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1. Introduction

We study the general problem of resource allocation and activity scheduling. In
this problem we have a set of activities competing for a reusable resource. Each
activity utilizes a certain amount of the resource for the duration of its execution
and frees it upon completion. The problem is to seldetaiblesubset of activities

for execution, that is, a set of activities such that the total amount of resource allo-
cated simultaneously for executing activities never exceeds the amount of resource
available. A typical activity may admit several alternatives for its execution, at most
one of which is to be selected. Each alternative consists of a time interval during
which the activity is to take place, the resource requirement for the activity should
it take place in this interval, and the profit to be gained by scheduling the activity
in this interval. We allow the length of the time interval, the resource demand, and
the profit to vary among different time intervals pertaining to the same activity.
Thus, the objective is to find a feasible schedule specifying which activities are
selected and when each is to be executed, so as to maximize the profit accrued.
We also consider the complement objective of minimizing the profit lost due to
unscheduled activities.

This scenario models a wide range of applications. Two basic problems are
immediately seen to fit in this framework: bandwidth allocation for sessions in
communication networks and machine scheduling of jobs. Another, less obvious,
problem that fits in this framework is the general caching problem in which a fixed
size cache is used to store pages of varying size and reload cost. Finally, prob-
lems such as dynamic storage allocation, in which the resource must be allocated
“contiguously,” can be cast in our framework by adding a contiguity constraint.

The simplest problem that can be modeled in our framework is the problem of
finding a maximum weight independent set in interval graphs [Golumbic 1980].
This problem, which can be solved precisely and efficiently, corresponds to the
case where the resource is a single machine and each activity is a task that requires
the entire machine for its execution in precisely one time interval. No two tasks
may run concurrently, hence feasible schedules correspond to independent sets.
Although this problem is polynomial time solvable, it becomes NP-hard if either the
resource requirement or the single-time-interval-per-activity constraint are relaxed.
If activities may require arbitrary amounts of the resource, the problem is NP-hard
since it contains the NP-hard knapsack problem [Garey and Johnson 1979] as a
special case (in which all time intervals intersect); if activities are allowed to have
multiple time intervals, the problem is known as interval scheduling, which is Max-
SNP-hard [Spieksma 1999].

1.1. Revious WORK AND OUR CONTRIBUTION. We provide a unified ap-
proach to treating problems formulated in our model by using a novel tech-
nique for combining time and resource constraints. Our approach yields constant-
factor approximations for all the problems we consider in this paper. For some
of them this is the first constant factor approximation algorithm. Our algo-
rithms are based on the local ratio technique [Bar-Yehuda and Even 1985]
and they are simple and efficient. We also show how to interpret them within
the primal-dual schema. We remark that obtaining a primal-dual algorithm
for a (natural) maximization problem was posed recently as an open problem
[Vazirani 1999]. Following our work, and that of Berman and DasGupta [2000],
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several authors have applied the same ideas to various auction problems (see, e.g.,
Akcoglu et al. [2002]).

Following is a list, subdivided into broad categories, of the problems to which we
applied our unified approach. We note that the time intervals in which an activity is
allowed to be scheduled can be given either as an explicit list (adibedeteinput),
or as a collection of time windows (calledntinuousnput).

Machine Scheduling. The resource consists kfparallel machines and the ac-
tivities are jobs to be scheduled on these machines. Each job can be scheduled in
one of several time intervals. The goal is to maximize the profit of the executed
jobs. There are several subcases to this problem.

Maximum Weight Independent Set in Interval Grapltsere,k = 1, and each job

may be scheduled in one interval only. This problem is well known to be polynomial-
time solvable [Golumbic 1980]. Our algorithm also solves it optimally.

Interval Scheduling. Here,k = 1, and each job may be scheduled in one of a
finite set of time intervals. A simple greedy2Z-approximation algorithm for the
unweighted case (where all instances of all activities have identical profit) was given
by Spieksma [1999]. A 22-approximation factor via linear programming (LP) is
implicit in Bar-Noy et al. [2001] for the weighted case (arbitrary profits). Our algo-
rithm achieves the same approximation factor for the weighted case combinatorially.
Single Machine Scheduling with Release Times and Deadlidgmin, k = 1.

Each jobi has arelease time i, a deadline ¢, and alength |, such thatd; >

ri + li. The job may be scheduled in any interval k + ;) such thatx is in

the time window(r;, d; —I;]. Bar-Noy et al. [2001] described an LP-base(B1
approximation algorithm for the weighted case. Our algorithm achieves|12.

It even allows jobs to have multiple time windows (as does the algorithm of Bar-Noy
et al. [2001)).

Scheduling on Parallel Unrelated Machineddere,k is an arbitrary number, and

the profit gained by scheduling a job depends both on the job and on the machine
to which it is assigned (the input lists the profit corresponding to each job/machine
pair). Bar-Noy et al. [2001] demonstrated a greedg2-approximation algorithm

for the unweighted case. For the weighted case, they gave an LP-based algorithm
that achieves a factor of/3 for discrete input and /4 for continuous input.

Our algorithm achieves /2 approximation for discrete input and {l¢)/2 for
continuous input.

Bar-Noy et al. [2001] also treated the case of identical machines, i.e., when the
profit of a job is the same for all machines. They presented a greedy algorithm
achieving a factor of & 1/(1+ 1/k)¥ for the unweighted case, and an LP-based
algorithm achieving & 1/(1+ 1/(2k))¥ for the weighted case (and continuous
input). The former expression increases wktirom 1/2 to 1— 1/e ~ 0.63, and
the latter increases frony2to 1— 1/,/e ~ 0.39.

Maximum Weight k-Colorable Subgraph in Interval GraphEhis is a special
case of the previous problem in which each job may be scheduled in precisely
one interval. It can be solved optimally in polynomial time via minimum cost
flow [Arkin and Silverberg 1987]. We achieve éﬁL T{z)-approximation factor
through a simpler and faster algorithm.

All of our algorithms for the problems listed above are in fact instances of
a single parameterized algorithm, where the value of the parameter changes
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from problem to problem. The basic algorithm, (i.e., for discrete input) runs in
polynomial time, specifically, @(logn) time, wheren is the number of instances.

To handle time windows efficiently we introduce a certain profit rounding process,
which degrades the approximation factor by a factor-e£1The running time then
becomes Q¢/¢).

Independent of our work, Berman and DasGupta [2000] developed an algorithm
for interval scheduling that is nearly identical to ours. They, too, employ the same
rounding idea we use in order to contend with time windows. In addition to sin-
gle machine scheduling, they also consider scheduling on parallel machines, both
identical and unrelated. Here, their approach deviates from ours. Rather than deal-
ing with these problems directly, they solve them via single machine scheduling
(for unrelated machines they use a simple reduction to the single machine case,
and for identical machines they repeatedly solve single machine insEaFiaes )
Bar-Noy et al. [2001]). The approximation factors they achieve a%e(gﬁ) for
identical machines and (& €)/2 for unrelated machines. Finally, they also con-
sider single machine scheduling in the special case whergtrgteh factorgi.e.,

(di —ri)/1;) of all jobs are bounded by some constant 2. Using repeated runs
of a modified version of the algorithm they achi%/eL € +1/(22*2 — 4 — 2a),
wherea = |«].

