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1. Introduction

We study the general problem of resource allocation and activity scheduling. In
this problem we have a set of activities competing for a reusable resource. Each
activity utilizes a certain amount of the resource for the duration of its execution
and frees it upon completion. The problem is to select afeasiblesubset of activities
for execution, that is, a set of activities such that the total amount of resource allo-
cated simultaneously for executing activities never exceeds the amount of resource
available. A typical activity may admit several alternatives for its execution, at most
one of which is to be selected. Each alternative consists of a time interval during
which the activity is to take place, the resource requirement for the activity should
it take place in this interval, and the profit to be gained by scheduling the activity
in this interval. We allow the length of the time interval, the resource demand, and
the profit to vary among different time intervals pertaining to the same activity.
Thus, the objective is to find a feasible schedule specifying which activities are
selected and when each is to be executed, so as to maximize the profit accrued.
We also consider the complement objective of minimizing the profit lost due to
unscheduled activities.

This scenario models a wide range of applications. Two basic problems are
immediately seen to fit in this framework: bandwidth allocation for sessions in
communication networks and machine scheduling of jobs. Another, less obvious,
problem that fits in this framework is the general caching problem in which a fixed
size cache is used to store pages of varying size and reload cost. Finally, prob-
lems such as dynamic storage allocation, in which the resource must be allocated
“contiguously,” can be cast in our framework by adding a contiguity constraint.

The simplest problem that can be modeled in our framework is the problem of
finding a maximum weight independent set in interval graphs [Golumbic 1980].
This problem, which can be solved precisely and efficiently, corresponds to the
case where the resource is a single machine and each activity is a task that requires
the entire machine for its execution in precisely one time interval. No two tasks
may run concurrently, hence feasible schedules correspond to independent sets.
Although this problem is polynomial time solvable, it becomes NP-hard if either the
resource requirement or the single-time-interval-per-activity constraint are relaxed.
If activities may require arbitrary amounts of the resource, the problem is NP-hard
since it contains the NP-hard knapsack problem [Garey and Johnson 1979] as a
special case (in which all time intervals intersect); if activities are allowed to have
multiple time intervals, the problem is known as interval scheduling, which is Max-
SNP-hard [Spieksma 1999].

1.1. PREVIOUS WORK AND OUR CONTRIBUTION. We provide a unified ap-
proach to treating problems formulated in our model by using a novel tech-
nique for combining time and resource constraints. Our approach yields constant-
factor approximations for all the problems we consider in this paper. For some
of them this is the first constant factor approximation algorithm. Our algo-
rithms are based on the local ratio technique [Bar-Yehuda and Even 1985]
and they are simple and efficient. We also show how to interpret them within
the primal-dual schema. We remark that obtaining a primal-dual algorithm
for a (natural) maximization problem was posed recently as an open problem
[Vazirani 1999]. Following our work, and that of Berman and DasGupta [2000],



A Unified Approach to Approximating Resource Allocation and Scheduling1071

several authors have applied the same ideas to various auction problems (see, e.g.,
Akcoglu et al. [2002]).

Following is a list, subdivided into broad categories, of the problems to which we
applied our unified approach. We note that the time intervals in which an activity is
allowed to be scheduled can be given either as an explicit list (calleddiscreteinput),
or as a collection of time windows (calledcontinuousinput).

Machine Scheduling.The resource consists ofk parallel machines and the ac-
tivities are jobs to be scheduled on these machines. Each job can be scheduled in
one of several time intervals. The goal is to maximize the profit of the executed
jobs. There are several subcases to this problem.
Maximum Weight Independent Set in Interval Graphs.Here,k = 1, and each job
may be scheduled in one interval only. This problem is well known to be polynomial-
time solvable [Golumbic 1980]. Our algorithm also solves it optimally.
Interval Scheduling. Here,k = 1, and each job may be scheduled in one of a
finite set of time intervals. A simple greedy 1/2-approximation algorithm for the
unweighted case (where all instances of all activities have identical profit) was given
by Spieksma [1999]. A 1/2-approximation factor via linear programming (LP) is
implicit in Bar-Noy et al. [2001] for the weighted case (arbitrary profits). Our algo-
rithm achieves the same approximation factor for the weighted case combinatorially.
Single Machine Scheduling with Release Times and Deadlines.Again, k = 1.
Each jobi has arelease time ri , a deadline di , and alength li , such thatdi ≥
ri + l i . The job may be scheduled in any interval [x, x + l i ) such thatx is in
the time window[ri , di − l i ]. Bar-Noy et al. [2001] described an LP-based 1/3-
approximation algorithm for the weighted case. Our algorithm achieves (1− ε)/2.
It even allows jobs to have multiple time windows (as does the algorithm of Bar-Noy
et al. [2001]).
Scheduling on Parallel Unrelated Machines.Here,k is an arbitrary number, and
the profit gained by scheduling a job depends both on the job and on the machine
to which it is assigned (the input lists the profit corresponding to each job/machine
pair). Bar-Noy et al. [2001] demonstrated a greedy 1/2-approximation algorithm
for the unweighted case. For the weighted case, they gave an LP-based algorithm
that achieves a factor of 1/3 for discrete input and 1/4 for continuous input.
Our algorithm achieves 1/2 approximation for discrete input and (1− ε)/2 for
continuous input.

Bar-Noy et al. [2001] also treated the case of identical machines, i.e., when the
profit of a job is the same for all machines. They presented a greedy algorithm
achieving a factor of 1− 1/(1+ 1/k)k for the unweighted case, and an LP-based
algorithm achieving 1− 1/(1+ 1/(2k))k for the weighted case (and continuous
input). The former expression increases withk from 1/2 to 1− 1/e ≈ 0.63, and
the latter increases from 1/3 to 1− 1/

√
e≈ 0.39.

Maximum Weight k-Colorable Subgraph in Interval Graphs.This is a special
case of the previous problem in which each job may be scheduled in precisely
one interval. It can be solved optimally in polynomial time via minimum cost
flow [Arkin and Silverberg 1987]. We achieve a (1

2 + 1
4k−2)-approximation factor

through a simpler and faster algorithm.

All of our algorithms for the problems listed above are in fact instances of
a single parameterized algorithm, where the value of the parameter changes
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from problem to problem. The basic algorithm, (i.e., for discrete input) runs in
polynomial time, specifically, O(n logn) time, wheren is the number of instances.
To handle time windows efficiently we introduce a certain profit rounding process,
which degrades the approximation factor by a factor of 1−ε. The running time then
becomes O(n2/ε).

Independent of our work, Berman and DasGupta [2000] developed an algorithm
for interval scheduling that is nearly identical to ours. They, too, employ the same
rounding idea we use in order to contend with time windows. In addition to sin-
gle machine scheduling, they also consider scheduling on parallel machines, both
identical and unrelated. Here, their approach deviates from ours. Rather than deal-
ing with these problems directly, they solve them via single machine scheduling
(for unrelated machines they use a simple reduction to the single machine case,
and for identical machines they repeatedly solve single machine instances `a-la
Bar-Noy et al. [2001]). The approximation factors they achieve are 1− ( k+ε

k+1

)k
for

identical machines and (1− ε)/2 for unrelated machines. Finally, they also con-
sider single machine scheduling in the special case where thestretch factors(i.e.,
(di − ri )/ l i ) of all jobs are bounded by some constantα > 2. Using repeated runs
of a modified version of the algorithm they achieve1

2 − ε + 1/(2a+2 − 4− 2a),
wherea = bαc.

