UC San Diego

Technical Reports

Title
Learning and Making Decisions When Costs and Probabilities are Both Unknown

Permalink
https://escholarship.org/uc/item/62h3k2m\

Authors

Zadrozny, Bianca
Elkan, Charles

Publication Date
2001-01-02

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/62h3k2mv
https://escholarship.org
http://www.cdlib.org/

Learning and Making Decisions
When Costs and Probabilities are Both Unknown

Bianca Zadrozny and Charles Elkan
{zadrozny,elkan}@cs.ucsd.edu
Department of Computer Science and Engineering 0114
University of California, San Diego
La Jolla, CA 92093-0114

Draft: Please do not distribute further.

December 31, 2000

Abstract

In many machine learning domains, misclassification costs are different for differ-
ent examples, in the same way that class membership probabilities are example-
dependent. In these domains, both costs and probabilities are unknown for test
examples, so both cost estimators and probability estimators must be learned. This
paper first discusses how to make optimal decisions given cost and probability esti-
mates, and then presents decision tree learning methods for obtaining well-calibrated
probability estimates. The paper then explains how to obtain unbiased estimators
for example-dependent costs, taking into account the difficulty that in general, prob-
abilities and costs are not independent random variables, and the training examples
for which costs are known are not representative of all examples. The latter problem
is called sample selection bias in econometrics. Our solution to it is based on Nobel
prize-winning work due to the economist James Heckman. We show that the meth-
ods we propose are successful in a comprehensive comparison with MetaCost that
uses the well-known and difficult dataset from the KDD’98 data mining contest.

1 Introduction

The design of most supervised learning algorithms is based on the assumption that all
errors, that is all incorrect predictions, are equally costly. However, this assumption
is not true in many application areas. For example:

e In one-to-one marketing, the cost of making an offer to a person who does not
respond is small compared to the cost of not contacting a person who would
respond.

e In medicine, the cost of prescribing a drug to an allergic patient can be much
higher than the cost of not prescribing the drug to a nonallergic patient, if
alternative treatments are available.



e In information retrieval, the cost of not displaying a relevant document may be
lower or higher than the cost of displaying an irrelevant document.

e For most animals, failing to recognize a predator and hence not fleeing is far
more costly than fleeing from a non-predator.

In many domains where cost-sensitive learning and decision-making is needed, in-
cluding the four cases above, each example falls into one of two alternative classes.
One class is rare (for example the class of allergic patients), but the cost of not
recognizing that an example belongs to this class is high. In these domains, learning
methods that fail to take costs into account do not perform well. In extreme cases,
a learning method that is not cost-sensitive may produce a model that is useless
because it classifies every example as belonging to the most frequent class.

In recent years, the realization that cost-sensitive learning methods are required
in many real-world applications has led to a substantial amount of research. Tur-
ney [Tur00] provides a bibliography of this research. Nonetheless, the only general
method for cost-sensitive learning published so far is a method named MetaCost due
to Domingos [Dom99]. In this paper we present an alternative method that we call
direct cost-sensitive decision-making. Our analysis shows that the new method is
more general than MetaCost as originally published, and our experimental results
show that the new method is preferable to MetaCost.

This paper is organized as follows. In Section 2 we explain MetaCost and di-
rect cost-sensitive decision-making. Then in Section 3 we show how to apply these
methods to the difficult real-world dataset used in the KDD’98 data mining contest.
Both MetaCost and direct cost-sensitive decision-making require accurate estimates
of class membership probabilities. In Section 4 we present three techniques that
allow accurate probability estimates to be obtained from a decision tree: binning,
smoothing and early stopping. Previous research has been based on the assumption
that misclassification costs are the same for all examples and known in advance, but
in general these costs are example-dependent and unknown, in the same way that
class membership probabilities are example-specific and not known in advance. In
Section 5 we discuss this issue and the issue of how sample selection bias affects cost
estimation. Then in Section 6 we describe a heuristic method to compensate for pos-
sible biases in estimating probabilities and costs. Finally, experimental results using
the KDD’98 dataset are presented in Section 7, and in Section 8 we summarize the
main contributions of this paper. Related work is discussed as necessary throughout
the paper.

2 MetaCost versus direct cost-sensitive decision-
making

In any domain where a cost-sensitive learning method is to be applied, each training
example or test example z is associated with a cost C'(i, j, ) of predicting class 4 for
x when the true class of x is j. If these costs are known for each z and for all ¢+ and
j then it is straightforward to compute an optimal policy for decision-making. The
optimal prediction for z, i.e. the optimal decision concerning x or label to assign to
x, is the class ¢ that leads to the lowest expected cost

> P(jle)Ci, j, @) (1)



Given z, for each alternative ¢ the expected cost is a weighted average where the
weight of C(i, j, ) is the conditional probability of the class j given x.

The central idea of the MetaCost method is to change the label of each training
example to be its optimal label according to Equation (1), and then to learn a
classifier that predicts these new labels. The basic MetaCost idea can be implemented
in many ways; our experimental results investigate 24 different implementations in
total. Our implementations differ from those described by Domingos [Dom99] in two
important ways. First, we do not use bagging to estimate probabilities. Instead, we
use simpler methods based on single decision trees, following the lead of Domingos
in a recent paper [DP00].

Second, the original description of MetaCost is based on the assumption that
costs are known in advance and are the same for all examples, i.e. that C(i, j,z) =
C(3,j) with no dependence on z. Provost and Fawcett [PF99] have pointed out that
this assumption is not always true: “For some problems, different errors of the same
type have different costs.” We generalize MetaCost by relaxing this assumption, and
we compare variants of MetaCost that use different methods for estimating example-
dependent costs.

Because MetaCost uses Equation 1, it requires knowledge of the conditional prob-
ability P(j|z) for each training example z and each possible true class j for . Almost
always, these probabilities are not given as part of the training data. Instead, the
training data must be used to learn a classifier that estimates P(j|z) for each train-
ing example z and each j. Any classifier that can provide conditional probability
estimates for training examples can provide conditional probability estimates for test
examples also. Using these probability estimates we can directly compute the opti-
mal label for each test example using Equation (1). This process is the method that
we call direct cost-sensitive decision-making.