Bandwidth Allocation of Sessions in Communication Networks.modern
communication networks (e.g., ATM networks), there exists some available band-
width between two endpoints in the network. The bandwidth allocation problem is
the problem of finding the most profitable set of sessions that can utilize the avail-
able bandwidth. Our framework includes this problem, and moreover, we capture
the case in which a session may have either a time window or a finite set of intervals
in which it can be scheduled. Our algorithm for this problem achieves a factor of
1/5 (or %(1 — ¢) if time windows are allowed). For the special case where each
activity consists of a single instance we achiey®. Prior to our work, no constant
factor approximation algorithms for this problem were known. Independent of our
work, Phillips et al. [2000] obtained approximation algorithms for this problem
via LP rounding. For discrete input they achieved an approximation factad6f O
and for continuous input they obtainedL. (Although their paper states factors
of 1/4 and 16, respectively, there seems to be an error in the proof. The correct
bounds are those given here [Phillips 2001].) We remark that Albers et al. [1999]
implies a constant factor approximation (where the constant is about 22) via LP
rounding for the special case where each session can be scheduled in precisely one
time interval [Khanna 1999].

General Caching. The general caching problem models situations in which a
cache is to be used for pages of varying sizes and of varying (cache) reload costs.
Specifically, the input consists of a cache size and a sequence of requests for pages.
When a page is requested it must be loaded into the cache, unless it is already
present there. Each page is characterized by its size ameldéed cost which
is incurred whenever the page is loaded into the cache. (Requests for pages in the
cache incur no cost.) Since the cache size is fixed, loading one page may necessitate
evicting another. The goal is thus to find a minimum cost replacement schedule.
We consider the off-line version of this problem, i.e., the case where the input is
given ahead of time. As was shown in Albers et al. [1999], the general caching
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problem can be modeled in our framework. Our algorithm for this problem yields a
4-approximation. (Note that since this is a minimization problem the approximation
ratio is at least 1.) This improves the results of Albers et al. [1999], who were only
able to achieve an O(1)-approximation factor (using LP rounding) by increasing
the size of the cache by O(1) times the largest page size. If the cache size is not
increased, then they achieve an O(Mg( C)) approximation factor, wher#l and

C denote the cache size and the largest page reload cost, respectively.

Contiguous Allocation. Suppose the resource must be allocated in “contiguous”
blocks that should remain the same until the resource is freed. For example, in the
dynamic storage allocation problem objects are to be stored in computer memory for
specified durations. Each object must be allocated a block of contiguous memory,
and once the object is stored, the location of its storage block may not be altered.
The traditional goal in contiguous allocation has been to store all given objects
in minimum size memory [Gergov 1996; 1999; Kierstead 1991]. The throughput
version of this problem is, given a fixed size memory, maximize the profit of the
objects successfully stored. To the best of our knowledge there is no prior art for
the throughput version of the dynamic storage allocation problem. We obtdifh a 1
factor approximation for this problem. We also solve the problem in the general
case where each object can be stored during one of several alternative time intervals.
For this generalization we get a factor ofl1l (or (1— €)/11 for continuous input).
Briefly, our approach s to apply our algorithm and solve the non-contiguous version
of the problem. We then use the non-contiguous schedule as input to one of the
aforementioned memory minimization algorithms. In the final step we extract from
the resultant solution—which is contiguous but may exceed the memory limit—a
feasible solution that is contiguous and at the same time respects the memory limit.
The entire process incurs a constant-factor loss.

Another example of contiguous allocation is strip packing [Steinberg 1997]
where the goal is to pack rectangles into a strip. Our constant-factor bounds apply
to this problem as well.

Independent of our work, Leonardi et al. [2000] developed an approximation
algorithm for the throughput version of the dynamic storage allocation problem.
They achieved performance guarantees gf2lfor discrete input and/18 for
continuous input, both via LP rounding.

The Line and Ring Topology NetworksConsider the special case of the band-
width allocation problem where each session can be scheduled in precisely one
time interval and the start and end times of every such interval are restricted to be
integral time instants. This subproblem can be cast in different terms. Consider a set
of processors connected along a line where each processor is identified by its index
along this line. By letting the processor identities play the role of the integral time
instants in the original problem, we reduce the problem of bandwidth allocation for
permanent connections between processors on a line to the bandwidth allocation
problem with time intervals defined previously. Clearly, all of our results regarding
the time interpretation hold for the processors interpretation as well. They hold for
both throughput maximization and loss minimization. An interesting application
of our general framework concerns the case where processors are connected along
aring rather than a line. The ring topology is considered a viable network topology
in the optical network setting and is well studied in the context of bandwidth allo-
cation. In the ring topology a session between two processors may choose between
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two routes: going clockwise and going counterclockwise. In our framework, this is
equivalent to two instances per activity. Most of the prior work in optical networks
considered the identical width case in which each session requires one wavelength.
Our solution addresses the general case when more than one wavelength per session
is available. We show how to adapt any approximation result for the throughput
maximization problem on the line into one for the same problem on the ring. Given
that the approximation factor for the line igd, the resulting factor for the ring is

1/(p + 1+ €), wheree may be chosen arbitrarily small. (The running time of the
algorithm depends polynomially oryd.)

2. Preliminaries

In our general framework the input consists of a setaivities each requiring the
utilization of a given, limitedresource The amount of resource available is fixed

over time; we normalize it to unit size for convenience. (We remark that some of our
problems can be generalized to the case where the amount of available resource may
change over time.) The activities are specified as a collection of&ets ., An.

Each set represents a single activity: it consists of all possilskancesof that
activity. An instancd € 4; is defined by the following parameters.

(1) Ahalf-opentimeinterval{(l), (1)) during which the activity will be executed.
We calls(l) ande(l) the start-timeandend-timeof the instance.

(2) The amount of resource required for the activity. We refer to this amount as
the width of the instance and denoteut(l ). (Our terminology is inspired by
bandwidth allocation problems.) Naturally<Ow(1) < 1.

(3) Theprofit p(1) > 0 gained by scheduling this instance of the activity.

Different instances of the same activity may have different parameters of duration,
width, or profit. Aschedulés a collection of instances. Itisasibléf: (1) it contains

at most one instance of every activity, and (2) for all time instgttse total width

of the instances in the schedule whose time interval contaiiogs not exceed 1.

In the throughput maximizatioproblem we are asked to find a feasible schedule
that maximizes the total profit accrued by instances in the schedule. loghe
minimizationproblem we seek a feasible schedule of minimum penalty, where the
penalty of a schedule is defined as the total profit of activitwsn the schedule.

(We restrict each activity to consist of a single instance and define the profit of an
activity to be the profit of its instance.) For a given profit functionwe use the
term p-profit (or p-penaltyin the loss minimization context) to refer to the profit
with respect top of a single instance or a set of instances.

2.1. THE LocAL RATIO TECHNIQUE. Our algorithms are based on the local
ratio technique, first developed by Bafna et al. [1999], later extended by Bafna,
Berman, and Fujito [1999], and recently extended again by Bar-Yehuda [2000].
These papers all treated minimization covering problems.

Let p € R" be a profit (or penalty) vector, and I& be a set of feasibility
constraints on vectors € R". A vectorx € R" is afeasible solutiorto a given
problem instanceH, p) if it satisfies all of the constraints iR. Itsvalueis the inner
productp - x. A feasible solution i®ptimalfor a maximization (or minimization)
problem ifits value is maximal (or minimal) among all feasible solutions. A feasible
solutionx is anr-approximatesolution, or simply am-approximation if p - x >
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(or <) r - p-x*, wherex* is an optimal solution. An algorithm is said to have a
performance guaranteef r if it always computes-approximate solutions.

In this paper we further extend the local ratio technique to cover problems of
the form described above; that is, given a profit (or penalty) vegztomR", find a
solution vectoix that maximizes (or minimizes) the inner prodpctx, subject to
a given sef of feasibility constraints om.

