
DISTRIBUTED PROCESSING OF LOGIC PROGRAMS
Ouri Wolfson1 and Avi Silberschatz2,3

ABSTRACT
This paper is concerned with the issue of parallel evaluation of logic programs. To address this issue we define a
new concept of predicate decomposability. If a predicate is decomposable, it means that the load of evaluating it
can be divided among a number of processors, without a need for communication among them. This in turn results
in a very significant speed-up of the evaluation process.
We completely characterize three classes of single rule programs (sirups) with respect to decomposability: nonre-
cursive, linear, and simple chain programs. All three classes were studied previously in various contexts. We estab
lish that nonrecursive programs are decomposable, whereas for the other two classes we determine which ones are,
and which ones are not decomposable. We also establish two sufficient conditions for sirup decomposability.
1. Introduction

We propose a new method of evaluating logic programs in parallel. The method is suitable for sharing the
computation load among an arbitrary number of processors, which have common memory or communicate by mes
sage passing. This makes it applicable to a large class of hardware architectures. Let us demonstrate the method
using the classical example of the program computing the transitive closure of a graph. The arcs of the graph are
given by the tuples of a database relation A . The program is written in DATALOG (see [MW]), i.e., pure PROLOG.

T(x,y):-T(x,z)A(z,y) .
T (x ,y):-A (x ,y) .

If the relation A is replicated at two different processors, p i and p2, we can partition the work o f computing (the
relation for) the predicate T as follows. Processor p i executes the program

T(x,y):~ T (x j) A (z ,y) .
T (x ,y):- A (x ,y),even (x).

and processor p2 executes the program
T (x ,y) : - r (x ,z) A (z ,y) .
T (x ,y):-A (x ,y),odd (x).

1. Computer Science Department, The Technion - Israel Institute of Technology, Haifa 32000, Israel
2. Computer Science Department, University o f Texas at Austin, Austin, TX 78712
3. Research sponsored in part by the NSF grant DCR-8507224 and ONR Contract N00014-86-K-0161

Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commer
cial advantage, the ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permis
sion of the Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.
© 1988 ACM 0-89791-268-3/88/0006/0329 $1.50

329

http://crossmark.crossref.org/dialog/?doi=10.1145%2F971701.50242&domain=pdf&date_stamp=1988-06-01

In other words, p i computes the tuples (x ,y) of the transitive closure, in which x is even, and p2 computes those
tuples in which x is odd. A moment of reflection will reveal that this partitioning of the work has several nice pro
perties. First, no processor computes a tuple which is also computed by the other processor. Second, if the relation
computed by each processor is output to the same device, or stored in the same file, the result is always the complete
transitive closure, regardless of the input graph. Third, no communication between the two processors is required
during the computation. Fourth, the work-partitioning does not require complicated program transformations, only
adding evaluable predicates to the body of some rules of the original program.

Assume that the whole relation for T has to be evaluated, and p i and p2 start at the same time and execute
their programs in parallel. Assume further that at the same time a single processor, using the original program,
starts the evaluation of T. It is quite intuitive that, for an "average" (large enough) graph, the partitioned evaluation
of T will complete much sooner than the single-processor evaluation. Furthermore, note that the evaluation can be
divided among k processors, for any k>2. The only difference from the above example is that processor pi exe
cutes a copy of the program with the predicate z'mod£(;c) added to the nonrecursive rule. The exact time-speedup
achieved by the work-partitioning scheme depends on many parameters outside the scope of this paper, however,
here we are interested in a qualitative issue.

We postulate that in general, a work-partitioning scheme with the properties enumerated above, is very desir
able. If it can be applied to the evaluation of a predicate in a program, then we say that the predicate is decompos
able. Not every predicate is decomposable. Even for the same problem of computing the transitive closure, we will
prove that the predicate T in the program

r {x ,y):- r (x ,z) ,T (z ,y).
T (x ,y)- .-A (x ,y) .

is not decomposable. The proof o f this fact will be given in section 5. Therefore, we feel that it is practically and
theoretically important to first formally define decomposability, and then characterize the decomposable predicates.

In this paper we completely characterize three subclasses of single rule programs (sirups) with respect to
decomposability: nonrecursive, linear programs, and simple chain programs. Sirups were first studied as a syntacti
cally restricted class of programs by Cosmodakis and Kanellakis ([CK]). They have only one output predicate,
therefore we interchageably use the term decomposability of a predicate or of a program. We also provide two suf
ficient conditions for any sirup to be decomposable. Linear programs and simple chain programs are important
subclasses of sirups from the practical point of view. Simple chain programs were completely characterized with
respect to membership in the complexity class NC by Afrati and Papadimitriou ([AP]). Linear sirups were studied
as a distinct subclass in the context of bounded recursion ([I], [N l], [NS]) and one sided recursion ([N2]).