3 A testbed: The KDD’98 charitable donations
dataset

The dataset used in the experimental work described in this paper is a well-studied,
difficult dataset that was first used in the data mining contest associated with the
1998 KDD conference. This dataset and associated documentation are available at
the UCI KDD repository [Bay]. The dataset contains information about persons
who have made donations in the past to a certain charity. The decision-making task
is to choose which donors to request a new donation from. This task is completely
analogous to typical one-to-one marketing tasks for many other organizations, both
non-profit and for-profit. Mathematically, the task has the same structure as all
the two-class cost-sensitive learning and decision-making problems mentioned in the
introduction.

The KDD’98 dataset is divided in a fixed, standard way into a training set and a
test set. The training set consists of 95412 records for which it is known whether or
not the person made a donation (a 0/1 response) and how much the person donated,
if a donation was made. The test set consists of 96367 records for which similar
donation information was not published until after the KDD’98 competition. In
order to make our experimental results directly comparable with those of previous
work, we use the standard training set/test set division.

Mailing a solicitation to an individual costs the charity $0.68. The overall per-



centage of donors among potential recipients is about 5%. The donation amount
for persons who respond varies from $1 to $200. Given the low response rate and
the variation in the value of gifts, it is not easy to achieve a profit that is much
higher than that obtained by soliciting all potential donors. The profit obtained by
soliciting every individual in the test set is $10560, while the profit attained by the
winner of the KDD’98 competition was $14712.

Many participants in the KDD’98 competition submitted entries that were worse
than useless, i.e. that achieved profits substantially lower than $10560. This fact
indicates that the individuals in the KDD’98 dataset have already been filtered to
be a reasonable set of targets. The task for any cost-sensitive learning and decision-
making method is to improve upon the already good performance of the unknown
method that has already been applied to create the KDD’98 dataset.

Research on cost-sensitive learning has traditionally been couched in terms of
costs, as opposed to benefits or profits. However, in many domains, including the
charitable donations domain, it is easier to talk consistently about benefits than
about costs. The reason is that all benefits are straightforward cashflows relative
to a baseline wealth of $0, while some costs are counterfactual opportunity costs.
Accordingly, our formulation of the problem is in terms of benefits instead of costs.
The optimal predicted label for example x, i.e. the optimal decision whether or not
to solicit x, is the class ¢ that maximizes

> P(jlo)B(, j,z) (2)

where B(i,j,z) is the benefit of predicting class ¢ when the true class is j.

Let the label 7 = 0 mean the person z does not donate, and let 7 = 1 mean the
person does donate. If the person donates, the donation is of a variable amount, say
y(z). The cost of mailing a solicitation is $0.68, so we have the following benefit
matrix B(i, j, ©):
actual non-donor | actual donor

predict non-donor 0 0
predict donor (mail) —0.68 y(z) — 0.68

Notice that B(1,1,z) is example-dependent and unknown for test examples. We
shall argue later that no fixed matrix of costs or benefits can lead to good decision-
making—there is no constant ¢ such that it would reasonable to replace B(1,1,z) by
c. All approaches to this task, and to other tasks with the same structure, that are
based on a fixed cost or benefit matrix will have poor performance. Of course, some
approaches can take into account the fact that y(z) is example-dependent without
estimating y(z) explicitly.
The expected benefit of not soliciting a person x, i.e. of deciding ¢ = 0 for z, is

P(j = 0]|z)B(0,0,z) + P(j = 1|z)B(0,1,2) = 0.
The expected benefit of soliciting x is
P(j = 0le)B(1,0,2) + P(j = 1|o) B(1, 1)

= (1 P(j = 1)) (—0.68) + P(j = 1]z) (y(x) — 0.68)
= P(j = 1|z)y(z) — 0.68.



The optimal policy is to solicit exactly those people for whom the expected benefit
of mailing is greater than the expected benefit of not mailing: individuals for whom

P(j = 1jz)y(xz) — 0.68 > 0.

In other words, the optimal policy is to mail to people for whom the expected return
P(j = 1|z)y(z) is greater than the cost of mailing a solicitation:

P(j = 1|z)y(z) > 0.68. (3)

In order to apply this policy, we need to estimate the conditional probability of
making a donation P(j = 1|z) and the donation amount y(z) for each example z in
the training set, in the case of MetaCost. We need to estimate these values for both
training and test examples in the case of direct cost-sensitive decision-making.
Although we use the KDD’98 dataset for concreteness, the methods described in
this paper apply to cost-sensitive learning in general. In any cost-sensitive learning
application, in order to use Equation (1) to obtain an optimal labeling, we need to
estimate conditional class membership probabilities accurately. Costs must also be
estimated whenever they are unknown for some examples. In general, if x is a test
example then C(i,7,2) will be unknown for all ¢ and j. If z is a training example
then C(i,7,z) will be known for some ¢ and j pairs, but unknown for other pairs.
Of course, if costs are not example-dependent, that is if C(4,7,z) = C(i, j,y) for all
examples x and y, then costs do not need to be estimated for any training or test
examples. This special case is the only case considered in previous general research
on cost-sensitive learning. In the remainder of this paper, we discuss methods for
estimating costs and probabilities that can be applied in a wide variety of domains.

4 Estimating class membership probabilities

An estimate of the conditional probability of membership in each class is required
for each training example if MetaCost is used, and for each test example if direct
cost-sensitive decision-making is used.

We use the C4.5 decision tree learning method [Qui93] with pruning disabled to
obtain scores that are usefully correlated with true class membership probabilities.
In the KDD’98 domain, all examples in the training set are used as training data for
C4.5, with the following seven fields as attributes:

e income: household income code (range 1-8)

e firstdate: date of first gift

e lastdate: date of most recent gift

e pgift = ngiftall/numprom: number of gifts/number of promotions received
e RFA_2F: frequency code (range 1-4)

e RFA_2A: amount of last gift code (range A-G)

e PEPSTRFL: RFA (recency, frequency, amount) star status (X or blank).

The derived attribute pgift is well-defined because numprom is never zero, since all
records in the dataset concern people who have donated at least once in the past.
Since our research for this paper is not concerned with feature selection, our choice
of attributes is fixed and based informally on a KDD’99 winning submission [GM99].



When classifying test examples, by default C4.5 assigns the raw training fre-
quency p = k/n as the score of any example that is assigned to a decision tree leaf
that contains k positive training examples and n total training examples. These
training frequencies are not accurate conditional probability estimates for at least
two reasons:

1. High bias: The C4.5 algorithm tries to make leaves homogeneous, so observed
frequencies are systematically shifted towards zero and one. This problem has
been noted by Walker [Wal92] and others.