Bandwidth Allocation of Sessions in Communication Networks.In modern
communication networks (e.g., ATM networks), there exists some available band-
width between two endpoints in the network. The bandwidth allocation problem is
the problem of finding the most profitable set of sessions that can utilize the avail-
able bandwidth. Our framework includes this problem, and moreover, we capture
the case in which a session may have either a time window or a finite set of intervals
in which it can be scheduled. Our algorithm for this problem achieves a factor of
1/5 (or 1

5(1− ε) if time windows are allowed). For the special case where each
activity consists of a single instance we achieve 1/3. Prior to our work, no constant
factor approximation algorithms for this problem were known. Independent of our
work, Phillips et al. [2000] obtained approximation algorithms for this problem
via LP rounding. For discrete input they achieved an approximation factor of 0.19
and for continuous input they obtained 0.12. (Although their paper states factors
of 1/4 and 1/6, respectively, there seems to be an error in the proof. The correct
bounds are those given here [Phillips 2001].) We remark that Albers et al. [1999]
implies a constant factor approximation (where the constant is about 22) via LP
rounding for the special case where each session can be scheduled in precisely one
time interval [Khanna 1999].

General Caching. The general caching problem models situations in which a
cache is to be used for pages of varying sizes and of varying (cache) reload costs.
Specifically, the input consists of a cache size and a sequence of requests for pages.
When a page is requested it must be loaded into the cache, unless it is already
present there. Each page is characterized by its size and itsreload cost, which
is incurred whenever the page is loaded into the cache. (Requests for pages in the
cache incur no cost.) Since the cache size is fixed, loading one page may necessitate
evicting another. The goal is thus to find a minimum cost replacement schedule.
We consider the off-line version of this problem, i.e., the case where the input is
given ahead of time. As was shown in Albers et al. [1999], the general caching
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problem can be modeled in our framework. Our algorithm for this problem yields a
4-approximation. (Note that since this is a minimization problem the approximation
ratio is at least 1.) This improves the results of Albers et al. [1999], who were only
able to achieve an O(1)-approximation factor (using LP rounding) by increasing
the size of the cache by O(1) times the largest page size. If the cache size is not
increased, then they achieve an O(log(M+C)) approximation factor, whereM and
C denote the cache size and the largest page reload cost, respectively.

Contiguous Allocation. Suppose the resource must be allocated in “contiguous”
blocks that should remain the same until the resource is freed. For example, in the
dynamic storage allocation problem objects are to be stored in computer memory for
specified durations. Each object must be allocated a block of contiguous memory,
and once the object is stored, the location of its storage block may not be altered.
The traditional goal in contiguous allocation has been to store all given objects
in minimum size memory [Gergov 1996; 1999; Kierstead 1991]. The throughput
version of this problem is, given a fixed size memory, maximize the profit of the
objects successfully stored. To the best of our knowledge there is no prior art for
the throughput version of the dynamic storage allocation problem. We obtain a 1/7
factor approximation for this problem. We also solve the problem in the general
case where each object can be stored during one of several alternative time intervals.
For this generalization we get a factor of 1/11 (or (1− ε)/11 for continuous input).
Briefly, our approach is to apply our algorithm and solve the non-contiguous version
of the problem. We then use the non-contiguous schedule as input to one of the
aforementioned memory minimization algorithms. In the final step we extract from
the resultant solution—which is contiguous but may exceed the memory limit—a
feasible solution that is contiguous and at the same time respects the memory limit.
The entire process incurs a constant-factor loss.

Another example of contiguous allocation is strip packing [Steinberg 1997]
where the goal is to pack rectangles into a strip. Our constant-factor bounds apply
to this problem as well.

Independent of our work, Leonardi et al. [2000] developed an approximation
algorithm for the throughput version of the dynamic storage allocation problem.
They achieved performance guarantees of 1/12 for discrete input and 1/18 for
continuous input, both via LP rounding.

The Line and Ring Topology Networks.Consider the special case of the band-
width allocation problem where each session can be scheduled in precisely one
time interval and the start and end times of every such interval are restricted to be
integral time instants. This subproblem can be cast in different terms. Consider a set
of processors connected along a line where each processor is identified by its index
along this line. By letting the processor identities play the role of the integral time
instants in the original problem, we reduce the problem of bandwidth allocation for
permanent connections between processors on a line to the bandwidth allocation
problem with time intervals defined previously. Clearly, all of our results regarding
the time interpretation hold for the processors interpretation as well. They hold for
both throughput maximization and loss minimization. An interesting application
of our general framework concerns the case where processors are connected along
a ring rather than a line. The ring topology is considered a viable network topology
in the optical network setting and is well studied in the context of bandwidth allo-
cation. In the ring topology a session between two processors may choose between
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two routes: going clockwise and going counterclockwise. In our framework, this is
equivalent to two instances per activity. Most of the prior work in optical networks
considered the identical width case in which each session requires one wavelength.
Our solution addresses the general case when more than one wavelength per session
is available. We show how to adapt any approximation result for the throughput
maximization problem on the line into one for the same problem on the ring. Given
that the approximation factor for the line is 1/ρ, the resulting factor for the ring is
1/(ρ + 1+ ε), whereε may be chosen arbitrarily small. (The running time of the
algorithm depends polynomially on 1/ε.)

2. Preliminaries

In our general framework the input consists of a set ofactivities, each requiring the
utilization of a given, limited,resource. The amount of resource available is fixed
over time; we normalize it to unit size for convenience. (We remark that some of our
problems can be generalized to the case where the amount of available resource may
change over time.) The activities are specified as a collection of setsA1, . . . ,Am.
Each set represents a single activity: it consists of all possibleinstancesof that
activity. An instanceI ∈ Ai is defined by the following parameters.

(1) A half-open time interval [s(I ), e(I )) during which the activity will be executed.
We calls(I ) ande(I ) thestart-timeandend-timeof the instance.

(2) The amount of resource required for the activity. We refer to this amount as
thewidth of the instance and denote itw(I ). (Our terminology is inspired by
bandwidth allocation problems.) Naturally, 0< w(I ) ≤ 1.

(3) Theprofit p(I ) ≥ 0 gained by scheduling this instance of the activity.

Different instances of the same activity may have different parameters of duration,
width, or profit. Ascheduleis a collection of instances. It isfeasibleif: (1) it contains
at most one instance of every activity, and (2) for all time instantst , the total width
of the instances in the schedule whose time interval containst does not exceed 1.
In the throughput maximizationproblem we are asked to find a feasible schedule
that maximizes the total profit accrued by instances in the schedule. In theloss
minimizationproblem we seek a feasible schedule of minimum penalty, where the
penalty of a schedule is defined as the total profit of activitiesnot in the schedule.
(We restrict each activity to consist of a single instance and define the profit of an
activity to be the profit of its instance.) For a given profit functionp, we use the
term p-profit (or p-penaltyin the loss minimization context) to refer to the profit
with respect top of a single instance or a set of instances.

2.1. THE LOCAL RATIO TECHNIQUE. Our algorithms are based on the local
ratio technique, first developed by Bafna et al. [1999], later extended by Bafna,
Berman, and Fujito [1999], and recently extended again by Bar-Yehuda [2000].
These papers all treated minimization covering problems.