This work is related to the general subject of parallel evaluation of logic programs. The subject has recently
emerged as a very important and active area of research ([K], [U]). However, as far as we know, existing research
is concerned with membership in the complexity class NC. This class is a mathematical tool for analyzing parallel
algorithms in general. Here we show that for analyzing parallel evaluation of logic programs, a different tool can be
used. Loosely speaking, if a logic program is in NC it does not guarantee that it has all the nice properties of a
decomposable predicate. In particular, the processors executing an NC type algorithm usually have to communicate
extensively, and therefore communication is assumed to take place through common memory. Also, a speedup for
such an algorithm is not guaranteed unless the number of processors is polynomial in the size of the input. The
technique of program modification that we discuss here is also related to the magic sets technique ([BMSU]),
Magic sets and decomposability, both aim at increasing the efficiency of query evaluation. However, the means of
magic sets is selection propagation, whereas the means o f decomposability is parallel evaluation.

In the next section we introduce the necessary definitions and notations, and prove that any nonrecursive sirup
is decomposable. In section 3 we provide two sufficient conditions for a general sirup to be decomposable, and in
section 4 we show that one o f these conditions, called pivoting, is also necessary for decomposability of a linear
sirup. In section 5 it is proven that a simple chain program is decomposable if and only if it is regular. In section 6
we discuss future work.

330

2. Preliminaries
An atom is a predicate symbol with a constant or a variable in each argument position. We assume that the

constants are the natural numbers. An R -atom is an atom having R as the predicate symbol. A rule consists of an
atom, Q , designated as the head, and a conjunction of one or more atoms, denoted Q 1, . . . ,Q k, designated as the
body. Such a rule is denoted Q :- Q 1, . . . ,Q k, which should be read "Q if Q 1 and Q 2, and, ...,and Q k." A rule or
an atom is an entity. If an entity has a constant in each argument position, then it is a ground entity. For a predicate
symbol, R , a finite set of R -ground-atoms is a relation for R .

A DATALOG program, or a program for short, is a finite set o f rules whose predicate symbols are divided
into two disjoint subsets: the base predicates, and the derived predicates. The base predicates are distinguished by
the fact that they do not appear in any head of a rule. An input to P is a relation for each base predicate. An output
of P is a relation for each derived predicate of P . A substitution applied to an entity, or a sequence of entities, is the
replacement of each variable in the entity by a variable or a constant. It is denoted x 1/y I jc 2 ly 2 , . . . ,xnlyn indi
cating that xi is replaced by y i . A substitution is ground if the replacement of each variable is by a constant. A
ground substitution applied to a rule is an instantiation of the rule.

A database for P is a relation for each predicate of P . The output of P given an input I , is the set of relations
for the derived predicates in the database, obtained by the following procedure, called bottom up evaluation.
BUE1. Start with an initial database consisting of the relations of I .
BUE2. If there is an instantiation of a rule of P such that all the ground atoms in the body are

in the database generated so far, and the one in the head is not, then:
add to the database the ground atom in the head of the instantiated rule,
and reexecute BUE2.

BUE3. Stop.
This procedure is guaranteed to terminate, and produce a finite output for any given P and / ([VEK]). The output is
unique, in the sense that any order in which bottom up evaluation adds the atoms to the database will produce the
same output. For simplicity we assume that the rules of a program are range restricted, i.e. every variable in the
head also appears in the body. Furthermore, we assume that the rules do not have constants, and each query is to
evaluate a whole relation for a predicate.