2. High variance: When the number of training examples associated with a leaf
is small, observed frequencies are not statistically reliable.

Pruning methods [EMS97] can in principle alleviate problem (2) by removing leaves
that contain too few examples. However, the current C4.5 pruning method is not
suitable for unbalanced datasets, because it is based on error rate minimization, not
cost minimization. On the KDD’98 dataset this method generates a pruned tree
that is a single leaf. Since the base rate of positive examples P(j = 1) is about
5%, the error rate of the single leaf tree is only 5%, but this tree is useless for
estimating example-specific conditional probabilities P(j = 1|z). In general trees
pruned by C4.5 are not useful for decision-making when the cost of misclassifying a
rare true positive example is much higher than the cost of misclassifying a common
true negative example.

The standard C4.5 pruning method is not alone in being inappropriate for cost-
sensitive tasks. Quinlan’s latest decision tree learning method, C5.0, and CART
[BFOS84] also do pruning based on error minimization. Both C4.5 and C5.0 have
rule set generators that are a commonly used alternative to pruning [Qui93]. Given a
decision tree, these methods produce a set of rules that is typically simpler and more
accurate than the original tree. However, like pruning, these methods are based on
error minimization, so they are not suitable for highly cost-sensitive applications.

Given the unsuitability of standard methods for pruning or otherwise restructur-
ing decision trees, we choose instead to attempt to improve the accuracy of decision
tree probability estimates directly. The choice to do no pruning is supported by
the results of Bradford et al. [BKK™98], who find that performing no pruning and
variants of pruning adapted to loss minimization both lead to similar performance.
Not using pruning is also suggested by Bauer and Kohavi (Section 7.3, [BK99]).

4.1 Improving probability estimates by binning

The binning or histogram method is a simple non-parametric approach to probability
density estimation [Bis95]. Given a set of examples for which an attribute z is
measured, we obtain a histogram by dividing the z axis into a number of bins. The
conditional probability of membership in class ¢ given z is approximated by the
fraction of examples in the bin containing z that belong to c.

Instead of using a raw attribute to separate examples into bins, we use the C4.5
leaf frequency score of each example. Given a test example, we compute its raw C4.5
score and place it in a bin according to this score. The binned conditional probability
estimate for the test example is then the fraction of true positive training examples
in this bin.

In order to obtain binned estimates that do not overfit the training data, we
partition the training set into two subsets. One subset is given to C4.5 for use
in learning a decision tree and the other subset is used for validation, i.e. for the



binning process. The two subsets are stratified, meaning that the proportion of
positive examples in each subset is fixed to be identical. The subset used for training,
called C4.5train, contains 70% of all training examples. The other subset, C4.5val,
contains the remaining 30%. More training examples are assigned to C4.5train
because learning the tree involves making many more choices than setting the binned
probabilities.

Concretely, we train C4.5 using C4.5train and then apply the resulting decision
tree to each example in C4.5val. We then sort these examples according to their
raw decision tree scores, and divide them into ten equal-sized bins. For each bin,
we compute an unbiased estimate of the conditional probability that an example is
positive given that its decision tree score places it in this bin, by averaging the true
0/1 labels for the examples from C4.5val in that bin.

0.3 : : : : : : T
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Figure 1: Binning. The solid line is the C4.5 decision tree score for the examples in
C4.5val. The vertical dashed lines show the separation into ten bins. The stars are the
average probability of membership in the positive class for each bin.

Figure 1 shows the results of executing this procedure. The solid line is the
output of the decision tree learned by C4.5, for the examples in C4.5val. The vertical
dashed lines show how these scores are separated into bins. The stars are the average
probability of donation for each bin, i.e. the binned score for the examples in that bin.
Note that C4.5 considerably overestimates the scores of the examples in the rightmost
bin. Similarly, it underestimates the scores of the examples in the leftmost bin. This
phenomenon is expected because C4.5 tries to make the leaves of the decision tree
homogeneous. A separate validation set is necessary because averaging the 0/1 labels
of the examples from C4.5train in a bin would not eliminate the overestimation and
underestimation bias.



In order to obtain conditional probability estimates for all the examples in the
entire dataset, we map the raw C4.5 score of each example into a bin. This mapping
is obtained by determining the bin for which the raw score falls between the upper
and lower bounds of the bin. The binned score for any example is the average
probability of donation in the bin to which the example is mapped.

The number of different probability estimates that binning can yield is limited by
the number of alternative bins. This number, ten in our experiments, must be small
in order to reduce the variance of the binned probability estimates, by increasing
the number of 0/1 values from the validation set that are averaged for each bin.
Therefore, binning reduces the resolution, i.e. the degree of detail, of conditional
probability estimates, while improving the accuracy of these estimates by reducing
both variance and the bias.

4.2 Improving probability estimates by smoothing

As discussed by Provost and Domingos [DP00] and others, one way of improving the
probability estimates given by decision trees is to make these estimates smoother,
i.e. to adjust them to be less extreme. Provost and Domingos suggest using the
Laplace correction method. For a two-class problem, this method replaces the con-
ditional probability estimate p = % by p’ = i—i; where k is the number of positive
training examples associated with a leaf and n is the total number of training exam-
ples associated with the leaf.

The Laplace correction method adjusts probability estimates to be closer to 1/2,
which is not reasonable when the two classes are far from equiprobable, as is the case
in many real-world applications. In general, one should consider the overall average
probability of the positive class, i.e. the base rate, when smoothing probability es-
timates. From a Bayesian perspective, a conditional probability estimate should be
smoothed towards the corresponding unconditional probability.

We replace the probability estimate p = £ by p/ = ktbm

- P where b is the base
rate and m is a parameter that controls how much scores are shifted towards the
base rate. This smoothing method is called m-estimation [Cus93]. For example, if
a leaf contains only two training examples, one of which is positive, the raw C4.5
decision tree score of any example assigned to this leaf is 0.5. The smoothed score
with m = 10 and b = 0.05 is

r1+0.05-10 1.5

sri0 12 o il

while the smoothed score with m = 100 and b = 0.05 is

,140.05-100 6
= "% r100 —m—0.0588.

As m increases, observed training set frequencies are shifted more towards the
base rate. Previous papers have suggested choosing m by cross-validation. Given a
base rate b, we suggest using m such that b = 5 approximately. This heuristic is
similar to the rule of thumb that a chi-squared goodness of fit test is reliable if the
number of examples in each cell of the contingency table is at least five.

