spot,
which will then decide what to do with it. Look at the
scenario:
B does an insert in the bid relation. If the bid is out
side the current price range, it can be inserted into
the database directly. If it is a potential member of
the ‘hot set*, the insertion is automatically translated
into a send to A. In either case, B is committed
without delay.
On A’s side, we need a system-maintained buffer with
a special retrieval operation to be used by A, such
that it can access those tuples belonging to the cur
rent hot set that have arrived during its lifetime. If A
wants to process such a tuple, fine; if not, it does the
insert for the tuple into the database, which now is no
problem, because it holds all locks required to do
that.
It is not necessary to elaborate on the language exten
sions for retrieving from the tuple buffer, it suffices to

T1: Insert hot spot tuple a T2: Insert hot spot tuple b

Figure 8: The tuple passing mechanism: Rather than working on hot spot data, transactions communicate with the
transaction ’holding’ the hot spot

266

understand that in case of A’s commit or abort the
contents of the queue is inserted into the database by
the system. Note that this extension maintains
serializability between A and B-type transactions. The
argument for that exceeds the scope of that paper.

4.3 Interval locks on access paths for
maintaining queues

Tuples which have to be processed according to some
queueing protocol (price and timestamp in our ex
ample) exhibit a number of specific properties in
terms of request patterns, insert/delete points etc. that
call for adequate synchronization support.
First, we have to take into account that queues are
dynamic rather than static objects, i.e. they contain
subsets of tuples of some relation. There is an ap
plication-dependent algorithm determining which
tuples are ‘in the queue' at any given point in time;
the queueing order is more general than FIFO - in
our example it is a price range and FIFO within the
same price. The operations are simple generalizations
of the standard push/pop-operations (see Fig 9.):
Tuples can be removed from the top of the queue;

need a key-range lock mechanism which allows the
holder of the queue to have update locks on the
queue-tuples and supports a number of non-2-phase
lock conversions:
- shrink the predicate from left to right (pop)
- shrink the predicate from right to left (remove)
- extend the predicate from right to left (insert at the

top of the queue)
- extend the predicate from left to right (insert at the

bottom of the queue)
It is fairly easy to demonstrate that for the specific
request patterns assumed, these lock conversions will
not violate serializability of transactions.
5. Discussion of the solutions proposed

The application of the CHECK/REVALIDATE-
mechanism is obvious. It is a simple extension of a
whole range of ad-hoc solutions which are currently in
use for different purposes:
- The field call facility in IMS/FP is restricted to one

transaction.

insert into random position

Figure 9: Mapping of queue-type objects into key intervals
tuples can be inserted into the queue (the position
depends on the queueing order); and the queue can
be shrunk at the end, i.e. the last n tuples are
removed from the queue - which does not mean dele
tion of these tuples.
Now in our example the queue is used for holding
those bid tuples actually under consideration, which
means the queue holds the hot set. Only tuples in the
queue can be updated for trading, in which case they
will be popped. Other tuples outside the queue can be
inserted/deleted/updated without any restriction.
As Fig. 9 indicates, this request pattern can be sup
ported by mapping the queueing criteria onto a
search key structure. For proper synchronization , we

- In pseudo-conversational transactions, which make
heavy use of data invariants, the gathering, passing
and testing of the data is left to the application
programmer.

- Some TP-monitors have the notion of a general
transaction context, which is kept either in special
storage areas or in the associated database. But
these context areas, apart from some system-defined
structures, are simple containers with no system
supported relation to any predicate on the database.
Furthermore, there is no way to inform the system
about forseeable high access frequencies on some of
those data.