Let p ∈ IRn be a profit (or penalty) vector, and letF be a set of feasibility
constraints on vectorsx ∈ IRn. A vectorx ∈ IRn is a feasible solutionto a given
problem instance (F, p) if it satisfies all of the constraints inF . Itsvalueis the inner
productp · x. A feasible solution isoptimal for a maximization (or minimization)
problem if its value is maximal (or minimal) among all feasible solutions. A feasible
solutionx is anr -approximatesolution, or simply anr -approximation, if p · x ≥
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(or ≤) r · p · x∗, wherex∗ is an optimal solution. An algorithm is said to have a
performance guaranteeof r if it always computesr -approximate solutions.

In this paper we further extend the local ratio technique to cover problems of
the form described above; that is, given a profit (or penalty) vectorp ∈ IRn, find a
solution vectorx that maximizes (or minimizes) the inner productp · x, subject to
a given setF of feasibility constraints onx.

THEOREM2.1 (LOCAL RATIO ). Let F be a set of constraints and letp, p1,
and p2 be profit (or penalty) vectors such thatp = p1 + p2. Then, ifx is an
r-approximate solution with respect to(F, p1) and with respect to(F, p2), then it
is an r-approximate solution with respect to(F, p).

PROOF. Let x∗, x∗1, x∗2 be optimal solutions for (F, p), (F, p1), and (F, p2)
respectively. Thenp · x = p1 · x + p2 · x ≥ (or≤) r · p1 · x∗1 + r · p2 · x∗2 ≥
(or≤) r · (p1 · x∗ + p2 · x∗) = r · p · x∗

The Local Ratio Theorem applies to all problems in the above formulation.
Note that F can include arbitrary feasibility constraints and not just linear, or
linear integer, constraints. Nevertheless, all successful applications of the local
ratio technique to date involve problems in which the constraints are either linear
or linear integer, and this is also the case for the problems treated herein.

3. Throughput Maximization

In the throughput maximization problem we wish to find a feasible schedule that
maximizes the total profit accrued. More formally, the goal is to find an optimal so-
lution to the following integer programming problem on the set of boolean variables
{xI | I ∈ Ai , 1≤ i ≤ n}.

Maximize
∑

I

p(I ) · xI

subject to:
for each time instantt :

∑
I | s(I )≤t<e(I )

w(I ) · xI ≤ 1;

for each activityAi :
∑
I∈Ai

xI ≤ 1;

for each instanceI : xI ∈ {0, 1}.
3.1. THE UNIFIED ALGORITHM. We present a generic scheme based on the

local ratio technique to approximate the throughput maximization problem. We ac-
tually generalize the problem a bit and allow negative profits. Our scheme proceeds
as follows.

(1) Delete all instances with non-positive profit.
(2) If no instances remain, return the empty schedule. Otherwise, proceed to the

next step.
(3) Select an instancẽI and decomposep by p = p1+ p2. The exact choice of̃I

and the decomposition ofpdepend on the problem at hand and will be discussed
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shortly. (Comment: in the decompositionp = p1+ p2, the componentp2 may
be non-positive.)

(4) Solve the problem recursively usingp2 as the profit function. LetS ′ be the
schedule returned.

(5) If S ′∪{ Ĩ } is a feasible schedule, returnS = S ′∪{ Ĩ }. Otherwise, returnS = S ′.
We now analyze the quality of the solution returned by this algorithm. We say

that a feasible schedule isI -maximal if either it contains instanceI , or it does
not containI but addingI to it will render it infeasible. We are going to choose
Ĩ and decomposep in such a way that: (1)p2( Ĩ ) = 0, and (2) for a certainr ,
which depends on the problem being solved,everyĨ -maximal schedule will be an
r -approximation with respect top1.

PROPOSITION 3.1. Let r be a constant. Suppose that the method for choosing
Ĩ and decomposing the profit function is such that: (1) p2( Ĩ ) = 0, and (2) for all
profit functions p, everỹI -maximal schedule is an r-approximation with respect to
p1. Then, the scheduleS returned by the algorithm is an r-approximation.

PROOF. Clearly, the first step in which instances of non-positive profit are
deleted does not change the optimum value. Thus, it is sufficient to show that
S is anr -approximation with respect to the remaining instances. The proof is by
induction on the number of recursive calls. At the basis of the recursion, the schedule
returned is optimal (and hence anr -approximation), since no instances remain. For
the inductive step, assume thatS ′ is anr -approximation with respect top2. Then,
sincep2( Ĩ ) = 0 andS ′ ⊆ S ⊆ S ′ ∪ { Ĩ }, it follows thatS is anr -approximation
with respect top2. SinceS is Ĩ -maximal, it is also anr -approximation with respect
to p1. Thus, by the Local Ratio Theorem, it is anr -approximation with respect
to p.

It remains to specify how to determinẽI and the decomposition of the profit
function. The choice of̃I is done by selecting an instance with minimum end-time
among all activity instances (of all activities), breaking ties arbitrarily. To define
the decompositionp = p1+ p2, it suffices to definep1. We use a parameterα > 0,
whose value we fix for each problem separately, as follows. For a given instance
I , letA(I ) be the activity to which instanceI belongs and letI(I ) be the set of
instances intersectingI but belonging to activities other thanA(I ). Then,

p1(I ) = p( Ĩ ) ·
 1 I ∈ A( Ĩ ),
α · w(I ) I ∈ I( Ĩ ),
0 otherwise.

Note thatp2( Ĩ ) = 0; hence,̃I will be deleted in the subsequent recursive call. Thus
the algorithm is guaranteed to halt.

The choice ofα influences the performance guaranteer we obtain. By Proposi-
tion 3.1 we only need to show that everyĨ -maximal schedule is anr -approximation
with respect top1. To do so, we derive an upper boundbopt on the optimump1-profit
and a lower boundbmax on thep1-profit of everyĨ -maximal schedule, both normal-
ized byp( Ĩ ), which is to say that the actual bounds arep( Ĩ ) · bmax andp( Ĩ ) · bopt.
The ratior = bmax/bopt is then a lower bound on the performance of the algorithm.

We now derive formulas forbopt andbmax. These formulae are valid for the generic
problem and thus for all special cases as well. However, for specific problems
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within the framework we are sometimes able to show better choices ofbopt andbmax

(i.e., tighter bounds that result in better performance guarantees).
Consider an optimal schedule. By the definition ofp1, only instances inA( Ĩ )∪

I( Ĩ ) contribute to itsp1-profit. Since all the instances belonging toI( Ĩ ) intersect
at some point infinitesimally close toe( Ĩ ), the total width of such instances in the
optimal schedule can be at most 1, and their contribution to thep1-profit is therefore
at mostα · p( Ĩ ). The contribution of the instances inA( Ĩ ) is at mostp( Ĩ ) since a
feasible schedule may contain at most one instance of each activity. Thus, we have
a boundbopt = 1+ α.