Figure 2 shows the smoothed scores with m = 100 of the KDD’98 test set exam-
ples sorted by their raw C4.5 scores. As expected, smoothing shifts all scores towards
the base rate of approximately 0.05, which is desirable given that C4.5 scores tend
to be overestimates or underestimates. While raw C4.5 scores range from 0 to 1,
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Figure 2: Smoothed scores and raw C4.5 scores for test examples sorted by raw score.

smoothed scores range from 0.0187 to 0.1262. The scores of two sets of examples are
essentially unaffected by smoothing. These sets appear as horizontal stretches in the
line of C4.5 scores. They correspond to two leaves in the decision tree that contain
a number of training examples much larger than m.

4.3 Improving probability estimates by early stopping

As discussed before, C4.5 without pruning tends to overfit training data and to
create leaves in which the number of examples is too small to induce conditional
probability estimates that are statistically reliable. Smoothing attempts to correct
these estimates by shifting them towards the overall average probability, i.e. the base
rate b. However, if the parent of a small leaf, i.e. a leaf with few training examples,
contains enough examples to induce a statistically reliable probability estimate, then
assigning this estimate to a test example associated with the small leaf may be
more accurate then assigning it a combination of the base rate and the observed leaf
frequency, as done by smoothing. If the parent of a small leaf still contains too few
examples, we can use the score of the grandparent of the leaf, and so on until the
root of the tree is reached. At the root, of course, the observed frequency is the
training set base rate.

This method of improving conditional probability estimates is called early stop-
ping because when classifying an example, we stop searching the decision tree as
soon as we reach a node that has less than v examples, where v is a parameter of
the method. The score of the parent of this node is then assigned to the example in
question. As for smoothing, v can be chosen by cross-validation, or using a heuristic
such as making bv = 5. We choose v = 100 for all our experiments, but the example



RO

pgift < 0.097561

k=9
n=185

=9
n=238

k=10
n=178

k=21
n=271

Figure 3: Part of the decision tree generated by C4.5 used to classify a test example
with income=7, firstdate=9202, lastdate=9603, pgift=0.170213, RFA_2F=3, RFA_2A=E,
PEPSTRFL=X. Nodes in grey are on the path that is followed from the root to the leaf when
the example is classified.

in the remainder of this section uses v = 200 in order to have a smaller decision tree.

Figure 3 shows part of the decision tree generated by C4.5 from the entire KDD’98
training set. Without pruning, this tree has over 1000 leaves. The grey nodes are
on the path that is followed from the root to the leaf when the following test ex-
ample is classified: income=7, firstdate=9202, lastdate=9603, pgift=0.170213,
RFA_2F=3, RFA_2A=E, PEPSTRFL=X. Note that the leaf contains only 147 examples.
If we do early stopping with v = 200, we use the score of the parent of the leaf,
which contains 1906 examples, providing a more reliable probability estimate. The
estimated probability for the test example is changed from 0.0816 to 0.0635.

By eliminating nodes that have few training examples, early stopping effectively
creates the decision tree shown in Figure 4. The distinction between internal nodes
and leaves is blurred in this tree, because a node may serve as an internal node
for some examples and as a leaf for others, depending on the attribute values of
the examples. Early stopping is not equivalent to any type of pruning, because
pruning eliminates all the children of a node simultaneously, while early stopping
may eliminate some children and keep others, depending on the number of training
examples associated with each child. Intuitively, early stopping is preferable to
pruning for probability estimation because nodes are removed from a decision tree
only if they are likely to give unreliable probability estimates.

Grafting is a variant of pruning used by C4.5 that can eliminate internal nodes
as well as leaves [EMS97]. Although early stopping is reminiscent of grafting, the

10
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Figure 4: Decision tree obtained by early stopping with v = 200 from the tree in Figure 3.

two methods have a fundamental difference. Grafting replaces a subtree by one of
its branches. This operation completely eliminates switching based on the attribute
tested at the root of the subtree. Early stopping, on the other hand, eliminates
switching based on some values of an attribute, those values for which too few training
examples are available, but keeps switching based on the other values of the same
attribute. In other words, both pruning and grafting either split based on all the
different values of an attribute, or based on none. Early stopping allows splitting for
some but not all of the values of an attribute.

Figure 5 shows the early stopping scores with v = 100 of the test set examples
sorted by their raw C4.5 scores. The jagged lines in the chart show that many scores
are changed significantly by early stopping. As with smoothing, the scores of two
subsets of examples, which appear as horizontal lines in the chart, are not affected
by early stopping. These subsets correspond to two leaves in the decision tree that
contain a number of training examples much larger than v. Overall, the range of
scores is reduced as with smoothing, but not as much. The minimum early stopping
score is 0.0045 while the maximum is 0.2414.

4.4 Combining smoothing and early stopping

Early stopping effectively eliminates from a decision tree nodes that yield probability
estimates that are not statistically reliable because they are based on a small sample
of training examples. But since C4.5 tries to make decision tree nodes homogeneous,
even probability estimates that are based on many training examples tend to be
too high or too low. As explained in Section 4.2, smoothing can compensate for

11
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Figure 5: Early stopping scores and raw C4.5 scores for test examples. Examples are sorted by
raw C4.5 score.

this bias by shifting estimates towards the overall average probability. Therefore we
investigate the combination of smoothing and early stopping.

Figure 6 shows smoothed early stopping scores with m=100 and v=100 for the
KDD’98 test set examples sorted by their raw C4.5 scores. Comparing this chart
with the one in Figure 5 shows that the smoothed early stopping scores are less
extreme, as expected. They range from 0.0187 to 0.1837.

5 Estimating donation amounts

In general in cost-sensitive learning we need to estimate example-specific misclassi-
fication costs as well as example-specific class conditional probabilities. We need to
estimate misclassification costs for training examples if using MetaCost, and for test
examples if using direct cost-sensitive decision-making.

When costs and probabilities are both unknown, estimating costs well can be
more important for making good decisions than estimating probabilities well. Cost
estimates are more important if the relative variation of costs across different exam-
ples is greater than the relative variation of probabilities. The dynamic range of costs
may be greater than the dynamic range of probabilities either because the dynamic
range of true costs is greater, or because estimating costs accurately is easier than
estimating probabilities accurately. In the KDD’98 domain for example, estimating
donation probabilities is difficult. Our best method for this task, early stopping with
smoothing, gives conditional probabilities in the narrow range from 0.0187 to 0.1837.
Estimating donation amounts is easier because past amounts are excellent predictors

12
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Figure 6: Smoothed early stopping scores and raw C4.5 scores for test examples. The examples
are sorted by raw C4.5 score.

of future amounts.