An evaluable predicate is an arithmetic predicate (see [BR]). Examples of evaluable predicates are sum,
greater than, modulo, etc. A rule re is a restricted version of some rule r , if r and re have exactly the same vari
ables, and r can be obtained by omitting zero or more evaluable predicates from the body of re. In other words, re
is r with some evaluable predicates added to the body, and the arguments of these evaluable predicates are variables
of r . For example, if r is:

S (x ,y j) :~ S (wpc,y), A (w j)
then one possible re rule is:

S(x,yj):-S(wjc,y) ,A(w,z) ,x-y= 5
A program P, is a restricted version of program P if each one of its rules is a restricted version of some rule of P .
Note that P, may have more than one restricted version o f a rule r of P . To continue the above example, if P has
the rule r , then P, may have the rule re as well as the rule re' :

S(x,y S(w jc,y),A(w,z), x -y= 6
Throughout this paper, only restricted versions of a program may have evaluable predicates. The input o f a program
with evaluable predicates, i.e. a restricted version, is defined as before. The output is also defined as before, except
that BUE2 also verifies that the substitution satisfies the evaluable predicates in the ground rule; only then the atom
in the head is added to the database and BUE2 is reexecuted. For example, the substitution x/14,y/8 satisfies the
evaluable predicate x-y=6, whereas the substitution x/13,y/9 does not. A predicate Q in a program P derives a
predicate R if it occurs in the body of a rule whose head is a R -atom. Q is recursive if (Q ,Q) is in the nonreflexive
transitive closure of the "derives" relation. A program is recursive if it has a recursive predicate. A rule is recursive
if the predicate in its head transitively derives some predicate in its body.

331

Definition: Let P be a program, T a derived predicate in P, and P j , . . . ,P r restricted copies of P. For a derived
predicate T of P, denote by 7} the relation output by P, for T; the relation output by P is denoted T. (Observe that
this is a somewhat unconventional notation, since for P,- the relation name is different than the predicate name).
Predicate T is decomposable in P with respect to P i , . . . ,P r if the following two conditions hold:
A. For each input I to P J3 i , . . . / ’r

1. ^jTi -¿T (completeness), and
i2. 7) and 7) are disjoint for each i* j;

furthermore, if some derived predicate Q transitively derives T in P,
then Qi and Qj are disjoint (lack-of-duplication).

and
B. For some input I to P i ,...P r each 7) is nonempty (nontriviality). □
The above definition is central to this paper, and we shall discuss it next.

Requirement A. 1 states that no output is lost by evaluating the relation for T in each P; rather than the rela
tion for T in P ; the fact that no additional output is generated is implied by the fact that each P, is a restricted ver
sion of P . Requirement A.2 states that in the process of evaluating T, each new ground atom (or intermediate
result) is computed by a unique processor. Assume that, along the lines suggested in [BR section 4], we measure
the cost of evaluating the relation T, in terms of the number of new ground atoms generated in the evaluation pro
cess. Then, loosely speaking, requirement A says the following. For every input (i.e. set of base relations replicated
at each processor), the evaluation by r processors is equivalent, in terms of the output produced and the total evalua
tion cost, to the single-processor evaluation.

The strength of requirement A enables the relaxed form of requirement B. It is enough that for "some" inputs
each 7) is nonempty, since for those inputs the evaluation cost incurred by each processor is smaller than that of a
single processor executing the program P . Then the evaluation of T completes sooner in the distributed case. In
other words, since there is nothing to lose by distributing the computation, it is enough that we gain only in some
cases to make the scheme worthwhile. However, for the decomposable predicates that we discuss in this paper,
nontriviality holds for more than an isolated case input.

For instance, in the transitive closure example nontriviality holds for any input graph in which arcs exit both,
even and odd nodes. Specifically, for the class of predicates that we prove decomposable in this paper, decomposa-
bility is shown using the odd-even predicates alone. This has two implications. First, the work performed by each
processor for an arbitrary input, is roughly equal (e.g. for an arbitrary graph, the number of odd and even nodes is
roughly equal). In these cases we expect the distributed evaluation to be faster than the single-processor evaluation,
by a factor which is close to two, i.e. the number processors. Second, note that the odd and even predicates are a
special case of the i mod r predicates, for r =2. When we show that T is decomposable in P with respect to P i and
P 2, then it will be easy for the reader to convince itself that for any r , there are restricted copies P j.........Pr such
that T is decomposable in P with respect to P i , . . . ,P r . This means that the work can be divided among any
number o f processors. For instance, in the transitive closure example, in order to do so processor i evaluates 7)
where

Pi- T (x , y) : - T (x j) A (z , y)•

T (x ,y):- A (x ,y) ,x =i modr.
These facts stress the robustness of the decomposability definition.
We say that predicate T is decomposable in P if it is decomposable with respect to some restricted copies P x ,. . .p r
such thatr > 1.
A single rule program (see [CK]) is a DATALOG program which has a single derived predicate, denoted S in our
paper, a nonrecursive rule,

S (x l,...,xn):- B (x l,...,xn).