Turning to Ĩ -maximal schedules, observe that every such schedule either con-
tains an instance ofA( Ĩ ) or else contains a setX 6= ∅ of instances intersecting̃I
that prevent̃I from being added to the schedule. In the former case thep1-profit
of the schedule is at leastp( Ĩ ). In the latter case, we can bound the profit from
below as follows. Letwmax andwmin be upper and lower bounds, respectively, on
the width of instances in the input. Then the total width of instances inX is at
least 1− w( Ĩ ) ≥ 1− wmax, for otherwiseĨ can be added without violating the
feasibility of the schedule, and it is also not less thanwmin sinceX 6= ∅. Since
Ĩ was chosen as an instance with minimum end-time, every instanceI that in-
tersects it must satisfys(I ) < e( Ĩ ) ≤ e(I ). Hence,X ⊆ I( Ĩ ), and thep1-profit
of the schedule is at leastα · p( Ĩ ) · max{wmin, 1− wmax}. Thus, we can use the
boundbmax = min{1, α ·max{wmin, 1− wmax}}. In the general case, this bound is
meaningless, sincewmin and 1−wmax may both be arbitrarily close to 0. How-
ever, the various problems we treat impose restrictions on the allowable widths of
instances, and we can obtain meaningful bounds.

LEMMA 3.2. The approximation factor of the algorithm is at least bmax/bopt for
all provable bounds bmax and bopt, and bmax and bopt can always be chosen such that
this ratio is at least

min{1, α ·max{wmin, 1− wmax}}
1+ α . (1)

3.2. APPLICATIONS. The throughput maximization problem generalizes several
known problems. In this section we present a selection of these problems and show
how to approximate them using our scheme.

In some of the applications described below, an activityA is not represented
by explicitly listing all the instances belonging to it, but rather by a collection of
time windows. A time windowT is a time interval [s(T ), e(T )) or [s(T ), e(T )]
accompanied by three parameters: lengthl (T ), widthw(T ), and profitp(T ). These
are interpreted as follows. Everyt ∈ T defines an instance with time interval
[t, t + l (T )), and all of these instances share the same widthw(T ) and profitp(T ).
We stress that the termtime windowrefers to the interval of time in which the
activity maybeginexecution; it is not the time interval spanning the release time
and deadline of the activity (these two intervals differ byl (T )). Note that a time
window must be closed on the left but may be closed or open on the right.

This sort of continuous input leads, of course, to problems in the implemen-
tation of the algorithm. We discuss this, as well as other implementation issues,
in Section 3.3. For the time being, let us just mention that the algorithm can be
implemented so that it always returns anr (1− ε)-approximation, wherer is the
performance guarantee that could be achieved had the instances been specified
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explicitly (i.e., discrete input), andε > 0 is an arbitrarily small constant. The
running time of this implementation is polynomial in 1/ε and the number of time
windows in the input.

3.2.1. Single Machine Scheduling.Here we assume that the resource is a single
machine and each activity instance requires the machine. This is modeled by the
conditionw(I ) = 1 for all instancesI . The following variants of the problem are
considered.

Maximum Weight Independent Set in Interval Graphs.Consider the case in
which each activityAi is a singleton{Ii }. This is exactly the problem of finding
a maximum-weight independent set in an interval graph, where each instanceIi
corresponds to an interval. This is a well known problem, which can be solved
optimally and efficiently by reducing it to the problem of finding the longest path in
a DAG [Golumbic 1980]. We claim that the unified algorithm withα = 1 yields an
optimal solution. To see this, observe that sinceA( Ĩ ) = { Ĩ }, only one instance from
A( Ĩ )∪I( Ĩ ) may be scheduled in any feasible solution, hencebopt = 1. In addition,
wmin = wmax= 1, sobmax= 1. Thus the performance guarantee isbmax/bopt = 1.

Interval Scheduling. In this problem, each activity consists of a set of instances
that are explicitly specified (see, e.g., Erlebach and Jansen [1998, 2000]; Spieksma
[1999]). This time we use the general boundbopt = 1 + α and setα = 1 so
as to maximize Expression 1, given thatwmin = wmax = 1. By Lemma 3.2 the
performance guarantee is 1/2.

Maximum Weight Throughput.Here activities are specified as time windows.
This is exactly the problem of maximizing the weighted throughput of jobs with
release times and deadlines on a single machine considered in Bar-Noy et al. [2001].
Since the only difference between this problem and the previous one is that that the
instances are not listed explicitly, we get a performance guarantee of (1− ε)/2.

3.2.2. Parallel Machine Scheduling.Here we assume that the resource is a set
of k parallel machines. There are two sub-cases to this problem:identicalmachines,
where each activity instance may be assigned to any of thek machines, andunrelated
machines, where each activity instance specifies a particular machine on which it
may be scheduled. (In case an instance may be scheduled on several machines we
simply replicate the instance once for each machine.)

Note that our general framework does not capture this problem completely, since
it does not model the condition that every activity must be carried out in its entirety
on a single machine. We now argue that the solution returned by our algorithm
will never force us to split an activity among several machines. This is clearly the
case for unrelated machines since in this sub-case each activity instance specifies
a single machine. In the case of identical machines, given a schedule returned by
our algorithm, we consider the activity instances in the schedule in non-decreasing
order of their start-times, and assign each activity to an arbitrary available machine.
The feasibility of the schedule guarantees that at least one machine will always be
available.

Identical Machines. We model this case by setting the width of every instance
equal to 1/k. We useα = 1 andbopt = 1+α = 2. In addition, we can takebmax= 1
since anyĨ -maximal schedule that contains no instance ofA( Ĩ ) must containk
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instances fromI. Thus we get a performance guarantee of 1/2 (or (1− ε)/2 if the
activities are specified as time windows).

A special case of interest is maximum weightk-colorable subgraph in interval
graphs. This is just the case of identical machines with each activity consisting of a
single instance. It can be solved optimally in polynomial time via minimum cost flow
[Arkin and Silverberg 1987]. Our approach provides a 1/2-approximation factor
through a much simpler and faster algorithm. As a matter of fact, the approximation
factor for this case is 1

2−1/k , since each activity consists of a single instance and
thus we can takebopt = 1+ (k− 1)/k.

Unrelated Machines. We model this problem by the conditionw(I ) = 1 for all
instancesI , and modify the definition ofI( Ĩ ) as follows. We defineI( Ĩ ) as the
set of instances intersectingĨ that belong to other activities andcan be scheduled
only on the same machine asĨ . In addition, we use the following criterion in
the schedule construction phase. An instance may be added to the schedule if the
activity to which it belongs is not currently represented in the schedule and the
instance does not intersect any other instance already in the schedule that belongs
on the same machine. It is easy to see that the analysis for the case of single machine
scheduling carries over to this problem and thus we have a performance guarantee
of 1/2 (or (1− ε)/2 for time windows).

3.2.3. Bandwidth Allocation. We consider a scenario in which the bandwidth
of a communication channel must be allocated to sessions. Here the resource is
the channel’s bandwidth and the activities are sessions to be routed through the
channel. The sessions may be specified in either of two ways: (1) discrete input
that lists for each call a set of intervals in which it can be scheduled, together with
a width requirement and a profit for each such interval, or (2) continuous input that
uses time windows.

Suppose all instances arenarrow, i.e., have width at most 1/2. Then, we use
α = 2 so as to maximize Expression 1, given thatwmax ≤ 1/2 andwmin = 0.
Hence, Lemma 3.2 provides a performance guarantee of 1/3 (or (1− ε)/3 in the
continuous case).

Next, suppose all instances arewide, i.e., have weight greater than 1/2. Then
the problem reduces to interval scheduling (or, in the case of continuous input, to
maximum weight throughput on a single machine) since no pair of intersecting
instances may be scheduled together. Thus, we have a performance guarantee of
1/2 (or (1− ε)/2).