It may appear that for non-donors in the training set we should impute a dona-
tion amount of zero, since their actual donation amount is zero. But this imputation
would be analogous to imputing a donation probability of zero for the non-donors
based on the fact that they have not donated, which is clearly wrong. When re-
sponding to a solicitation a person has to make two decisions. The first is whether
to donate or not, while the second is how much to donate. Conceptually, these de-
cisions are governed by two different random processes, not necessarily sequential or
independent of course. For donors in the training set, the outcome of the random
process that sets the donation amount is known, while for non-donors, this outcome
is unknown. For individuals in the test set, the outcome of both random processes is
unknown. Whenever the outcome of one or both processes is unknown, the learning
task is to estimate its outcome. For non-donors in the training set, the task is to
estimate the amounts that they would have donated, if they had made donations.

We compare three different methods for obtaining donation amount estimates.
The first method uses the average donation amount y of known donors, for individuals
for whom the actual donation amount is unknown. For donors in the training set
whose actual donation amount is known, this method uses the actual amount. Note
that using the same donation estimate for all test examples means that the decision
whether or not to solicit a person is based exclusively on the probability that they will
donate. This method is equivalent to using a fixed cost matrix for test examples. In
general, whenever misclassification costs are assumed to be fixed, different decisions
for different examples can only be based on different conditional probability estimates
for those examples.
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The second method of estimating donation amounts uses least-squares multiple
linear regression (MLR). The donors in the training set that have donated at most
$50 are used as input for the regression, which is based on one original attribute and
two derived attributes:

e lastgift: dollar amount of most recent gift,
e pgift = ngiftall/numprom: number of gifts/number of promotions received,
e ampergift: average gift amount in responses to the last 22 promotions.

As mentioned above, the topic of this paper is not variable selection, so we somewhat
arbitrarily choose these three attributes based on previous work. Also as mentioned
above, pgift is well-defined because numprom is always at least one. We use the
linear regression equation to estimate donation amounts for all examples in both the
training and test sets.

Donations of more than $50 are very rare in our domain: 46 of 4843 donations
recorded in the training set. We eliminate these examples from the regression training
set as a heuristic attempt to reduce the impact of outliers on the regression. If
included, these examples have the most influence on the regression equation, because
they have the highest y values and the regression equation is chosen to minimize the
sum of squared y errors. However, it is less important to estimate y values accurately
for these individuals, because the optimal decision is always to solicit them, given that
predicted donation probabilities are always over 1.5%. Accurate predicted donation
probabilities are never close to zero because of the intrinsic difficulty of predicting
whether or not a person will donate.

5.1 The problem of sample selection bias

When estimating donation amounts, a fundamental problem is that any estimator,
for example a regression equation, must be learned based on examples of people who
actually donate. But this estimator must then be applied to a different population,
i.e. both donors and non-donors. This problem is known in general as sample selec-
tion bias. It occurs whenever the training examples used to learn a model are drawn
from a different probability distribution than the examples to which the model is
applied.

In the donations domain, the donation amount and the probability of donation
are negatively correlated. People who are more likely to respond to a solicitation tend
to make smaller donations, while people who make larger donations are less likely to
respond. This relationship is illustrated in Figure 7. Since examples of people who
actually donate are the only training examples for the regression, donation amounts
estimated by the regression equation tend to be too low for test examples that have
a low probability of donation.

As we have explained previously [Elk00], the standard method of compensat-
ing for sample selection bias in econometrics is a two-step procedure due to James
J. Heckman of the University of Chicago [Hec79]. In October 2000 Heckman was
awarded the Nobel prize in economics for developing and applying this procedure.
Expressed using our notation, Heckman’s procedure is applicable when each example
z belongs to one of two classes, i.e. j(z) = 0 or j(z) = 1, and the dependent variable
to be estimated y(z) is observed for a training example if and only if j(z) = 1. The
first step of the procedure is to learn a probit linear model to estimate conditional
probabilities P(j = 1|z). A probit model is a variant of logistic regression where the
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Figure 7: Actual donation amount versus estimated probability of donation, for all donors in
the training set. A negative correlation between donation amount and probability of donation is
visible.

cumulative Gaussian probability density function is the sigmoid function. The sec-
ond step of Heckman’s procedure is to estimate y(z) by linear regression using only
the training examples = for which j(xz) = 1, but including for each z a transforma-
tion of the estimated value of P(j = 1|z). Heckman has proved that this procedure
yields estimates of y(z) that are unbiased for all z, regardless of whether j(z) = 0
or j(xz) =1, under certain conditions [Hec79].

Our third method for estimating donation amounts is a nonlinear variant of
Heckman’s procedure. Instead of using a linear estimator for P(j = 1|z), we use
a decision tree to obtain probability estimates, as described in Section 4. We then
include these probability estimates directly as an additional attribute when applying
a learning method to obtain an estimator for y(z). This learning method could be a
nonlinear method, for example a neural network method, but in order to investigate
carefully the usefulness of Heckman’s idea, we hold everything else constant and
just provide the estimated P(j = 1|x) values as a fourth attribute of z to a linear
regression that is otherwise the same as in the second method.

6 Choosing a threshold for decisions

As seen in Section 3, in the charitable donations domain the optimal policy is to
assign the predicted label ¢ = 1 to an example z if and only if P(j = 1|z)y(z) >
0.68. Here y(z) is the estimated amount of the donation that z might contribute,
P(j = 1|x) is the probability that z actually donates, and $0.68 is the cost of mailing
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a solicitation.

Using $0.68 as a threshold for making decisions is optimal only if the estimates
of y(z) and P(j = 1l|z) are unbiased. As an attempt to compensate for errors in
estimated donation probabilities and amounts, we can replace the $0.68 threshold
by another threshold c¢. Heuristically, Equation 3 in the optimal decision-making
strategy is changed to

P =1]z)y(x) > c. (4)
The threshold c is determined empirically by first ranking the examples in the train-
ing set according to the product P(j = 1|z)y(z), and then finding the threshold that
yields maximum profit. This threshold is then used when test examples are labeled.