332

where the xi’s are distinct variables, and one other, possibly recursive, rule in which the predicate symbol B does
not appear.
Theorem 1: If a sirup P is nonrecursive, then its derived predicate is decomposable.

3. Sufficient Conditions for Decomposability
In this section we provide two sufficient conditions for decomposability of a general sirup. The first one is

motivated by the next example, which also merits attention for the following reason. From the preceding discussion
one might suspect that our notion of decomposability is equivalent to "naive" propagation of variable bindings (see
introduction of [BKBR]). The latter notion means simply substituting a constant for a variable in some rules. The
constant is usually taken from a query. For example, in order to find all the arcs exiting the node 2 in the transitive
closure o f a graph, the constant can be naively propagated into the program as follows:

T (2 ,y) : -T (2 ,z)M z ,y) .
T (2,y):- A (2,y).

It is quite clear that if a sirup is amenable to naive propagation of variable bindings, then it is decomposable. How
ever, the reverse is not true. For example, consider the program:

S (x ,y) : -S (y pc).
S (x ,y):-A (x ,y) .

which outputs an arc in both directions for every arc of an input graph. It is easy to see that a binding cannot be
naively propagated into this program, but the sirup is decomposable; one restricted copy has the nonrecursive rule:

S (x ,y) :- A (x ,y),even (x+y).
and the other:

S (x ,y):- A (x ,y),odd (x+y).
Our first sufficient condition for decomposability is based on the preceding observation. Next we formally define
it. Assume that R is a set of atoms with each atom having a variable in each argument position. The set R is pivot
ing if there is a subset d of argument positions, such that in the positions o f d :
1. the same variables appear (possibly in a different order) in all atoms of R , and
2. each variable appears the same number o f times in all atoms of R .
A member of d is called a p ivo t. Note that a variable that appears in a pivot may or may not appear in a nonpivot
position. The recursive rule of a sirup is pivoting if all the occurrences of the recursive predicate in the rule consti
tute a pivoting set. For example, the rule

S(w pcpc,y,z) :-S (u ,yp cp c ,w),S (vp c ,yp c ,w),A (u ,v ,z)
is pivoting, with argument positions 2, 3 and 4 of S being the pivots.
Theorem 2: If the recursive rule o f a sirup is pivoting, then the sirup is decomposable.

Theorem 2 can be extended to general programs, not necessarily sirups, provided that we extend the pivoting
definition properly. Since in this paper we concentrate on sirups, we shall be informal about general programs. A
rule in a program is pivoting, if all its derived-predicate-atoms (in the head or the body) constitute a pivoting set. A
program is pivoting if each one of its rules is pivoting, with the same argument positions being the pivots in all the
rules; additionally it is required that the heads of rule do not have repeated variables. For example, the program

S (x ,y ,z):- R (yp c ,w),A (w ,z).
R (x ,y ,z) :- R (x ,y ,w), B (w ,z).

333

R (x ,y j) : - C (x ,y ,z) .
is pivoting, with positions 1 and 2 being the pivots. It can be shown that a predicate in a general program is decom
posable if the rules which derive the predicate constitute a pivoting program. For example, predicate S in the pro
gram above is decomposable (add odd-even (x+ y) to the body of the third rule).

The condition of theorem 2 is not necessary for decomposability. For example, the sirup
S (x jc) : -S (y ,y) ,A (x ,y) .

S (x ,y):-B (x ,y) .
is obviously not pivoting, but it is decomposable. Again, odd-even (x+y) is added to the body of the nonrecursive
rule. The intuition'indicates that in this example the computation load for an arbitrary input is not evenly divided
between the processors executing the two restricted versions of the program (because only the processor executing
the copy with the even evaluable predicate can output an atom as a result of instantiation of the recursive rule). The
example is unique (throughout the paper) in this respect. Expectedly, the last example motivates our next sufficient
condition for decomposability of a sirup. It is defined as follows. Assume that R is a set of atoms with each atom
having the same predicate symbol, Q , and a variable in each argument position. The set R is repeating if there are
at least two argument positions of Q , / and j , such that the same variable appears in position i and position j , and
this is true for each member of R (note that the variable of one member of R may be different than the variable of
another). The recursive rule of a sirup is repeating if all the occurrences of the recursive predicate in the rule con
stitute a repeating set. For example, the rule

S (x ,z jc) \-S (z ,z ,z) ,S (x p cp c).
is repeating because o f argument positions 1 and 3.
Theorem 3: If the recursive rule of a sirup is repeating, then the sirup is decomposable.