THEOREM2.1 (LOCAL RATIO). Let F be a set of constraints and Ipt ps,
and p, be profit (or penalty vectors such thap = pi1 + p2. Then, ifx is an
r-approximate solution with respect {&, p1) and with respect t¢F, p,), then it
is an r-approximate solution with respect(p, p).

PrROOF. Let x*, Xj, X5 be optimal solutions forK, p), (F, p1), and F, p2)
respectively. Thep - X = p1- X+ p2-X > (Or<)r -py1-Xj+r-p2-x; >
(or<)r-(p1-X*+p2-x)=r-p-x* O

The Local Ratio Theorem applies to all problems in the above formulation.
Note thatF can include arbitrary feasibility constraints and not just linear, or
linear integer, constraints. Nevertheless, all successful applications of the local
ratio technique to date involve problems in which the constraints are either linear
or linear integer, and this is also the case for the problems treated herein.

3. Throughput Maximization

In the throughput maximization problem we wish to find a feasible schedule that
maximizes the total profit accrued. More formally, the goal is to find an optimal so-
lution to the following integer programming problem on the set of boolean variables
{xi|leA,1l<i=<n}

Maximize " p(l) - x,
|

subject to:
for each time instartt Z w(l)-x < 1;
1s(1)=t<e(l)
for each activity4;: Z X < 1;
| €A
for each instancé: X, € {0, 1}.

3.1. THE UNIFIED ALGORITHM. We present a generic scheme based on the
local ratio technique to approximate the throughput maximization problem. We ac-
tually generalize the problem a bit and allow negative profits. Our scheme proceeds
as follows.

(1) Delete all instances with non-positive profit.

(2) If no instances remain, return the empty schedule. Otherwise, proceed to the
next step.

(3) Select an instandeand decomposp by p = p; + p,. The exact choice of
and the decomposition gfdepend on the problem at hand and will be discussed
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shortly. (Comment: in the decompositipn= p; + p,, the componenp, may
be non-positive.)

(4) Solve the problem recursively using as the profit function. Lef’ be the
schedule returned.

(5) If S'U{I } is afeasible schedule, retusn= S’'U{i }. Otherwise, retur = S'.

We now analyze the quality of the solution returned by this algorithm. We say
that a feasible schedule Ismaximalif either it contains instancé, or it does
not containl but addlngl to it will render it infeasible. We are going to choose
I and decompose in such a way that: (1p2(l) = 0, and (2) for a certaim,
which depends on the problem being solvexkryl -maximal schedule will be an
r-approximation with respect tp;.

PropPOSITION3.1. Letr be a constant. Suppose that the method for choosing
I and decomposing the profit function is such tHa) (1) = 0, and (2) for all
profit functions p, every-maximal schedule is an r-approximation with respect to
p:. Then the schedule returned by the algorithm is an r-approximation.

ProoOF.  Clearly, the first step in which instances of non-positive profit are
deleted does not change the optimum value. Thus, it is sufficient to show that
S is anr-approximation with respect to the remaining instances. The proof is by
induction on the number of recursive calls. Atthe basis of the recursion, the schedule
returned is optimal (and hence m#approximation), since no instances remain. For
the inductive step, assume tltis anr -approximation with respect tp,. Then,
sincep,(I') = 0 andS’ € S € &' U {1}, it follows thatsS is anr -approximation
with respect tap,. SinceS is | -maximal, it is also an-approximation with respect
to p;. Thus, by the Local Ratio Theorem, it is arapproximation with respect
top. O

It remains to specify how to determirdeand the decomposition of the profit
function. The choice of is done by selecting an instance with minimum end-time
among all activity instances (of all activities), breaking ties arbitrarily. To define
the decompositiop = p; + p, it suffices to defingy,. We use a parameter> 0,
whose value we fix for each problem separately, as follows. For a given instance
I, let A(l) be the activity to which instanck belongs and leT (1) be the set of
instances intersectinighut belonging to activities other tha#(1). Then,

(1 | e A(D),
pu(l) = p(I) - § - w(l) I e Z(1),
0 otherwise

Note thatp,(I ) = 0; hence] will be deleted in the subsequent recursive call. Thus
the algorithm is guaranteed to halt.
The choice otr influences the performance guaranteee obtain. By Proposi-
tion 3.1 we only need to show that evérmaximal schedule is anapproximation
with respect tq;. To do so, we derive an upper boung; on the optimunp, -profit
and a lower boundmaxonthepl profit of everyl -maximal schedule, both normal-
ized by p(I'), which is to say that the actual bounds @é) - bmaxand p(i') - Bopt-
The ratior = byax/bopt is then a lower bound on the performance of the algorithm.
We now derive formulas fds,,: andby,.x. These formulae are valid for the generic
problem and thus for all special cases as well. However, for specific problems
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within the framework we are sometimes able to show better choid®g; @hdbn
(i.e., tighter bounds that result in better performance guarantees).

Con5|der an optimal schedule. By the definitionpgf only instances (i) U
Z(I') contribute to itsp;-profit. Since all the instances belongingZ@ ) intersect
at some point infinitesimally close & ), the total width of such instances in the
optimal schedule can be at most 1, and their contribution tptkgrofit is therefore
at mostw - p(i'). The contribution of the instances (1 ) is at mostp(i ) since a
feasible schedule may contain at most one instance of each activity. Thus, we have
a boundogy =1+ «.

Turning tol -maximal schedules, observe that every such schedule either con-
tains an instance ofi(i') or else contains a séf = ¢ of instances intersectinig
that preventi from being added to the schedule. In the former caseptiherofit
of the schedule is at leag(i ). In the latter case, we can bound the profit from
below as follows. Letwm, andwpmi, be upper and lower bounds, respectively, on
the width of instances in the input. Then the total width of instance¥ iis at
least 1— w(l) > 1 — wnay for otherwisel can be added without violating the
feasibility of the schedule, and it is also not less thag, sinceX’ # @. Since
| was chosen as an instance with minimum end-time, every instiaricat in-
tersects it must satlsfs(l) < e(I) < ¢(1). Hence,X < Z(i'), and thep,-profit
of the schedule is at least- p(I ) - maX{wmin, 1 — wmayx}. Thus, we can use the
boundbx = Min{1, & - Maxwmin, 1 — wmax}}- In the general case, this bound is
meaningless, since,, and 1— wmna Mmay both be arbitrarily close to 0. How-
ever, the various problems we treat impose restrictions on the allowable widths of
instances, and we can obtain meaningful bounds.

LEMMA 3.2. The approximation factor of the algorithm is at leaghtibop: for
all provable bounds kixand hyy, and bnaxand by, can always be chosen such that
this ratio is at least

min{1, & - MaX{wmin, 1 — Wmax} (1)
1+ '

3.2. APPLICATIONS The throughput maximization problem generalizes several
known problems. In this section we present a selection of these problems and show
how to approximate them using our scheme.

In some of the applications described below, an activitys not represented
by explicitly listing all the instances belonging to it, but rather by a collection of
time windowsA time window 7 is a time interval $(7), e(7)) or [s(7), &(7)]
accompanied by three parameters: lenfif, width w(7), and profitp(7). These
are interpreted as follows. Evetye 7 defines an instance with time interval
[t,t+1(7)), and all of these instances share the same width) and profitp(7).

We stress that the tertime windowrefers to the interval of time in which the
activity maybeginexecution; it is not the time interval spanning the release time
and deadline of the activity (these two intervals differl§y)). Note that a time
window must be closed on the left but may be closed or open on the right.