The relationship between attained profit and threshold value is illustrated in
Figure 6. For each possible value of the threshold ¢, the chart shows the profit
obtained by sending solicitations to all examples = in the training set such that
P(j =1jz)y(z) > c.
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Figure 8: Dependence of the attained profit for the training set on the threshold value. The
optimal threshold value, marked by the dashed line, is $0.74.

For low values of ¢, although the revenue from donations is high, the cost of
mailing solicitations is also high because almost every individual is solicited. On the
other hand, for high values of ¢, too few people are solicited. In this case, although
mailing costs are lower, the total profit is low because many donors do not receive
a solicitation. In the case shown in the chart, the threshold that is optimal for the
training set is $0.74, but the standard threshold $0.68 yields almost the same total
profit.

Changing a single number, the decision-making threshold, is mathematically suffi-
cient to compensate for biases in estimating P(j = 1|z) and y(z) only if the estimated
product P(j = 1|z)y(z) is a monotonically increasing function of the real product. A
perfectly monotonic relationship is not likely to be exactly true. In general, adjust-
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ing the threshold ¢ cannot compensate completely for errors in estimated donation
probabilities and amounts, but may still be useful in practice.

The chart in Figure 6 is similar to a lift curve, also called a gains chart. The
major difference is that lift curves are based on probabilities, i.e. P(j = 1|x), instead
of on expected revenue, i.e. P(j = 1|z)y(z). One conventional approach to cost-
sensitive learning and decision-making is to learn an estimator s(z) of P(j = 1|x),
and then to select a threshold d such that an individual z is solicited if and only
s(x) > d. The choice of threshold d heuristically takes into account the cost matrix
and also compensates for the fact that s(z) is typically not well-calibrated as an
estimate of P(j = 1|z). A major point of this paper is that any policy of this type is
usually suboptimal. In any marketing domain, it is rational to solicit a person whose
probability of responding is low, if the expected value of their response, if they
do respond, is high. Conversely, it is irrational to solicit someone whose response
probability is high, if the expected value of their response is low.

Note that when costs or benefits are different for different individuals, then to
make rational decisions we need unbiased estimates of true example-specific class
probabilities. Numerical score that are correlated with true probabilities, but not
calibrated well, are inadequate. On the other hand, when costs or benefits are the
same for all individuals, and there are only two possible classes, then any monotonic
transformation of an estimator for P(j = 1|z) is just as useful as a well-calibrated
version of the same estimator, because changing the decision threshold can compen-
sate for any calibration error.

7 Experimental results

The previous three sections have discussed alternative methods for each of three
subproblems:

(a) estimating example-specific class probabilities,
(b) estimating example-specific costs or benefits, and
(c) setting a threshold for making decisions.

We also have two alternative general methods for cost-sensitive learning: MetaCost
and direct cost-sensitive decision-making. We label this last choice (d) and present
experimental results for each possible combination of alternatives for (a), (b), (c)
and (d). Each combination is one experimental trial.

For each trial, we report the number of people that are solicited, the number
of donors that are reached, and the total profit achieved. We give these numbers
for the training set and for the test set. The most important number, of course, is
the total profit achieved on the test set. Tables 1, 2, 3, 4 and 5 show the results of
trials using raw C4.5 scores, binned scores, smoothed scores, early stopping scores
and smoothed early stopping scores, respectively.

For the MetaCost experiments, there are two alternative ways of measuring per-
formance on the training set: (i) using the relabeling of training examples directly, or
(ii) applying the classifier learned from the relabeling to the examples on the training
set to obtain new labels. Since (i) is the same for direct cost-sensitive decision-making
and for MetaCost, we report (ii) for the MetaCost experiments. The results of (ii)
are better predictors of test set results, because they reflect the behavior of the clas-
sifier that is applied to test examples. A significant difference between the results of

17



Training Set Test Set
Amount | Thresh. | Method Mailed | Hit | Profit || Mailed | Hit | Profit
average fixed MetaCost || 37535 | 2907 | $10966 || 37640 | 2586 | $5229
average fixed direct 37124 | 2526 | $25966 || 37643 | 2592 | $5284
average adjusted | MetaCost || 53435 | 3563 | $12007 | 53638 | 3290 | $6361
average adjusted | direct 53371 | 3526 | $28047 || 53572 | 3592 | $6569
MLR fixed MetaCost || 48747 | 2913 | $15522 || 49311 | 2615 | $10764
MLR fixed direct 49735 | 2997 | $17261 || 50319 | 2648 | $12469
MLR adjusted | MetaCost || 36570 | 2370 | $16236 || 36805 | 2038 | $10941
MLR adjusted | direct 37554 | 2457 | $17507 || 38080 | 2062 | $11430
Heckman | fixed MetaCost || 48723 | 2900 | $15455 || 49279 | 2617 | $10768
Heckman | fixed direct 49919 | 3008 | $17246 || 50508 | 2662 | $12493
Heckman | adjusted | MetaCost || 36784 | 2376 | $16135 || 37072 | 2054 | $10940
Heckman | adjusted | direct 37718 | 2467 | $17502 || 38237 | 2057 | $11510

Table 1: Experimental results using raw C4.5 decision tree scores as probability estimates. The
method achieving the highest profit on the test set is highlighted.

(i) and (ii) indicates that C4.5 is not able to find a decision tree that captures the
relationship between the attributes and the result of the relabeling.

7.1 Statistical significance

When comparing the results of different trials, it is important to evaluate whether
differences in attained profit are statistically significant. We can quantify significance
roughly with a simple argument. There are 4872 donors in the fixed test set. For
these individuals, the average donation is $15.62. On a different test set drawn
randomly from the same probability distribution, one would expect a one standard
deviation fluctuation of /4872 in the number of donors. This fluctuation would
cause a change of about $15.62 - +/4872 = $1090 in total profit. Therefore, a profit
difference of less than $1090 between two methods is not statistically significant.

Many of the profit differences between methods that we observe are much less
than $1090. There are several avenues we could follow to obtain statistically sig-
nificant differences between methods. One avenue would be to use cross-validation,
instead of a single training set and a single test set. However, the training set/test
set split we use is standard. If we did not use it, our results would not be comparable
with those of previous work using the same dataset.

Another avenue would be to use multiple datasets for comparing different meth-
ods, as done for example by Domingos [Dom99]. But, despite the unquestioned
importance of differential costs in many learning tasks, the KDD’98 dataset is the
only dataset in the UCI repositories for which real-world misclassification cost infor-
mation is available. Most previous experimental research on cost-sensitive learning
has used arbitrary cost matrices. We prefer to use real cost data, especially since we
are interested in the situation where costs are different for different examples.