Obviously, the condition of theorem 3 is not necessary for decomposability either.

4. Linear Sirups
In this section we completely characterize the class of linear sirups with respect to decomposability. A sirup

is linear i f it is recursive, and in the body of the recursive rule there is exactly one occurrence of the recursive predi
cate. We also require that a linear sirup does not have repeated variables in an occurrence of the recursive predi
cate. The characterization of linear sirups with respect to decomposability is done by proving that the sufficient
condition of theorem 2 is also necessary. We assume that the recursive rule is:

5 (x l,...^ n):= 5(y i,...,y /i)w 41(.....) A*(.....).
where the Af ’s are base predicates. Observe the notation used in this section to distinguish between two types of
variables. The ones starting with a lowercase letter are logic program variables, or variables for short, as before.
The ones starting with an upper case letter, e.g. Y l, are metalinguistic-variables. They denote program variables.
For example, Y 1 may denote the variable xn .

If the predicate S (x l,...,zn) in a sirup P , not necessarily Unear, is decomposable with respect to P],...,Pr ,
then we define the home-site of a sequence of n constants, c = c 1,...,cn. It is the S; to which the output atom 5 (c)
belongs, if each P, is given the input consisting of a unique atom, B (c~). Note that the home-site of a sequence is
unique (lack-of-dupUcation), every sequence of n constants has a home-site (completeness), and each Siy 1 <i<r,
has a sequence of constants for which S, is the home-site. Let c = Ci,...,c„ and d = d x,...,dn be two sequences of
constants. The ordered pair of ground atoms <S (d), S (c)> is a one-step-derivation if there is an instantiation of the
recursive rule of P , in which the first atom is in the head and the second is in the body.
Lemma 1: If the derived predicate, S , of a linear sirup P is decomposable, and there are two sequences of constants
d =di,...,d„ and c = ci,...,c„ such that < 5 (d),S (c)> is a one-step-derivation, then the home-site of d and c is
identical.

334

Next we discuss a procedure, called D e r iv e - N e w —V a r ia b le s (P) and given in Figure 1. We shall prove that
the recursive predicate S of a linear sirup P is not decomposable, if the procedure D e r iv e - N e w - V a r i a b l e s (P) halts
(see step 3). Then we shall prove that it halts if the recursive rule of P is not pivoting. D e r iv e - N e w - V a r i a b l e s (P)
iteratively substitutes for the variables in the recursive rule of P . It starts by subscripting all variables by 1, and
then at each iteration it increases the subscript of the variables and unifies the 5 -atom in the body with the atom in
the head of the previous iteration.
Lemma 2: Let P be a linear sirup, and assume that S { Y \ , . . . , Y n) and S (Z 1 , . . . , Z n) are two consecutive values
of L a s t - D e r i v in the execution of the procedure D e r iv e - N e w - V a r i a b l e s (P) . Furthermore, assume that there is a
ground substitution p of the program variables in the sequence S (Y 1 , . . . ,Y n) , S (Z l , . . . , Z n) , resulting in the
sequence of ground atoms S (c l f . . . , c n) , S { d \d n) . Then the pair < S (d i , . . . , d n) , S (c i , . . . , c n) > is a one-
step-derivation.
Lemma 3: If for a linear sirup P , the procedure D e r iv e - N e w - V a r i a b l e s (P) halts, then P is not decomposable.
Proof: Based on Lammas 1 and 2.
Lemma 4: If the recursive rule of a linear sirup P is not pivoting, then D e r iv e - N e w - V a r i a b l e s {P) halts.
Theorem 4: A linear sirup is decomposable if and only if its recursive rule is pivoting.
Proof: (if) Special case of Theorem 2. (only if) Immediate from Lemmas 3 and 4. □

5. Simple Chain Programs
A simple chain program is a recursive sirup in which: (a) all the predicates are binary, (b) the argument posi

tions in the left hand side of the recursive rule have distinct variables, and these variables appear in the first argu
ment position of the first atom in the body, and in the last argument position o f the last atom, respectively, (c) all the
argument positions in the body of the recursive rule have distinct variables, except that the first argument position of
the second atom has the same variable as the last argument position of the first atom, the first argument position of
the third atom has the same variable as the last argument position o f the second atom, etc.
For example, the following is a simple chain program:

S (x ,y) :- A (x ,z {) ,S (z u z 2) ,S (z2,z3),C (z3,z4),D (z4,y)
S (x , y) : - B (x , y) .