Finally, to solve the problem in the general case we solve it separately for the
narrow instances and for the wide instances, and return the solution of greater
profit. Since either the optimum for the narrow instances is at least three fifths of
the optimum (for the original problem), or the optimum for the wide jobs is at
least two fifths of the optimum, the schedule returned is a 1/5-approximation (or
(1− ε)/5).

We remark that in the special case in which each activity has only one instance we
can obtain a performance guarantee of 1 for the wide instances (since the problem
reduces to finding a maximum-weight independent set in an interval graph), and 1/2
for the narrow instances (and therefore 1/3 overall) by choosingα = 1/(1−w( Ĩ )).
This is so because in this special case thep1-profit of any Ĩ -maximal solution
is at leastp( Ĩ ) · min{1, α(1 − w( Ĩ ))}, whereas the optimalp1-profit is at most
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p( Ĩ ) · max{α, 1+ α(1− w( Ĩ ))}. Note thatα now depends oñI , which means a
different value is used at different stages in the algorithm. This has no bearing on
the correctness of our analysis.

As with machine scheduling, we can extend this problem tok unrelated channels,
possibly with different widths, such that each activity instance may only be assigned
to one particular channel. The method of solution and the approximation factors
carry over from the single channel case.

3.3. IMPLEMENTATION ISSUES. Observe that the algorithm may be imple-
mented iteratively rather than recursively. At each iteration we delete all instances
with non-positive profit; findĨ , A( Ĩ ), and I( Ĩ ); compute p1(I ) and perform
p(I ) ← p(I ) − p1(I ) for all I ∈ A( Ĩ ) ∪ I( Ĩ ); and pushĨ onto a stack. We
iterate until no instances remain. We then construct the schedule by popping the
activity instances off the stack and adding each to the current schedule if doing so
does not violate the feasibility of the schedule.

A straightforward implementation of this algorithm (when instances are given
explicitly and not as time windows) runs in2(n2) time, wheren is the number
of instances. The bottleneck is the need to update the profits of the instances in
A( Ĩ )∪I( Ĩ ): in the worst case thei th iteration updates the profits ofn− i instances.
The determination of̃I andI( Ĩ ) also requires2(n2) time, as does the construction
of the schedule.

A closer look at the algorithm reveals that the sole purpose of the stack is to
reverse the order in which instances are considered in the schedule construction
phase. What the algorithm really does is an initial phase, in which it scans the
instances in non-decreasing end-time order, deleting some of them as it goes along,
and a second phase, in which it scans the surviving instances in reverse order and
constructs the schedule. Rather than using a stack, we can accomplish this by sorting
the instances in a list and traversing it in both directions. This idea is only one step
shy of the more powerful sweep-line approach, which can reduce the worst case
time complexity to O(n logn), as we now describe.

The time interval of each instance has two endpoints. We denote the instance to
which endpointt belongs byI (t). We sort the 2n endpoints of the instances in a list
〈t1, t2, . . . , t2n〉 such thati < j if ti < t j or if ti = t j andti is the end-time ofI (ti )
and t j is the start-time ofI (t j ). (Otherwise, ties are broken arbitrarily.) We then
consider the endpoints in order, reducing profits as we go along and deleting an
instance (i.e., deleting its two endpoints from the list) whenever its profit is found
to be non-positive. Note that profits never increase, so there is no need to delete
the instance the moment its profit drops to zero or less. Instead, we wait with the
deletion until the end-time of the instance is encountered.

The pseudo-code below implements the sweep-line idea (though it does not
achieve the promised O(n logn) time complexity). For each instanceI it uses a
variableπI in which it holds the current profit ofI . The value ofπI is maintained
correctly only as long asI is alive, that is, as long asI would still be part of the
input in the recursive algorithm. To avoid confusion we stress thatp(I ) denotes
the original profit of instanceI given in the input, as opposed toπI which is the
“current” profit.

1. DoπI ← p(I ) for all I , as well as other initializations.
2. Sort the endpoints as described above.
3. Fori ← 1, 2, . . . ,2n:
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4. I ← I (ti ).
5. If ti is the start-time ofI : do nothing.
6. Else (ti is the end-time ofI ):
7. P← πI .
8. If P ≤ 0: deleteI .
9. Else:

10. For allJ ∈ A(I ): πJ ← πJ − P.
11. For allJ ∈ I(I ): πJ ← πJ − α · w(J) · P.

The updating of profits still takes2(n2) time in the worst case. We can reduce
this to linear time by representing the profit function implicitly instead of using the
variablesπI . (The initial sorting still requires2(n logn) time.) With each activity
A we associate a variable1A and with each instanceI we associate a variable
1I . In addition, we maintain a variable1P. All of these variables are initially
set to 0. We represent the profits as follows. The current profit of a live instance
I ∈ A is p(I ) − 1A if neither endpoint ofI has been encountered, and it is
p(I ) − 1A − α · w(I )(1P − 1A) + 1I if its start-time has already been seen
but its end-time has not. We modify the algorithm as follows. We replace “do
nothing” in Line 5 with1I ← α · w(I )(1P − 1A(I )) and we replace: Line 7 by
P← p(I )−1A(I )−α ·w(I )(1P−1A(I ))+1I ; Line 10 by1A(I ) ← 1A(I )+ P;
and Line 11 by1P ← 1P+ P. This scheme of representing profits works whenα
is fixed. It can be easily modified to handle the case whereα may change (as in our
1/2-approximation algorithm forbandwidth allocationin the special case where
each activity consists of a single narrow instance).

When the traversal of the list is complete, we traverse the surviving endpoints
in reverse order and construct the scheduleS. We maintain a variableW and the
following invariant: when endpointt is reached,W holds the total width of instances
containingt which have been added toS.

12. S ← ∅.
13. W← 0.
14. Traverse the list backwards. For each endpointt :
15. I ← I (t).
16. If t is the end-time ofI :
17. If W + w(I ) ≤ 1:
18. S ← S ∪ {I }.
19. W← W + w(I ).
20. Delete the endpoints of the instances inA(I )− {I }.
21. Else: delete the endpoints ofI .
22. Else (t is the start-time ofI ): W← W − w(I ).

3.3.1. Time Windows. In this section we refer to the straightforward stack-based
iterative implementation of the algorithm described above. We usep(·) to denote
the original profits andπ (·) to denote the profits as they change throughout the
execution of the algorithm.

When the input is in the form of time windows, we do not modify the profit
of individual instances, but rather operate on whole windows at a time. At each
iteration we delete all windows whose instances have non-positive profit, and find
an instancẽI with earliest end-time among the remaining instances by considering
s(T )+ l (T ) for all remaining windowsT . We pushĨ on the stack and update the
profits of the instances inA( Ĩ ) ∪ I( Ĩ ). Note that to update the profits of instances
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in I( Ĩ ) and still maintain the property that the profits of all instances in the same
time window are the same, we might need to first split some windows, as follows.
For each windowT containing instances inI( Ĩ ), if e(T ) < e( Ĩ ), or e(T ) = e( Ĩ )
andT is open, we simply reduceπ (T ). Otherwise, we splitT into two windows
T ′ = [s(T ), e( Ĩ )) and the remainderT ′′ = T − T ′, and reduceπ (T ′). We refer
to this implementation as theprecisealgorithm. It is easy to see that the points at
which the time windows may be split are all of the form: start-time of some window
plus a finite sum of lengths of instances (not necessarily of the same activity). Since
no such point can be greater than the maximum end-time of an instance (taken over
all instances of all activities), there are only finitely many such points. Thus, the
precise algorithm always halts in finite, if super-polynomial, time.