This sort of continuous input leads, of course, to problems in the implemen-
tation of the algorithm. We discuss this, as well as other implementation issues,
in Section 3.3. For the time being, let us just mention that the algorithm can be
implemented so that it always returns gl — ¢)-approximation, where is the
performance guarantee that could be achieved had the instances been specified




1078 A. BAR-NOY ET AL.

explicitly (i.e., discrete input), and > 0 is an arbitrarily small constant. The
running time of this implementation is polynomial ificland the number of time
windows in the input.

3.2.1 Single Machine SchedulingHere we assume that the resource is a single
machine and each activity instance requires the machine. This is modeled by the
conditionw(l) = 1 for all instanced . The following variants of the problem are
considered.

Maximum Weight Independent Set in Interval GraphSonsider the case in
which each activity4; is a singleton{l;}. This is exactly the problem of finding
a maximum-weight independent set in an interval graph, where each indfance
corresponds to an interval. This is a well known problem, which can be solved
optimally and efficiently by reducing it to the problem of finding the longest path in
a DAG [Golumbic 1980]. We claim that the unified algorithm with= 1 yields an
optimal solution. To see this, observe that sié€) = {I }, only one instance from
A(I)UZ(i') may be scheduled in any feasible solution, hemge= 1. In addition,
Wmin = Wmax = 1, SObmax = 1. Thus the performance guarante®is,/boy = 1.

Interval Scheduling. In this problem, each activity consists of a set of instances
that are explicitly specified (see, e.g., Erlebach and Jansen [1998, 2000]; Spieksma
[1999]). This time we use the general boubgli = 1+ « and seto = 1 so
as to maximize Expression 1, given thati, = wmax = 1. By Lemma 3.2 the
performance guarantee ig2l

Maximum Weight ThroughputHere activities are specified as time windows.
This is exactly the problem of maximizing the weighted throughput of jobs with
release times and deadlines on a single machine considered in Bar-Noy et al. [2001].
Since the only difference between this problem and the previous one is that that the
instances are not listed explicitly, we get a performance guarantee-of 12.

3.2.2 Parallel Machine Scheduling.Here we assume that the resource is a set
of k parallel machines. There are two sub-cases to this proldemticalmachines,
where each activity instance may be assigned to any &fritrechines, andnrelated
machines, where each activity instance specifies a particular machine on which it
may be scheduled. (In case an instance may be scheduled on several machines we
simply replicate the instance once for each machine.)

Note that our general framework does not capture this problem completely, since
it does not model the condition that every activity must be carried out in its entirety
on a single machine. We now argue that the solution returned by our algorithm
will never force us to split an activity among several machines. This is clearly the
case for unrelated machines since in this sub-case each activity instance specifies
a single machine. In the case of identical machines, given a schedule returned by
our algorithm, we consider the activity instances in the schedule in non-decreasing
order of their start-times, and assign each activity to an arbitrary available machine.
The feasibility of the schedule guarantees that at least one machine will always be
available.

Identical Machines. We model this case by setting the width of every instance
equal to Jlk We usex = 1 andbyy = 1+ o = 2. In addition, we can takey., = 1

since anyl -maximal schedule that contains no instance4¢f ) must contairk
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instances fronT. Thus we get a performance guarantee & (or (1— €)/2 if the
activities are specified as time windows).

A special case of interest is maximum weidrtolorable subgraph in interval
graphs. This is just the case of identical machines with each activity consisting of a
single instance. Itcan be solved optimally in polynomial time via minimum cost flow
[Arkin and Silverberg 1987]. Our approach provides/2-aApproximation factor
through a much S|mpler and faster algorithm. As a matter of fact, the approximation
factor for this case |§—, since each activity consists of a single instance and

thus we can takboy = 1+ (k — 1)/k.

Unrelated Machines. We model this problem by the conditian(l ) = 1 for all
instanced , and modify the definition of (1) as follows. We defing(i’) as the
set of instances mtersectlrigtklat belong to other activities amén be scheduled
only on the same machine as In addition, we use the following criterion in
the schedule construction phase. An instance may be added to the schedule if the
activity to which it belongs is not currently represented in the schedule and the
instance does not intersect any other instance already in the schedule that belongs
on the same machine. Itis easy to see that the analysis for the case of single machine
scheduling carries over to this problem and thus we have a performance guarantee
of 1/2 (or (1— ¢€)/2 for time windows).

3.2.3 Bandwidth Allocation. We consider a scenario in which the bandwidth
of a communication channel must be allocated to sessions. Here the resource is
the channel’'s bandwidth and the activities are sessions to be routed through the
channel. The sessions may be specified in either of two ways: (1) discrete input
that lists for each call a set of intervals in which it can be scheduled, together with
a width requirement and a profit for each such interval, or (2) continuous input that
uses time windows.

Suppose all instances anarrow, i.e., have width at most/2. Then, we use
a = 2 S0 as to maximize Expression 1, given thgt., < 1/2 andwmy, = O.
Hence, Lemma 3.2 provides a performance guarante¢3{dr (1— ¢)/3 in the
continuous case).

Next, suppose all instances aside, i.e., have weight greater thaf2L Then
the problem reduces to interval scheduling (or, in the case of continuous input, to
maximum weight throughput on a single machine) since no pair of intersecting
instances may be scheduled together. Thus, we have a performance guarantee of
1/2 (or (1—€)/2).

Finally, to solve the problem in the general case we solve it separately for the
narrow instances and for the wide instances, and return the solution of greater
profit. Since either the optimum for the narrow instances is at least three fifths of
the optimum (for the original problem), or the optimum for the wide jobs is at
least two fifths of the optimum, the schedule returned ig&dpproximation (or
(1—¢€)/5).

We remark that in the special case in which each activity has only one instance we
can obtain a performance guarantee of 1 for the wide instances (since the problem
reduces to finding a maximum-weight independent setin an interval graph)/and 1
for the narrow instances (and therefoy@ bverall) by choosing = 1/(1—w(l)).

This is so because in this special case ghagrofit of any | -maximal solution
is at leastp(i') - min{1, «(1 — w(i))}, whereas the optimab;-profit is at most
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p(I') - max{a, 1 + (1 — w(i))}. Note thate now depends o, which means a
different value is used at different stages in the algorithm. This has no bearing on
the correctness of our analysis.

As with machine scheduling, we can extend this probleknuorelated channe)s
possibly with different widths, such that each activity instance may only be assigned
to one particular channel. The method of solution and the approximation factors
carry over from the single channel case.

3.3. IMPLEMENTATION ISSUES Observe that the algorithm may be imple-
mented iteratively rather than recursively. At each iteration we delete all instances
with non-positive profit; findi , A(I) andI(I) compute pi(I) and perform
p(1) < p(l) — pu(1) for all I € A(I') UZ(I); and pushi onto a stack. We
iterate until no instances remain. We then construct the schedule by popping the
activity instances off the stack and adding each to the current schedule if doing so
does not violate the feasibility of the schedule.

A straightforward implementation of this algorithm (when instances are given
explicitly and not as time windows) runs i®(n?) time, wheren is the number
of instances. The bottleneck is the need to update the profits of the instances in
A(NUZ():inthe worst case thigh iteration updates the profits of-i instances.

The determination of andZ(i') also require®(n?) time, as does the construction
of the schedule.