D e r iv e - N e w - V a r i a b l e s (P).

1. L a s t - R e c - R u l e := The recursive rule of P with all the variables given the subscript of one.
2. L a s t - D e r i v : = S (x l 0, . . . j c n 0)
3. Do until none of the variables of the atom in L a s t - D e r i v is equal to one of the variables x l 0,...^cn0-
4. Assume that L a s t - R e c - R u l e = S (x \ i , .. .jc n i) : - S { Y l , . . . , Y n) A \ { —) , - - , A k (. . .) and

L a s t —D e r i v = S (Z l , . . . , Z n) .
Let L a s t - D e r i v := The atom in the head of the rule obtained by applying the substitution Y 1/2 l,...,Yn IZn
to L a s t - R e c - R u l e .

5. Let L a s t - R e c - R u l e := L a s t - R e c - R u l e with the subscript of the variables increased by one.
6. END;

Figure 1

335

where the A J i ,C D are base relations. A simple chain program is regular if in its recursive rule there is one
occurrence of the predicate S and this occurrence is the first or the last in the body of the recursive rule. Note that a
simple chain program is pivoting if and only if it is regular.
Theorem 5: A simple chain program P is decomposable if and only if it is regular.

6 . Future Work
We shall continue the work on decomposability in several directions. One of them is to extend the characteri

zation of decomposable predicates to other sirups first, e.g. typed (see [K]), and then to general logic programs.
Another direction is to determine whether decomposition implies that the work can be evenly divided among the
processors, as we have seen that can be done using the mod predicate. For this purpose a notion of fa ir decomposi
tion should be defined. Another topic which merits attention is minimizing communication when evaluating non-
decomposable predicates in a distributed environment. We feel that the work on decomposability should also be
helpful in this area. More specifically, observe that the method proposed in this paper to partition the load in
evaluating decomposable predicates, can be applied to nondecomposable ones as well; however in that case com
munication among the processors is necessary. The question is, how does the amount of necessary communication
compare in different partitioning schemes. Finally, we shall mention that we intend to study the relationship
between the class of decomposable programs and the programs in the complexity class NC.

References

[AP] F. Affati and C. H. Papadimitriou "The Parallel Complexity of Simple Chain Queries", Proc. 6th ACM
Symp. on PODS, pp. 210-213,1987.

[BKBR] C. Beeri, P. Kanellakis, F. Bancilhon, R. Ramakrishnan "Bounds on the Propagation of Selection into
Logic Programs", Proc. 6th ACM Symp. on PODS, pp. 214-226,1987.

[BMSU] F. Bancilhon, D. Maier, Y. Sagiv, J. Ullman "Magic Sets and Other Strange Ways to Implement Logic
Programs", Proc. 5th ACM Symp. on PODS, pp. 1-15,1986.

[BR] F. Bancilhon and R. Ramakrishnan "An Amateur’s Introduction to Recursive Query Processing", Proc.
SIGMOD Conf. pp. 16-52,1986.

[CK] S. S. Cosmodakis and P. C. Kanellakis "Parallel Evaluation of Recursive Rule Queries", Proc. 5th ACM
Symp. on PODS, pp. 280-293,1986.

[I] Y. E. Ioannidis "Bounded Recursion in Deductive Databases", TR UCB/ERL M85/6, UC Berkeley,
Feb. 1985.

[K] P. C. Kanellakis "Logic Programming and Parallel Complexity", Proc. ICDT '86, International Confer
ence on Database Theory, Springer-Verlag Lecture Notes in CS Series, no. 243, pp. 1-30,1986.

[MW] D. Maier and D. S. Warren "Computing with logic: Introduction to logic programming," Benjamin
Cummings, 1987.

[NI] J- F. Naughton "Data Independent Recursion in Deductive Databases", Proc. 5th ACM Symp. on PODS,
pp. 267-279,1986.

[N2] J. F. Naughton "One-Sided Recursions", Proc. 6th ACM Symp. on PODS, pp. 340-348,1987.
[NS] J. F. Naughton and Y. Sagiv "A Decidable Class of Bounded Recursions", Proc. 6th ACM Symp. on

PODS, pp. 227-236,1987.
[U] J. D. Ullman "Database Theory: Past and Future", Proc. 6th ACM Symp. on PODS, pp. 1-10, 1987.
[VEK] M. H. Van Emden and R. A. Kowalski "The Semantics of Predicate Logic as a Programming

Language", JACM 23(4) pp. 733-742,1976.

336