267

The mechanism we have proposed is a fairly simple,
yet general extension of each of these specialized
techniques. It fits nicely into the overall language
structure - one can perceive the data involved in
CHECK/REVALIDATE as a temporarily material
ized view - and conforms with all synchronization
techniques used for ordinary transactions. It should
be easy for the reader to re-phrase the current solu
tion in terms of that mechanism.
However, as was pointed out before, under conditions
of heavy trading for one stock, the overhead for
revalidation may become a bottleneck. Estimates
published in [4] say that this point will be near 100
TPS on the same stock.
To allow for higher throughput, we will demonstrate
the use of the other techniques proposed. Our basic
assumption is that for heavily traded stocks the trad
ing transaction is running permanently (more or less).
The bid tuples within the current price range are
maintained as a queue-type object according to the
protocol described in 4.3.
Now the transactions cooperate as follows:
BIDDING-TA:
Begin-of-transaction
IF this bid falls into the current price range or opens
a new one
THEN SEND the tuple to the TRADING-TA
ELSE INSERT INTO BID < >
COMMIT WORK
TRADING-TA
Begin-of-transaction
DO FOREVER

{ACCEPT tuple from the tuple-passing buffer
MODIFY lowest-sell and highest-buy
try to find a deal
IF deal is possible THEN

{SEND tuples to NOFTTICATION-TA
POP tuples from the top
REMOVE tuples from the end
MODIFY lowest-sell ad highest-buy}

decide upon commit}
COMMIT
The MODIFY-operations are specialized incremental
updates of the type described in [7], the NOTIFTCA-
TION-TA is not shown explicitly.
It becomes clear from the example that using a
‘never-ending* transaction requires the use of
savepoint-techniques [11], but we will not discuss this
any further.
6. Conclusion

We have demonstrated the needs for extended data
objects and synchronization techniques by analyzing
an existing stock trading application. For solving the
problems identified in this domain, we have suggested

three extensions of current DBMS features and briefly
described them in an informal way. Their usage was
sketched in chapter 5.
The surprising result is that with three simple obser
vations, namely:
- Keeping invariants about data in the database is fully

consistent with the transaction paradigm.
- A hot spot can be associated with a transaction

owning the hot spot.
- A queue locking protocol allowing for high paral

lelism with operations typically applied to queues
can simply be associated with interval locking on an
access path structure.

One can define additional objects and functions for
current relational databases, which are easy-to-use
and highly increase the expressional power of transac
tion oriented programming.

7. References
[1] Date, C.: An Introduction to Database Systems,

Addison-Wesley.
[2] Gray, J.: The Transaction Concept: Virtues and

Limitations, in: Proceedings 7th VLDB Con
ference, Cannes, 1981, pp. 144-154.

[3] Gawlick, D.: Processing ‘Hot Spots* in High Per
formance Systems, in: Proceedings Spring COM-
PCON 85, San Francisco, pp. 249-251.

[4] Sammer, H.: Online Stock Trading Systems: Study
of an application, in: Proceedings Spring COM-
PCON 87, San Francisco, pp. 161-163.

[5] Anon et al.: A Measure of Transaction Processing
Power, in: Datamation, April 1985.

[6] Kung, H., Robinson, J.: On optimistic Methods for
Concurrency Control, in: ACM TODS, Vol. 6, No.
2, June 1981, pp. 213-226.

[7] Reuter, A.: Concurrency on High-Traffic Data
Elements, in: Proceedings PODS Conference, Los
Angeles, 1982.

[8] ONeil, P.: The Escrow Transaction Method, in:
TODS, Vol. 11, No. 4, December 1986, pp. 405-
430.

[9] Chung, L., Rios-Zertuche, D., Nixon, B.,
Mylopoulos, J.: Process Management and Asser
tion Enforcement for a Semantic Data Model,
Department of Computer Science, University of
Toronto (submitted for publication).

[10] Duppel, N., Reuter, A., Schiele, G., Zeller, H.:
Progress Report No. 2 of PROSPECT, Reserach
Report, Department of Computer Science,
University of Stuttgart, 1987.

[11] Gray, J., McJones, P., Blasgen, M., Lindsay, B.,
Lorie, R., Price, T., Putzolu, F., Traiger, I.: The
Recovery Manager of the System R Database
manager, Computing Surveys, Vol. 13, No. 2, June
1981, pp. 223-242.

268