A closer look at the algorithm reveals that the sole purpose of the stack is to
reverse the order in which instances are considered in the schedule construction
phase. What the algorithm really does is an initial phase, in which it scans the
instances in non-decreasing end-time order, deleting some of them as it goes along,
and a second phase, in which it scans the surviving instances in reverse order and
constructs the schedule. Rather than using a stack, we can accomplish this by sorting
the instances in a list and traversing it in both directions. This idea is only one step
shy of the more powerful sweep-line approach, which can reduce the worst case
time complexity to Ot logn), as we now describe.

The time interval of each instance has two endpoints. We denote the instance to
which endpoint belongs by (t). We sort the 8 endpoints of the instances in a list
(ti, to, ..., ton) such that < j if tj < tj orif tj = t; andt is the end-time of (t;)
andt; is the start-time ofl (t;). (Otherwise, ties are broken arbitrarily.) We then
consider the endpoints in order, reducing profits as we go along and deleting an
instance (i.e., deleting its two endpoints from the list) whenever its profit is found
to be non-positive. Note that profits never increase, so there is no need to delete
the instance the moment its profit drops to zero or less. Instead, we wait with the
deletion until the end-time of the instance is encountered.

The pseudo-code below implements the sweep-line idea (though it does not
achieve the promised @{ogn) time complexity). For each instandeit uses a
variablesr; in which it holds the current profit df. The value ofr, is maintained
correctly only as long as is alive, that is, as long as would still be part of the
input in the recursive algorithm. To avoid confusion we stress b} denotes
the original profit of instancé given in the input, as opposed # which is the
“current” profit.

1. Dom < p(l)foralll, as well as other initializations.
2. Sort the endpoints as described above.
3. Fori < 1,2,...,2n:



A Unified Approach to Approximating Resource Allocation and Schedulliog1

I < 1(%).
If tj is the start-time of : do nothing.
Else § is the end-time of ):
P <« m.
If P < 0: deletel .
Else:
Foralld € A(l): my < w3 — P.
Foralld e Z(1): 7y < 753 —a-w(J) - P.

The updating of profits still take®(n?) time in the worst case. We can reduce
this to linear time by representing the profit function implicitly instead of using the
variablesr, . (The initial sorting still require®(n log n) time.) With each activity
A we associate a variabl& 4 and with each instanck we associate a variable
A,. In addition, we maintain a variablap. All of these variables are initially
set to 0. We represent the profits as follows. The current profit of a live instance
| € Ais p(l) — A4 if neither endpoint ofl has been encountered, and it is
p(l1) — Aq— o - w(l)(Ap — Ay) + A, if its start-time has already been seen
but its end-time has not. We modify the algorithm as follows. We replace “do
nothing” in Line 5 withA| < « - w(l)(Ap — A 4q)) and we replace: Line 7 by
P« p(|)— AA(|) —C('w(|)(Ap —AA(|))+A| ; Line 10 byAAU) < AA(|)+ P;
and Line 11 byAp < Ap + P. This scheme of representing profits works when
is fixed. It can be easily modified to handle the case wharay change (as in our
1/2-approximation algorithm fobandwidth allocatiorin the special case where
each activity consists of a single narrow instance).

When the traversal of the list is complete, we traverse the surviving endpoints
in reverse order and construct the scheduil®/e maintain a variabl&/ and the
following invariant: when endpoirttis reachedyV holds the total width of instances
containingt which have been added &

POOXONO O

el

12. S < 0.

13. W <« 0.

14. Traverse the list backwards. For each endpoint
15. I < I(t).

16. If t is the end-time of :

17. W+ w(l) <1

18. S <« SU{l}.

19. W «— W + w(l).

20. Delete the endpoints of the instanceslifi) — {I}.
21. Else: delete the endpoints laf

22. Else { is the start-time of ): W < W — w(l).

3.3.1 Time Windows. Inthis section we refer to the straightforward stack-based
iterative implementation of the algorithm described above. Wep{geio denote
the original profits andr(-) to denote the profits as they change throughout the
execution of the algorithm.

When the input is in the form of time windows, we do not modify the profit
of individual instances, but rather operate on whole windows at a time. At each
iteration we delete all windows whose instances have non-positive profit, and find
an instancé with earliest end-time among the remaining instances by considering
S(7) + I(7) for all remaining windows/. We pushl on the stack and update the
profits of the instances id (i) U Z(i'). Note that to update the profits of instances
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in Z(i') and still maintain the property that the profits of all instances in the same
time window are the same, we might need to first split some windows, as follows.
For each windowZ” containing instances ifi(i ), if &(7) < (i), ore(7) = e(I')
and7 is open, we simply reduce(7). Otherwise, we splif into two windows

T =[s(7), e(l)) and the remaindef” = 7 — 7', and reducer (7"). We refer

to this implementation as thgrecisealgorithm. It is easy to see that the points at
which the time windows may be split are all of the form: start-time of some window
plus a finite sum of lengths of instances (not necessarily of the same activity). Since
no such point can be greater than the maximum end-time of an instance (taken over
all instances of all activities), there are only finitely many such points. Thus, the
precise algorithm always halts in finite, if super-polynomial, time.

In order to attain polynomial running time we trade accuracy for speed. For any
fixed 0 < € < 1 we modify the algorithm as follows. Wheneveis chosen such
that 0< 7 (1) < ep(i') we simply delete the window containingand do not alter
any profits. We call such an iterati@mpty We refer to this algorithm as throfit
truncatingalgorithm.

Let us analyze the running time of the profit truncating algorithm. We denote
by n the number of windows in the input and introduce the following terminology.
When a window? is splitinto7” and7"” we say that one new window ¢seated
We consider the original windows (in the input) to have been created initially. Also,
for a given iteration, we say that is selectedn that iteration. Recall that time
windows are splitin such a way that the profits of all instances in the same window
are the same. Hence, the algorithm deletes at least one window in each iteration,
so the number of iterations is bounded by the number of windows ever created.
Because of the manner in which new windows are created, it is obvious that any
time instant may belong to at mastdifferent windows, and thus the number of
new windows created in the course of any single iteration is at me4t To bound
the number of windows ever created we therefore bound the number of non-empty
iterations, since new windows can only be created in these iterations. Consider an
original time window7 given in the input. How many times can the algorithm
select an instance belonging (orlglnally)’fom non-empty iterations? Each time
it does sozr (i) > ep(i) = ep(7), since the iteration is non-empty. During the
iteration the profits of all instances iA(I') decrease by (i'). In particular, the
profit of every surviving instance originally belongingIodrops by no less than
ep(7). Thus, at most Ze such iterations may occur. It follows that the total number
of non-empty iterations is at mosfe. Hence, the number of windows ever created
is at mosin 4+ n(n — 1)/e < n?/e and this bounds the total number of iterations.
The algorithm can be implemented such that the amortized time complexity of an
iteration is O(1) if it is empty and @ if it is not, resulting in an overall time
complexity of Of?/¢) for the first phase. Since only non-empty iterations push
instances on the stack, and precisely one instance is pushed in each such iteration,
the size of the stack cannot excae@. Thus a straightforward implementation of
the second phase also requirest)¢) time, since the size of the schedule is never
greater tham. Thus, the time complexity of the entire algorithm is®(e).