In order to attain polynomial running time we trade accuracy for speed. For any
fixed 0< ε < 1 we modify the algorithm as follows. WheneverĨ is chosen such
that 0< π ( Ĩ ) < εp( Ĩ ) we simply delete the window containing̃I and do not alter
any profits. We call such an iterationempty. We refer to this algorithm as theprofit
truncatingalgorithm.

Let us analyze the running time of the profit truncating algorithm. We denote
by n the number of windows in the input and introduce the following terminology.
When a windowT is split intoT ′ andT ′′ we say that one new window iscreated.
We consider the original windows (in the input) to have been created initially. Also,
for a given iteration, we say that̃I is selectedin that iteration. Recall that time
windows are split in such a way that the profits of all instances in the same window
are the same. Hence, the algorithm deletes at least one window in each iteration,
so the number of iterations is bounded by the number of windows ever created.
Because of the manner in which new windows are created, it is obvious that any
time instant may belong to at mostn different windows, and thus the number of
new windows created in the course of any single iteration is at mostn−1. To bound
the number of windows ever created we therefore bound the number of non-empty
iterations, since new windows can only be created in these iterations. Consider an
original time windowT given in the input. How many times can the algorithm
select an instance belonging (originally) toT in non-empty iterations? Each time
it does so,π ( Ĩ ) ≥ εp( Ĩ ) = εp(T ), since the iteration is non-empty. During the
iteration the profits of all instances inA( Ĩ ) decrease byπ ( Ĩ ). In particular, the
profit of every surviving instance originally belonging toT drops by no less than
εp(T ). Thus, at most 1/ε such iterations may occur. It follows that the total number
of non-empty iterations is at mostn/ε. Hence, the number of windows ever created
is at mostn+ n(n− 1)/ε < n2/ε and this bounds the total number of iterations.
The algorithm can be implemented such that the amortized time complexity of an
iteration is O(1) if it is empty and O(n) if it is not, resulting in an overall time
complexity of O(n2/ε) for the first phase. Since only non-empty iterations push
instances on the stack, and precisely one instance is pushed in each such iteration,
the size of the stack cannot exceedn/ε. Thus a straightforward implementation of
the second phase also requires O(n2/ε) time, since the size of the schedule is never
greater thann. Thus, the time complexity of the entire algorithm is O(n2/ε).

We now analyze how the profit truncation affects the performance guarantee. For
a given input, consider the time windows that the algorithm deletes in the course of
its execution. Every deleted window is derived, by zero or more splitting operations,
from a window originally present in the input. Without loss of generality let us
assume that the algorithm never splits any windows (for we can always partition
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each window into its constituent deleted windows before commencing execution).
We say that windowT is bad if the algorithm deletes it in an empty iteration. Let
εT be the value ofπ (T ) when bad windowT is selected. Consider the following
two scenarios. In the first scenario we run the profit truncating algorithm on the
original input, and in the second scenario we change the profit of each bad window
T to p(T ) − εT and then run the precise algorithm. It is easy to see that the
precise algorithm in the second scenario can be made to run identically as the
profit truncating algorithm in the first, except that at all times the profit of every
undeleted bad windowT in the first scenario will be higher byεT than its profit
in the second scenario. It follows that the scheduleS obtained in the first scenario
can also be obtained in the second. Letpopt and p′opt denote the optimum profit
in the first and second scenarios, respectively, and for every feasible scheduleX ,
let p(X ) and p′(X ) be the profits ofX in both scenarios, respectively. Then, by
construction,p(X ) ≥ p′(X ) ≥ (1−ε)p(X ) for all feasible schedulesX . It follows
that p′opt ≥ (1− ε)popt. Let r be a performance guarantee for the precise algorithm.
Then p(S) ≥ p′(S) ≥ r · p′opt ≥ r (1− ε)popt, and thus we have a performance
guarantee ofr (1− ε) for the profit truncating algorithm.

4. Loss Minimization

In the loss minimization problem the objective is to minimize the profit lost to
unscheduled activities. In this context, we find it more appropriate to refer topenalty
incurred rather than to profit lost. Hence, we associate a penalty with each activity,
and our objective is to find a feasible schedule of minimum penalty, where the
penalty of a schedule is the sum of penalties of the activitiesnot in the schedule.
Our framework cannot model this type of penalty function in general. It can only
model it in the special case where each activity contains a single instance. We
therefore restrict the discussion to this case.

We actually solve a generalization of the problem in which the amount of resource
may vary with time. Thus, the input consists of the activity specification as well as a
positive functionWidth(t) specifying the width (i.e., amount of resource) available
at every time instantt . Accordingly, we allow arbitrary positive instance widths
(rather than assuming that all widths are bounded by 1). A schedule is feasible if
for all time instantst , the total width of instances in the schedule containingt is at
mostWidth(t).

Strictly speaking, for the problem to fit in the framework of the Local Ratio
Theorem, we should define feasible solutions to be complements of feasible sched-
ules. We find it easier, though, to keep thinking of schedules as solutions and we
retain this view in the following exposition.

We present a variant of the unified algorithm achieving a performance guarantee
of 4. Let (H, p) denote the input, whereH is the description of the activities
excluding the penalties, andp is the penalty function. If all the instances inH
constitute a feasible schedule, we return this schedule. Otherwise, we decompose
p by p = p1+ p2 (as described in the next paragraph) such thatp2(I ) ≥ 0 for all
instancesI , with equality for at least one instance. We solve recursively (H′, p2),
whereH′ is obtained fromH by deleting all instances whosep2-penalty is 0, and
obtain a scheduleS ′. We then consider the instances inH −H′ in arbitrary order
and add each to the schedule iff doing so retains the feasibility of the schedule. We
return the scheduleS thus constructed.
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Let us define the decomposition ofp by showing how to computep1. For
a given time instantt , let I(t) be the set of intervals containingt . Define
1(t) = ∑

I∈I(t)w(I )−Width(t). To computep1, find t∗ maximizing1(·) and let
1∗ = 1(t∗). Assuming1∗ > 0 (otherwise the schedule containing all instances is
feasible), let

p1(I ) = ρ ·
{

min{1∗, w(I )} I ∈ I(t∗),
0 otherwise,

whereρ (which depends ont∗) is the unique scaler resulting in non-negative
p2-penalties for all instances and zerop2-penalty for at least one of them. A straight-
forward implementation of this algorithm runs in time polynomial in the number
of activities and the number of time instants at whichWidth(t) changes value.

To analyze the algorithm, assume (by induction) thatS ′ is a 4-approximation for
(H′, p2). It follows thatS is a 4-approximation for (H, p2). Observe (by induction
on the recursion) thatS is maximal in the sense that adding any instance to it
violates its feasibility. Thus, by the Local Ratio Theorem, it suffices to show that
every maximal feasible schedule is a 4-approximation for (H, p1).

OBSERVATION 4.1. Both of the following evaluate to at mostρ1∗: (1) the
p1-penalty of any single instance, and(2) the total p1-penalty of any collection
of instances whose total width is at most1∗. Also, any collection of instances from
I(t∗) whose total width is at least1∗ has a total p1-penalty of at leastρ1∗.