The main purpose of the experiments reported here is not so much to identify
a single best method for cost-sensitive learning and decision-making, but rather to
compare the usefulness of the alternative submethods proposed in previous sections.
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Training Set Test Set
Amount | Thresh. | Method Mailed | Hit | Profit || Mailed | Hit | Profit
average | fixed MetaCost || 58061 | 3601 | $9690 | 58510 | 3548 | $7578
average | fixed direct 56849 | 2383 | $12612 | 58537 | 3553 | $7586
average adjusted | MetaCost || 38319 | 2869 | $10616 || 38447 | 2613 | $4848
average adjusted | direct 37722 | 2328 | $24918 || 38505 | 2626 | $5206
MLR fixed MetaCost || 53517 | 2816 | $14619 || 54344 | 2696 | $12174
MLR fixed direct 54653 | 2876 | $15595 || 55287 | 2711 | $14068
MLR adjusted | MetaCost || 39261 | 2124 | $14550 || 39588 | 1980 | $11708
MLR adjusted | direct 40235 | 2241 | $15844 || 40678 | 2006 | $13056
Heckman | fixed MetaCost || 55519 | 2858 | $14676 || 56235 | 2752 | $12543
Heckman | fixed direct 56139 | 2883 | $15625 || 56792 | 2727 | $14176
Heckman | adjusted | MetaCost || 59058 | 3048 | $14956 || 59895 | 2926 | $12520
Heckman | adjusted | direct 59625 | 3090 | $15775 || 60246 | 2918 | $14291

Table 2: Experimental results using binned decision tree scores as probability estimates. The
method achieving the highest profit on the test set is highlighted.

Therefore, our experiments are designed so that each alternative for each of the
choices (a), (b), (c), and (d) is tried while holding all other choices fixed. This
experimental design allows us to investigate whether a particular alternative for (a)
for example systematically yields a higher profit than other alternatives, regardless
of what choices are made for (b), (c), and (d).

For (a), (b), (c), and (d) there are respectively five, three, two, and two choices,
for a total of 60 choices. Consider for example choice (d). We have results for 30 pairs
of trials where one trial uses MetaCost and the other trial uses the same choices for
(a), (b), and (c), but uses direct cost-sensitive decision-making instead of MetaCost.
Under the null hypothesis that the two methods are equally successful, one would
expect MetaCost to appear superior in about 30 - 0.5 = 15 pairs, with a standard
deviation of v/30-0.5- 0.5 = 2.7 approximately if the pairs are independent.

In fact, in all 30 pairs, the test set profit achieved using MetaCost is lower. This
result is highly significant statistically, whether or not the magnitude of the difference
in individual trials is above or below $1090. We choose not to quantify the level of
this statistical significance because doing so would require making assumptions that
are certainly false. In particular, because all trials use the same training and test
sets, the 30 pairs of trials are not statistically independent.

7.2 Comparing methods for estimating donation amounts

In all trials where the average donation is used as a fixed donation amount estimate,
results on the test set are bad. These trials all yield profit on the test set significantly
lower than that achievable trivially by classifying all test examples as positive.
Many trials show a huge difference in profit for the training and test sets, which
seems surprising, given that the number of people solicited and the number of donors
reached are approximately the same for both sets. However, consider the second line
of Table 1. In the training set, the average donation of people who are solicited
and who then donate is $20.27, but for the test set, the analogous average is only
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Training Set Test Set
Amount | Thresh. | Method Mailed | Hit | Profit || Mailed | Hit | Profit
average | fixed MetaCost || 41057 | 2970 | $10410 || 41191 | 2809 | $5692
average | fixed direct 40344 | 2239 | $21975 || 41322 | 2828 | $5766
average adjusted | MetaCost || 59182 | 3671 | $9936 || 59574 | 3634 | $7905
average adjusted | direct 58850 | 3354 | $23870 || 59592 | 3642 | $7984
MLR fixed MetaCost || 49155 | 2728 | $15347 || 49823 | 2553 | $12378
MLR fixed direct 49772 | 2740 | $16009 || 50429 | 2555 | $14100
MLR adjusted | MetaCost || 51404 | 2853 | $15653 || 52132 | 2643 | $12134
MLR adjusted | direct 51826 | 2845 | $16031 || 52571 | 2650 | $13974
Heckman | fixed MetaCost || 50609 | 2639 | $15042 || 51213 | 2522 | $12610
Heckman | fixed direct 51107 | 2678 | $16010 || 51791 | 2507 | $14397
Heckman | adjusted | MetaCost || 56964 | 2985 | $15092 || 57613 | 2854 | $12789
Heckman | adjusted | direct 56949 | 2997 | $16179 || 57572 | 2819 | $14419

Table 3: Experimental results using smoothed decision tree scores as probability estimates. The
method achieving the highest profit on the test set is highlighted.

$11.91. Other experiments using the average training set donation amount as a fixed
estimate of unknown donation amounts exhibit similar discrepancies.

The discrepancies occur because the true donation values are used for the positive
examples in the training set, but the average donation amount is used for all examples
in the test set. On the training set, this process leads to the selection of people who
donate larger amounts. But on the test set, because the donation estimate y(z) = ¥
is the same for all examples and the probability of donation P(j = 1|z) tends to
be lower for large donors, the product P(j = 1|z)y(z) tends to be lower for these
people. Therefore, individuals that are likely to donate smaller amounts are selected.
Both MetaCost and direct cost-sensitive decision-making are subject to this problem.
These results confirm the claim that it is wrong to impute any fixed quantity as a
donation estimate for test examples.

When linear regression (MLR) is applied to estimate donation amounts, results
are significantly improved for both direct cost-sensitive decision-making and Meta-
Cost. Heckman’s procedure, which uses the probability estimates as an additional
attribute in the linear regression, improves results further, except in one trial (raw,
Heckman, adjusted, MetaCost) where profit is reduced by $1.