We now analyze how the profit truncation affects the performance guarantee. For
a given input, consider the time windows that the algorithm deletes in the course of
its execution. Every deleted window is derived, by zero or more splitting operations,
from a window originally present in the input. Without loss of generality let us
assume that the algorithm never splits any windows (for we can always partition
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each window into its constituent deleted windows before commencing execution).
We say that windowZ is badif the algorithm deletes it in an empty iteration. Let

€7 be the value ofr (7) when bad windowZ is selected. Consider the following

two scenarios. In the first scenario we run the profit truncating algorithm on the
original input, and in the second scenario we change the profit of each bad window
7T to p(7) — e7 and then run the precise algorithm. It is easy to see that the
precise algorithm in the second scenario can be made to run identically as the
profit truncating algorithm in the first, except that at all times the profit of every
undeleted bad windowW in the first scenario will be higher by, than its profit

in the second scenario. It follows that the schedulabtained in the first scenario

can also be obtained in the second. Ipg§ and p;,, denote the optimum profit

in the first and second scenarios, respectively, and for every feasible schigdule
let p(X) and p’(X) be the profits ofY in both scenarios, respectively. Then, by
constructionp(X) > p'(X) > (1—¢€)p(X) for all feasible schedule¥. It follows

that pg, > (1 —€) pope- Letr be a performance guarantee for the precise algorithm.
Thenp(S) > p'(S) =1 - Py = (1 — €)Popr, and thus we have a performance
guarantee of (1 — €) for the profit truncating algorithm.

4. Loss Minimization

In the loss minimization problem the objective is to minimize the profit lost to
unscheduled activities. In this context, we find it more appropriate to refiertalty
incurred rather than to profit lost. Hence, we associate a penalty with each activity,
and our objective is to find a feasible schedule of minimum penalty, where the
penalty of a schedule is the sum of penalties of the activit@sn the schedule.

Our framework cannot model this type of penalty function in general. It can only
model it in the special case where each activity contains a single instance. We
therefore restrict the discussion to this case.

We actually solve a generalization of the problem in which the amount of resource
may vary with time. Thus, the input consists of the activity specification as well as a
positive functionwidth(t) specifying the width (i.e., amount of resource) available
at every time instant. Accordingly, we allow arbitrary positive instance widths
(rather than assuming that all widths are bounded by 1). A schedule is feasible if
for all time instantg, the total width of instances in the schedule containirgat
mostWidth(t).

Strictly speaking, for the problem to fit in the framework of the Local Ratio
Theorem, we should define feasible solutions to be complements of feasible sched-
ules. We find it easier, though, to keep thinking of schedules as solutions and we
retain this view in the following exposition.

We present a variant of the unified algorithm achieving a performance guarantee
of 4. Let (H, p) denote the input, wher@{ is the description of the activities
excluding the penalties, angl is the penalty function. If all the instances
constitute a feasible schedule, we return this schedule. Otherwise, we decompose
p by p = p1+ p2 (as described in the next paragraph) such fhélt) > 0 for all
instanced , with equality for at least one instance. We solve recursively p,),
whereH’ is obtained fronf by deleting all instances whog®-penalty is 0, and
obtain a schedul&’. We then consider the instancesHh— H’ in arbitrary order
and add each to the schedule iff doing so retains the feasibility of the schedule. We
return the schedul§ thus constructed.
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Let us define the decomposition @f by showing how to compute,. For
a given time instant, let Z(t) be the set of intervals containing Define
At) = Zld(t) w(l)—Width(t). To computep;, find t* maximizing A(-) and let
N = A(t*). AssumingA* > 0 (otherwise the schedule containing all instances is
feasible), let

.{min{A*,w(I)} | e Z(t*),
0

pu(l) =» otherwise,

where p (which depends on*) is the unique scaler resulting in non-negative
p2-penalties for allinstances and zg¥gpenalty for at least one of them. A straight-
forward implementation of this algorithm runs in time polynomial in the number
of activities and the number of time instants at whitdth(t) changes value.

To analyze the algorithm, assume (by induction) $ias a 4-approximation for
(H', p2). It follows thatS is a 4-approximation for{, p,). Observe (by induction
on the recursion) thaf is maximal in the sense that adding any instance to it
violates its feasibility. Thus, by the Local Ratio Theorem, it suffices to show that
every maximal feasible schedule is a 4-approximation#arf;).

OBSERVATION 4.1. Both of the following evaluate to at mogtA*: (1) the
p:-penalty of any single instance, aifg) the total p-penalty of any collection
of instances whose total width is at magt Also, any collection of instances from
Z(t*) whose total width is at leagk* has a total p-penalty of at leasp A*.

Consider an optimal schedule. fig-penalty is the sum of thp;-penalties of the
instances irZ (t*) that are not in the schedule. Since all of these instance intersect
att* their combined width must be at leaat. Thus, the optimalp;-penalty is
at leastp A*. Now consider any maximal feasible solutigrt. We claim that it
is a 4-approximation because jig-penalty cannot exceegp&*. To demonstrate
this, consider any time instant Let M(t) = Z(t) — M be the set of instances
containingt that are not in the schedule. We say thét unstableif there is an
intervall € M(t) such that adding to M would violate the width constraint at
t. We say that is unstablebecause of I Note that a single time instant may be
unstable because of several different instances.

LEMMA 4.2. Iftis an unstable time instant, theﬁleﬂm pi(l) < 2pA*.

PROOF Let J be an instance of maximum width inM(t). Then,
since t is unstable, it is surely unstable because Xf This implies that
Yiemnz W) >Widtht) — w(J). Thus, -, gq w(l) = X e w(l) —
Diemnzey W) < w3) + At) < w(J) + A Hence 3, vy Pu(l) < pA" +
PA =2pA. O

Thus, there are two cases to considet*lis an unstable point, then the-
penalty of the schedule Eleﬂg(t*) pi(l) < 2pA* and we are done. Otherwise,
lett, < t* andtg > t* be the two unstable time instants closest*t@n both
sides (it may be that only one of them exists). The maximality of the schedule
implies that every instance i (t*) is the cause of instability of at least one time
instant. Thus each such instance must contiaiar tg (or both). It follows that
M(@{*) < M(t) U M(tg). Hence, by Lemma 4.2, the total-penalty of these
instances is less thampA*.
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4.1. APPLICATION: GENERAL CACHING. Inthegeneral cachingroblem, a re-
placement schedule is sought for a cache that must accommodate pages of vary-
ing sizes. The input consists of a fixed cache size 0, a collection of pages
{1,2,...,m}, and a sequence of requests for pages. Each pagdas asize
0 < s(j) < Sand acost €j) > 0 associated with loading it into the cache. We
assume for convenience that time is discrete and thaitttheequest is made at
timei. (These assumptions cause no loss of generality as will become evident from
our solution.) We denote ky(i) the page being requested at timé replacement
schedulés a specification of the contents of the cache at all times. It must satisfy
the following condition. For all Ix i < n, pager (i) is present in the cache at time
i and the sum of sizes of the pages in the cache at that time is not greater than the
cache siz&s. The initial contents of the cache (at time 0) may be chosen arbitrarily.
Alternatively, we may insist that the cache be empty initially. The cost of a given
replacement schedule s c(r (i)) where the sum is taken over alsuch that (i)
is absent from the cache at time- 1. The objective is to find a minimum cost
replacement schedule.

Observe that if we have a replacement schedule that evicts a certain page at some
time between two consecutive requests for it, we may as well evict it immediately
after the first of these requests and bring it back only for the second request. Thus, we
may restrict our attention to schedules in which for every two consecutive requests
for a page, either the page remains present in the cache at all times between the
first request and the second, or it is absent from the cache at all times in between.
This leads naturally to a description of the problem in terms of time intervals,
and hence to a straightforward reduction of the problem to our loss minimization
problem. This reduction was described in Albers, Arora, and Khanna [1999]; we
recount it here for the sake of completeness. Given an instance of the general
caching problem we construct an instance of our loss minimization problem as
follows. We define the resource width Width(i) = S—s(r(i)) for1 <i < n,
andWidth(0) = S (or Width(0) = 0 if we want the cache to be empty initially).