Consider an optimal schedule. Itsp1-penalty is the sum of thep1-penalties of the
instances inI(t∗) that are not in the schedule. Since all of these instance intersect
at t∗ their combined width must be at least1∗. Thus, the optimalp1-penalty is
at leastρ1∗. Now consider any maximal feasible solutionM. We claim that it
is a 4-approximation because itsp1-penalty cannot exceed 4ρ1∗. To demonstrate
this, consider any time instantt . Let M̄(t) = I(t) −M be the set of instances
containingt that are not in the schedule. We say thatt is unstableif there is an
interval I ∈ M̄(t) such that addingI toM would violate the width constraint at
t . We say thatt is unstablebecause of I. Note that a single time instant may be
unstable because of several different instances.

LEMMA 4.2. If t is an unstable time instant, then
∑

I∈M̄(t) p1(I ) < 2ρ1∗.

PROOF. Let J be an instance of maximum width inM̄(t). Then,
since t is unstable, it is surely unstable because ofJ. This implies that∑

I∈M∩I(t)w(I ) >Width(t) − w(J). Thus,
∑

I∈M̄(t)w(I ) = ∑
I∈I(t)w(I ) −∑

I∈M∩I(t)w(I ) < w(J) + 1(t) ≤ w(J) + 1∗. Hence,
∑

I∈M̄(t) p1(I ) ≤ ρ1∗ +
ρ1∗ = 2ρ1∗.

Thus, there are two cases to consider. Ift∗ is an unstable point, then thep1-
penalty of the schedule is

∑
I∈M̄(t∗) p1(I ) < 2ρ1∗ and we are done. Otherwise,

let tL < t∗ and tR > t∗ be the two unstable time instants closest tot∗ on both
sides (it may be that only one of them exists). The maximality of the schedule
implies that every instance in̄M(t∗) is the cause of instability of at least one time
instant. Thus each such instance must containtL or tR (or both). It follows that
M̄(t∗) ⊆ M̄(tL) ∪ M̄(tR). Hence, by Lemma 4.2, the totalp1-penalty of these
instances is less than 4ρ1∗.
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4.1. APPLICATION: GENERAL CACHING. In thegeneral cachingproblem, a re-
placement schedule is sought for a cache that must accommodate pages of vary-
ing sizes. The input consists of a fixed cache sizeS > 0, a collection of pages
{1, 2, . . . ,m}, and a sequence ofn requests for pages. Each pagej has asize
0 < s( j ) ≤ S and acost c( j ) ≥ 0 associated with loading it into the cache. We
assume for convenience that time is discrete and that thei th request is made at
time i . (These assumptions cause no loss of generality as will become evident from
our solution.) We denote byr (i ) the page being requested at timei . A replacement
scheduleis a specification of the contents of the cache at all times. It must satisfy
the following condition. For all 1≤ i ≤ n, pager (i ) is present in the cache at time
i and the sum of sizes of the pages in the cache at that time is not greater than the
cache sizeS. The initial contents of the cache (at time 0) may be chosen arbitrarily.
Alternatively, we may insist that the cache be empty initially. The cost of a given
replacement schedule is

∑
c(r (i )) where the sum is taken over alli such thatr (i )

is absent from the cache at timei − 1. The objective is to find a minimum cost
replacement schedule.

Observe that if we have a replacement schedule that evicts a certain page at some
time between two consecutive requests for it, we may as well evict it immediately
after the first of these requests and bring it back only for the second request. Thus, we
may restrict our attention to schedules in which for every two consecutive requests
for a page, either the page remains present in the cache at all times between the
first request and the second, or it is absent from the cache at all times in between.
This leads naturally to a description of the problem in terms of time intervals,
and hence to a straightforward reduction of the problem to our loss minimization
problem. This reduction was described in Albers, Arora, and Khanna [1999]; we
recount it here for the sake of completeness. Given an instance of the general
caching problem we construct an instance of our loss minimization problem as
follows. We define the resource width byWidth(i ) = S− s(r (i )) for 1 ≤ i ≤ n,
andWidth(0) = S (or Width(0) = 0 if we want the cache to be empty initially).
We define the activity instances as follows. Consider the request made at timei .
Let j be the time at which the previous request forr (i ) is made, orj = −1 if no
such request is made. Ifj + 1 ≤ i − 1, we define an activity instance with time
interval [j +1, i −1], penaltyc(r (i )), and widths(r (i )). This reduction implies a 4-
approximation algorithm for the general caching problem via our 4-approximation
algorithm for the loss minimization problem.

5. Contiguous Allocation of a Non-Fungible Resource

In problems where a given resource is to be shared over time by consumers, the re-
source may be eitherfungibleor non-fungible. Fungible resources are exemplified
by the bandwidth allocation application: if the “bandwidth” in question is, say, the
transfer rate provided for a connection in a computer network, the “identity” of the
bandwidth allocated to a session is irrelevant (if it has any meaning at all). This type
of bandwidth is therefore a fungible resource. Non-fungible resources are exem-
plified by real memory allocation in a multi-threaded programming environment,
where chunks of memory are allocated and freed by the various threads. The total
amount of memory allocated at any moment may not exceed the amount available,
and in addition, the memory allocated to a thread must remain in the same position
until freed. On top of the issue of fungibility, there is also the matter of contiguity.
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For example, a request to allocate memory can typically only be satisfied by a block
of memory occupying contiguous addresses.

The general scheduling problem we have been dealing with so far was con-
cerned with fungible resources. In this section we deal with contiguous allocation
of a non-fungible resource. Specifically, we consider the problem ofdynamic stor-
age allocation(DSA). This problem models situations in which an allocation has
to be contiguous (e.g., contiguous addresses in computer memory or a contigu-
ous band of wavelengths in wireless communication) and cannot be changed until
freed. The terminology we use is that of storage allocation, i.e., the resource is
a contiguous storage area and activities are objects that require storage for dif-
ferent periods of time. We use the termwidth to refer to the size of an object,
and denote byW∗ the maximum, taken over all timest , of the sum of the width
demands at timet . The traditional goal in DSA has been to store all objects in
minimum size storage. This problem is NP-Hard [Garey and Johnson 1979], but
admits constant-factor polynomial-time approximation algorithms. In particular,
Gergov [1999, 1996] and Kierstead [1991] describe “blow-up” algorithms that use
a block of storage of size at mostγ ·W∗, whereγ = 3, 5, 6, respectively. We use
these algorithms to achieve approximation ratios of1

7, 1
11, and 1

18 (respectively)
for the throughput maximization version of DSA (with profits associated with suc-
cessful allocations of storage). In fact, we solve a more general problem in which
a single request for storage may offer several alternative time intervals, only one
of which is to be selected. The duration, storage demand, and profit may all vary
among different intervals pertaining to the same request. This is just the bandwidth
allocation problem with contiguity requirements thrown in. For this generalization,
the performance guarantees we get are1

11, 1
17, and 2

55, respectively.
For simplicity, we normalize the amount of available storage to 1. We partition

the objects intowideobjects, whose widths are more than 1/2, andnarrowobjects,
whose widths are at most 1/2. We solve the bandwidth allocation problem separately
for the wide objects and for the narrow objects: we obtain a 1/2-approximation for
the wide objects via interval scheduling, and a 1/3-approximation for the narrow
objects as we have done for the bandwidth allocation problem. LetSw be the solution
for the wide objects andSn the solution for the narrow objects. Observe thatSw is
feasible for DSA since no two objects in it intersect. We proceed to extract fromSn

a feasible solution for DSA, which we denote byS′n, and return the solution with
higher profit amongSw andS′n.