Although the improvement due to Heckman’s procedure is systematic, it is only
$385 on average. The average improvement is small because two of the attributes
used in the original linear regression, namely pgift and ampergift, are highly cor-
related with the probability of making a donation. Indeed, pgift is the historical
probability of a person responding, which unsurprisingly is highly correlated with the
probability of a future response. Heckman’s procedure is effectively already mostly
implemented via these attributes. Nonetheless, the fact that improvement is sys-
tematic indicates that Heckman’s procedure succeeds in correcting sample selection
bias. We expect the beneficial impact of Heckman’s procedure to be much greater
whenever the effect of sample selection bias is not already mostly accounted for in a
heuristic way.
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Training Set Test Set
Amount | Thresh. | Method Mailed | Hit | Profit || Mailed | Hit | Profit
average fixed MetaCost || 42107 | 2975 | $8515 || 42353 | 2938 | $6473
average fixed direct 41576 | 2442 | $22597 || 42381 | 2943 | $6489
average adjusted | MetaCost || 58248 | 3635 | $9692 || 58505 | 3605 | $8034
average adjusted | direct 58126 | 3508 | $24936 || 58521 | 3610 | $8069
MLR fixed MetaCost || 52501 | 2971 | $14081 || 53370 | 2897 | $12281
MLR fixed direct 53372 | 2988 | $14709 || 54148 | 2918 | $14020
MLR adjusted | MetaCost || 40175 | 2391 | $14247 || 40658 | 2303 | $12349
MLR adjusted | direct 40908 | 2435 | $15052 || 41576 | 2307 | $12982
Heckman | fixed MetaCost || 54488 | 2952 | $14412 | 55243 | 2861 | $12502
Heckman | fixed direct 55663 | 2967 | $15093 || 56583 | 2908 | $14416
Heckman | adjusted | MetaCost || 56116 | 3055 | $14459 || 56719 | 2967 | $13081
Heckman | adjusted | direct 57130 | 3069 | $15362 || 57997 | 2988 | $14507

Table 4: Experimental results using early stopping scores as probability estimates. The method

achieving the highest profit on the test set is highlighted.

7.3 Adjusting the threshold for making decisions

In many trials, adjusting the threshold for making decisions away from $0.68 is not
beneficial. When the threshold is changed based on the training data, there is a
serious risk of overfitting this data. Results for the test set can then be significantly
worse.

If conditional probabilities and donation amounts are estimated in an unbiased
way, then adjusting the threshold is unnecessary. For example, in the trials using
binned probability estimates described in Table 2 that use Heckman’s procedure, the
adjusted threshold is $0.66. This number is very close to $0.68, which is the optimal
threshold if probability and cost estimates are unbiased. For this reason, the results
with fixed and adjusted thresholds are very similar. We conclude that adjusting
the threshold is useful only when probability and cost estimates are biased, and in
particular when Heckman’s procedure is not used.

7.4 Comparing methods for estimating probabilities

The results of trials using binned scores are much better than those of trials using
unmodified C4.5 scores, on average by $1250. We attribute this improvement to the
fact that binning corrects C4.5 scores that are extreme underestimates or overesti-
mates. Smoothing and early stopping are both systematically slightly better than
binning. Compared to binning, smoothing and early stopping improve the accuracy
of probability estimates without reducing their resolution so much, i.e. without re-
ducing the number of distinct probability estimates down to just the number of bins.
Combining smoothing and early stopping yields slightly better results than either
method separately, on average $226 more than early stopping by itself and $313
more than smoothing by itself.
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Training Set Test Set
Amount | Thresh. | Method Mailed | Hit | Profit || Mailed | Hit | Profit
average | fixed MetaCost || 42783 | 3003 | $8727 || 43118 | 2952 | $6669
average | fixed direct 42124 | 2335 | $21519 || 43151 | 2957 | $6671
average adjusted | MetaCost || 59016 | 3655 | $9610 || 59432 | 3635 | $7863
average adjusted | direct 58787 | 3414 | $24177 || 59461 | 3642 | $7913
MLR fixed MetaCost || 51064 | 2835 | $14680 || 51960 | 2743 | $12625
MLR fixed direct 52039 | 2834 | $14951 || 52957 | 2798 | $14558
MLR adjusted | MetaCost || 65885 | 3548 | $14462 || 66687 | 3530 | $12386
MLR adjusted | direct 66951 | 3618 | $15043 || 67758 | 3548 | $14462
Heckman | fixed MetaCost || 52296 | 2831 | $14564 || 53172 | 2772 | $12860
Heckman | fixed direct 53716 | 2859 | $14951 || 54601 | 2803 | $14651
Heckman | adjusted | MetaCost || 58516 | 3185 | $14703 || 59286 | 3091 | $12649
Heckman | adjusted | direct 59020 | 3152 | $15233 || 59910 | 3048 | $14608

Table 5: Experimental results using smoothed early stopping scores as probability estimates.
The best result on the test set is highlighted.

7.5 MetaCost versus direct cost-sensitive decision-making

MetaCost performs consistently less well than direct cost-sensitive decision-making.
The best result obtained with MetaCost is $13081, while the best result obtained
with the direct method is $14651, which is statistically indistinguishable from the
result obtained by the winner of the KDD’98 contest, $14712. We conclude that
direct cost-sensitive decision-making is preferable to MetaCost. We attribute the
worse performance of MetaCost to the difficulty that any single model must have in
estimating costs and probabilities as accurately as two separate models. Learning
a single classifier from relabeled training data causes more errors in approximating
the ideal decision boundary than learning two estimators.

8 Conclusions

The main contributions of this paper are the following:

e We explain a general method of cost-sensitive learning that performs system-
atically better than MetaCost in our experiments.

e We provide a solution to the fundamental problem of costs being different for
different examples, and unknown in general. Our solution includes a solution to
the problem of sample selection bias, i.e. the fact that the training set available
for learning to estimate costs is not representative of test examples, or indeed
of other training examples.

All the methods we propose are evaluated carefully with experiments using a large,
difficult and highly cost-sensitive real-world dataset, not small datasets with arbi-
trary cost data as in previous research.

We have used simple methods for both probability estimation and cost estimation
in this paper in order to illustrate our general cost-sensitive learning approach and to
provide a baseline for future research. Using a more sophisticated regression method
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for estimating donation amounts, we already have preliminary results that are better
than those of the winners of the KDD’98 and KDD’99 contests.

Our experiments are designed so that both MetaCost and the alternative we
propose use the same methods for estimating costs and probabilities. Therefore,
we expect our conclusion that direct cost-sensitive decision-making is preferable to
remain valid with other estimation methods. In particular, both MetaCost and direct
cost-sensitive decision-making will be improved by any improvement in techniques
for probability estimation. For example, if future work shows that bagging [Bre96] is
useful for probability estimation, then MetaCost and our method will both benefit.
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