We define the activity instances as follows. Consider the request made dt time
Let j be the time at which the previous requestif@r) is made, orj = —1 if no
such request is made. jf+ 1 < i — 1, we define an activity instance with time
interval [j + 1, i — 1], penaltyc(r (i)), and widths(r (i)). This reduction implies a 4-
approximation algorithm for the general caching problem via our 4-approximation
algorithm for the loss minimization problem.

5. Contiguous Allocation of a Non-Fungible Resource

In problems where a given resource is to be shared over time by consumers, the re-
source may be eithéangibleor non-fungible Fungible resources are exemplified

by the bandwidth allocation application: if the “bandwidth” in question is, say, the
transfer rate provided for a connection in a computer network, the “identity” of the
bandwidth allocated to a session is irrelevant (if it has any meaning at all). This type
of bandwidth is therefore a fungible resource. Non-fungible resources are exem-
plified by real memory allocation in a multi-threaded programming environment,
where chunks of memory are allocated and freed by the various threads. The total
amount of memory allocated at any moment may not exceed the amount available,
and in addition, the memory allocated to a thread must remain in the same position
until freed. On top of the issue of fungibility, there is also the matter of contiguity.
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For example, a request to allocate memory can typically only be satisfied by a block
of memory occupying contiguous addresses.

The general scheduling problem we have been dealing with so far was con-
cerned with fungible resources. In this section we deal with contiguous allocation
of a non-fungible resource. Specifically, we consider the probledy&mic stor-
age allocation(DSA). This problem models situations in which an allocation has
to be contiguous (e.g., contiguous addresses in computer memory or a contigu-
ous band of wavelengths in wireless communication) and cannot be changed until
freed. The terminology we use is that of storage allocation, i.e., the resource is
a contiguous storage area and activities are objects that require storage for dif-
ferent periods of time. We use the temmdth to refer to the size of an object,
and denote byV* the maximum, taken over all timés of the sum of the width
demands at timé. The traditional goal in DSA has been to store all objects in
minimum size storage. This problem is NP-Hard [Garey and Johnson 1979], but
admits constant-factor polynomial-time approximation algorithms. In particular,
Gergov [1999, 1996] and Kierstead [1991] describe “blow-up” algorithms that use
a block of storage of size at mogt: W*, wherey = 3,5, 6, respectively. We use
these algorithms to achieve approximation ratios; pf:, and 5 (respectively)
for the throughput maximization version of DSA (with profits associated with suc-
cessful allocations of storage). In fact, we solve a more general problem in which
a single request for storage may offer several alternative time intervals, only one
of which is to be selected. The duration, storage demand, and profit may all vary
among different intervals pertaining to the same request. This is just the bandwidth
allocation problem with contiguity requirements thrown in. For this generalization,
the performance guarantees we getgrel, andZ, respectively.

For simplicity, we normalize the amount of available storage to 1. We partition
the objects intavide objects, whose widths are more tha2 landnarrow objects,
whose widths are atmost2. We solve the bandwidth allocation problem separately
for the wide objects and for the narrow objects: we obtaifiZzdpproximation for
the wide objects via interval scheduling, and/8-approximation for the narrow
objects as we have done for the bandwidth allocation probleng s the solution
for the wide objects an&, the solution for the narrow objects. Observe tBais
feasible for DSA since no two objects in it intersect. We proceed to extract$om
a feasible solution for DSA, which we denote 8y and return the solution with
higher profit amonds, and§,.

We obtainS, from §, as follows. Given the objects &, we run anyy “blow-up”
algorithm and find a DSA solution that fi§, in a storage block of sizg - W*,
whereW* is defined with respect t§, (and therefore obeyd/* < 1). We patrtition
this storage block intp non-overlapping strips, each of widék*. Each such strip
defines a feasible solution to our problem, consisting of the objects that are fully
contained in the strip. Every object not fully contained in any of the strips crosses
(exactly) one of the boundaries between two adjacent strips. Since no two objects
crossing the same boundary intersect, and the objects are all narrow, each of the
y — 1 boundaries defines a feasible solution that can be fit into a strip of wi@th 1
Thus any two of these solutions can be combined into a feasible solution to our
problem. We choos§, as the solution with maximum profit among the feasible
solutions defined by the strips and the pairs of boundaries.

Denote byp(S,) and p(S)) the profits ofS, and S, respectively. Then, either
the total profit of the solutions defined by the strips is at leggi(8,)/(3y — 1),
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and thus the best strip has profit at leap{2)/(3y — 1), or else the total profit

of the objects crossing boundaries is at lgg&,)(y — 1)/(3y — 1), and thus the
best pair of boundaries have total profit at leaqt2— 1) - p(S)(y — 1)/(3y —

1) = 2p(S)/(By — 1). Thusp(§) > 2p(S)/(By — 1). Sincep(S) is a V/3-
approximation for bandwidth allocatiop(S)) is a 2/(9y — 3)-approximation for
bandwidth allocation. Itis also @y — 3)-approximation for DSA since the op-
timum profit for DSA cannot be higher than the optimum for bandwidth allocation.
Since either the optimum for the wide objects is at le#é¥4 + 1) of the optimum,

or else the optimum for the narrow objects is at leagt {93)/(9y + 1) of the
optimum, the better solution amoi®y and§, is a 2/(9y + 1)-approximation. Thus
the “blow-up” algorithms of Gergov [1999, 1996] and Kierstead [1991] lead to
approximation factors of /114, 1/23, and 255, respectively.

It turns out, however, that the solutions returned by Gergov’s algorithms
[Gergov 1999; Gergov 1996] have the property that none of the objects cross strip
boundaries Using similar arguments as above, the approximation factor can be
tightened to 1(3y + 2) for these algorithms. This yields approximation factors of
1/11 and ¥17, respectively.

In the special case where each request is limited to a single time interval (as
is usually assumed in the DSA literature) we can do better still. Recall that in
this special case, we were able to solve the bandwidth allocation problem opti-
mally for wide jobs, and A2-approximately for narrow jobs. Therefore, the final
ratio for DSA is /3y in this case, and for Gergov’s algorithms it is(2y + 1).

Thus our best approximation ratio for this case j§,lusing the algorithm of
Gergov [1999].

6. Scheduling Sessions on Line and Ring Topologies

As mentioned in the introduction, all of our results regarding the time axis inter-
pretation hold for the processors axis interpretation as well. They hold for both
throughput maximization and loss minimization. They also hold for the contigu-
ous case. Moreover, since processors are discrete there are no issues of continuous
“windows” to contend with (although it is hard to think of any “real” application
involving activities with multiple instances in the context of connections between
processors).

In this section we show how to adapt any approximation result for the throughput
maximization problem on the line into one for the same problem on the ring. If
the approximation factor for the line ig/2, the resulting factor for the ring will
be 1/(p + 1+ €) wheree may be chosen arbitrarily small (the running time of the
algorithm depends polynomially oryd).

The idea is to cut the ring at an arbitrary point and to partition the set of instances
(of all the activities) into those that do not pass through the cut and those that do.
We denote the former b¥’ and the latter byZ”. The instances ifl’ define an
equivalent problem on the line, whereas the instanc&$ immount to a knapsack
problem. It is well known that the knapsack problem admits an FPTAS. We obtain
a 1/p-approximation forZ’ and a J(1 + ¢)-approximation fotZ”, and return the

! This is explicit in Gergov [1996] and is true for the algorithm in Gergov [1999] as well, even though
it is not stated there explicitly [Gergov 2001].
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better solution of the two. Since either the optimum profit of the instancE<srat
least-—— —=- of the optimum proflt (for the original problem), or the optimum profit
of thé instances ii” is at least-< of the optimum, the the better solution is a

p+1+e
1/(p + 1+ ¢) approximation.