We obtainS′n from Sn as follows. Given the objects inSn, we run anyγ “blow-up”
algorithm and find a DSA solution that fitsSn in a storage block of sizeγ · W∗,
whereW∗ is defined with respect toSn (and therefore obeysW∗ ≤ 1). We partition
this storage block intoγ non-overlapping strips, each of widthW∗. Each such strip
defines a feasible solution to our problem, consisting of the objects that are fully
contained in the strip. Every object not fully contained in any of the strips crosses
(exactly) one of the boundaries between two adjacent strips. Since no two objects
crossing the same boundary intersect, and the objects are all narrow, each of the
γ −1 boundaries defines a feasible solution that can be fit into a strip of width 1/2.
Thus any two of these solutions can be combined into a feasible solution to our
problem. We chooseS′n as the solution with maximum profit among the feasible
solutions defined by the strips and the pairs of boundaries.

Denote byp(Sn) and p(S′n) the profits ofSn and S′n, respectively. Then, either
the total profit of the solutions defined by the strips is at least 2γ p(Sn)/(3γ − 1),
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and thus the best strip has profit at least 2p(Sn)/(3γ − 1), or else the total profit
of the objects crossing boundaries is at leastp(Sn)(γ − 1)/(3γ − 1), and thus the
best pair of boundaries have total profit at least 2/(γ − 1) · p(Sn)(γ − 1)/(3γ −
1) = 2p(Sn)/(3γ − 1). Thus p(S′n) ≥ 2p(Sn)/(3γ − 1). Sincep(Sn) is a 1/3-
approximation for bandwidth allocation,p(S′n) is a 2/(9γ − 3)-approximation for
bandwidth allocation. It is also a 2/(9γ − 3)-approximation for DSA since the op-
timum profit for DSA cannot be higher than the optimum for bandwidth allocation.
Since either the optimum for the wide objects is at least 4/(9γ +1) of the optimum,
or else the optimum for the narrow objects is at least (9γ − 3)/(9γ + 1) of the
optimum, the better solution amongSw andS′n is a 2/(9γ +1)-approximation. Thus
the “blow-up” algorithms of Gergov [1999, 1996] and Kierstead [1991] lead to
approximation factors of 1/14, 1/23, and 2/55, respectively.

It turns out, however, that the solutions returned by Gergov’s algorithms
[Gergov 1999; Gergov 1996] have the property that none of the objects cross strip
boundaries1. Using similar arguments as above, the approximation factor can be
tightened to 1/(3γ + 2) for these algorithms. This yields approximation factors of
1/11 and 1/17, respectively.

In the special case where each request is limited to a single time interval (as
is usually assumed in the DSA literature) we can do better still. Recall that in
this special case, we were able to solve the bandwidth allocation problem opti-
mally for wide jobs, and 1/2-approximately for narrow jobs. Therefore, the final
ratio for DSA is 1/3γ in this case, and for Gergov’s algorithms it is 1/(2γ + 1).
Thus our best approximation ratio for this case is 1/7, using the algorithm of
Gergov [1999].

6. Scheduling Sessions on Line and Ring Topologies

As mentioned in the introduction, all of our results regarding the time axis inter-
pretation hold for the processors axis interpretation as well. They hold for both
throughput maximization and loss minimization. They also hold for the contigu-
ous case. Moreover, since processors are discrete there are no issues of continuous
“windows” to contend with (although it is hard to think of any “real” application
involving activities with multiple instances in the context of connections between
processors).

In this section we show how to adapt any approximation result for the throughput
maximization problem on the line into one for the same problem on the ring. If
the approximation factor for the line is 1/ρ, the resulting factor for the ring will
be 1/(ρ + 1+ ε) whereε may be chosen arbitrarily small (the running time of the
algorithm depends polynomially on 1/ε).

The idea is to cut the ring at an arbitrary point and to partition the set of instances
(of all the activities) into those that do not pass through the cut and those that do.
We denote the former byI ′ and the latter byI ′′. The instances inI ′ define an
equivalent problem on the line, whereas the instances inI ′′ amount to a knapsack
problem. It is well known that the knapsack problem admits an FPTAS. We obtain
a 1/ρ-approximation forI ′ and a 1/(1+ ε)-approximation forI ′′, and return the

1 This is explicit in Gergov [1996] and is true for the algorithm in Gergov [1999] as well, even though
it is not stated there explicitly [Gergov 2001].
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better solution of the two. Since either the optimum profit of the instances inI ′ is at
least ρ

ρ+1+ε of the optimum profit (for the original problem), or the optimum profit
of the instances inI ′′ is at least 1+ε

ρ+1+ε of the optimum, the the better solution is a
1/(ρ + 1+ ε) approximation.

Appendix: A Primal-Dual Interpretation

Local ratio algorithms can often be reformulated in primal-dual terms, and vice
versa (see, e.g., Bar-Yehuda and Rawitz [2001]). We demonstrate this for our
throughput maximization algorithm.

It turns out that the natural primal-dual formulation maps exactly onto our stack-
based iterative algorithm of Section 3.3 only when every activity consists of a single
instance. In all other cases it maps to a slightly modified version of our algorithm.
(However, as pointed out in Bar-Yehuda and Rawitz [2001], our algorithm can be
described in primal-dual terms as is, provided that we use a slightly different LP
relaxation as the basis to the primal-dual description.) The modification required is
to change the definition ofI( Ĩ ) to the set of all instances intersectingĨ (including
Ĩ itself and instances inA( Ĩ ) that intersect̃I ). As a result of this change, the profit
of each instanceI ∈ A( Ĩ ) ∩ I( Ĩ ) will now undergo two reductions. To prevent
the profit of Ĩ from becoming negative we must also scale the profit reductions by
1/(1+ αw( Ĩ )). Our performance guarantees hold for the modified algorithm as
well, since the modification does not change the bound ratiobmax/bopt.

Recall the integer programming formulation of the problem presented in Sec-
tion 3. Let us construct the dual program of the linear relaxation of this program.
We defineyi as the dual variable corresponding to the constraint on activityAi and
zt as the dual variable corresponding to the constraint at timet . Let T be the set
of all start-times and end-times of all instances belonging to all activities and let
TI = {t ∈ T | s(I ) ≤ t < e(I )} for all instancesI .

Minimize
m∑

i=1

yi +
∑
t∈T

zt

subject to:
For each activity instanceI ∈ Ai : yi + w(I )

∑
t∈TI

zt ≥ p(I ).

For all i andt : yi , zt ≥ 0.

In primal-dual terms, our algorithm proceeds as follows. We initially set all dual
variables to zero. At each iteration the algorithm selects an instanceĨ ∈ Ai with
minimum end-time among all instances whose corresponding dual constraints are
violated. It pushes̃I on the stack and increasesyi by the amountδ required to make
the constraint tight, and increaseszs by αδ, wheres ∈ T is maximal such that
s < e( Ĩ ). When all dual constraints become satisfied, the algorithm constructs a
schedule by popping each instance in turn off the stack and adding it to the schedule
if doing so does not violate the schedule’s feasibility.

Using the combinatorial properties of the solution, as we have done in our local
ratio analysis of the various problems, we can charge at leastδ units of profit to the
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profit p(I ) of some instanceI in the final solution for each increase of (1+ α)δ
in the value of the dual objective function. Thus, the profit of the schedule is at
least 1/(1+ α) times the final value of the dual objective function and this is our
performance guarantee.
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