Appendix A Primal-Dual Interpretation

Local ratio algorithms can often be reformulated in primal-dual terms, and vice
versa (see, e.g., Bar-Yehuda and Rawitz [2001]). We demonstrate this for our
throughput maximization algorithm.

It turns out that the natural primal-dual formulation maps exactly onto our stack-
based iterative algorithm of Section 3.3 only when every activity consists of a single
instance. In all other cases it maps to a slightly modified version of our algorithm.
(However, as pointed out in Bar-Yehuda and Rawitz [2001], our algorithm can be
described in primal-dual terms as is, provided that we use a slightly different LP
relaxation as the basis to the primal-dual description.) The modification required is
to change the definition df(l ) to the set of all instances mtersectlhglncludlng
I itself and instances iA(l) that intersect ). As a result of this change, the profit
of each instancé e A(l) N Z(I) will now undergo two reductions. To prevent
the profit ofI from becoming negative we must also scale the profit reductions by
1/(1 + aw(i)). Our performance guarantees hold for the modified algorithm as
well, since the modification does not change the bound batig/bop:.

Recall the integer programming formulation of the problem presented in Sec-
tion 3. Let us construct the dual program of the linear relaxation of this program.
We definey; as the dual variable corresponding to the constraint on actiyignd
z: as the dual variable corresponding to the constraint at tirhet T be the set
of all start-times and end-times of all instances belonging to all activities and let
T ={teT|s(l) <t < ¢g(l)} forall instanced .

Minimize Zy. +) 7

teT

subject to:

For each activity instanck € A;: Vi +w(l) Z z > p(l).
teT

For alli andt: yil,zt > 0.

In primal-dual terms, our algorithm proceeds as follows. We initially set all dual
variables to zero. At each iteration the algorithm selects an instarced; with
minimum end-time among all instances whose corresponding dual constraints are
violated. It pushe$ on the stack and increasgsy the amouné required to make
the constraint tight, and increasesby o8, wheres € T is maximal such that
s < e(I'). When all dual constraints become satisfied, the algorithm constructs a
schedule by popping each instance in turn off the stack and adding it to the schedule
if doing so does not violate the schedule’s feasibility.

Using the combinatorial properties of the solution, as we have done in our local
ratio analysis of the various problems, we can charge atdaasts of profit to the
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profit p(1) of some instancé in the final solution for each increase of {1«)é

in the value of the dual objective function. Thus, the profit of the schedule is at
least ¥(1 + «) times the final value of the dual objective function and this is our
performance guarantee.

ACKNOWLEDGMENT. We thank Sanjeev Khanna for many fruitful discussions and
suggestions.

REFERENCES

AKCOGLU, K., ASPNES J., DASGUPTA, B.,AND KAO, M.-Y. 2002. Opportunity cost algorithms for com-
binatorial auctions. IfApplied OptimizationComputational Methods in Decision-Making Economics
and Finance E. J. Kontoghiorghes, B. Rustem, and S. Siokos, Eds. Kluwer Academic Publishers. To
appear.

ALBERS, S., ARORA, A., AND KHANNA, S. 1999. Page replacement for general caching problerh6thn
Annual ACM-SIAM Symposium on Discrete Algorit{i®@®DA. 31-40.

ARKIN, E. M., AND SILVERBERG, E. B. 1987. Scheduling jobs with fixed start and end tinBdscrete
Applied Mathematics 18-8.

BAFNA, V., BERMAN, P.,AND FuJITo, T. 1999. A 2-approximation algorithm for the undirected feedback
vertex set problenSIAM Journal on Discrete Mathematics,1289-297.

BAR-NOY, A., GUHA, S., NAOR, J.,AND SCHIEBER B. 2001. Approximating the throughput of multiple
machines in real-time schedulin§lAM Journal on Computing 3B31-352.

BAR-YEHUDA, R. 2000. One forthe price oftwo: aunified approach for approximating covering problems.
Algorithmica 27 131-144.

BAR-YEHUDA, R., AND EVEN, S. 1985. A local-ratio theorem for approximating the weighted vertex
cover problemAnnals of Discrete Mathematics 257—46.

BAR-YEHUDA, R.,AND RAWITZ, D. 2001. On the equivalence between the primal-dual schema and the
local-ratio technique. Idth International Workshop on Approximation Algorithms for Combinatorial
Optimization ProblemgAPPROX. Number 2129 in Lecture Notes in Computer Science. Springer,
24-35.

BERMAN, P.,AND DASGUPTA, B. 2000. Multi-phase algorithms for throughput maximization for real-
time schedulingJournal of Combinatorial Optimization,807—-323.

ERLEBACH, T.,AND JANSEN, K. 1998. Maximizing the number of connections in optical tree networks. In
9th Annual International Symposium on Algorithms and Comput@t®&AQ. Number 1533 in Lecture
Notes in Computer Science. Springer, 179-188.

ERLEBACH, T., AND JANSEN, K. 2000. Conversion of coloring algorithms into maximum weight in-
dependent set algorithms. Batellite Workshops of the 27th International Colloquium on Automata
Languagesand ProgrammindlCALP), Workshop on Approximation and Randomization Algorithms in
Communication NetworK\RACNE. 135-145.

GAREY, M., AND JOHNSON D. 1979. Computers and Intractabilitya Guide to the Theory of
NP-Completenes$V.H. Freeman and Company.

GERGOV, J. 1996. Approximation algorithms for dynamic storage allocatioritinAnnual European
Symposium on AlgorithnfESA. Number 1136 in Lecture Notes in Computer Science. Springer, 52—-61.

GERGOV, J. 1999. Algorithms for compile-time memory optimization1®th Annual ACM-SIAM Sym-
posium on Discrete Algorithn{SODA. 907-908.

GERGOV, J. 2001. Personal communication.

GoLumsic, M. 1980. Algorithmic graph theory and perfect grapiscademic Press.

KHANNA, S. 1999. Personal communication.

KIERSTEAD, H. A. 1991. A polynomial time approximation algorithm for dynamic storage allocation.
Discrete Mathematics 8231-237.

LEONARDI, S., MARCHETTI-SPACCAMELA, A., AND VITALETTI, A. 2000. Approximation algorithms for
bandwidth and storage allocation problems under real time constrair28tirConference on Founda-
tions of Software Technology and Theoretical Computer ScigF8&TC$ Number 1974 in Lecture
Notes in Computer Science. Springer, 409-420.

PHILLIPS, C. 2001. Personal communication.

PHILLIPS, C., UMA, R. N.,AND WEIN, J. 2000. Off-line admission control for general scheduling prob-
lems.Journal of Scheduling,8365-381.



1090 A. BAR-NOY ET AL.

SPIEKSMA, F. C.R. 1999. On the approximability of an interval scheduling probJemrnal of Schedul-
ing 2, 215-227.

STEINBERG, A. 1997. A strip-packing algorithm with absolute performance bour8l2M Journal on
Computing 26401-409.

VAZIRANI, V. 1999. The primal-dual schema for approximation algorithms: where does it stand, and
where can it go? Workshop on Approximation Algorithms for Hard Problems in Combinatorial Opti-
mization, The Fields Institute for Research in Mathematical Sciences.

RECEIVED NOVEMBER2000;REVISED JULY 2001;ACCEPTED JULY2001

Journal of the ACM, Vol. 48, No. 5, September 2001.



