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Abstra
t

In many ma
hine learning domains, mis
lassi�
ation 
osts are di�erent for di�er-

ent examples, in the same way that 
lass membership probabilities are example-

dependent. In these domains, both 
osts and probabilities are unknown for test

examples, so both 
ost estimators and probability estimators must be learned. This

paper �rst dis
usses how to make optimal de
isions given 
ost and probability esti-

mates, and then presents de
ision tree learning methods for obtaining well-
alibrated

probability estimates. The paper then explains how to obtain unbiased estimators

for example-dependent 
osts, taking into a

ount the diÆ
ulty that in general, prob-

abilities and 
osts are not independent random variables, and the training examples

for whi
h 
osts are known are not representative of all examples. The latter problem

is 
alled sample sele
tion bias in e
onometri
s. Our solution to it is based on Nobel

prize-winning work due to the e
onomist James He
kman. We show that the meth-

ods we propose are su

essful in a 
omprehensive 
omparison with MetaCost that

uses the well-known and diÆ
ult dataset from the KDD'98 data mining 
ontest.

1 Introdu
tion

The design of most supervised learning algorithms is based on the assumption that all

errors, that is all in
orre
t predi
tions, are equally 
ostly. However, this assumption

is not true in many appli
ation areas. For example:

� In one-to-one marketing, the 
ost of making an o�er to a person who does not

respond is small 
ompared to the 
ost of not 
onta
ting a person who would

respond.

� In medi
ine, the 
ost of pres
ribing a drug to an allergi
 patient 
an be mu
h

higher than the 
ost of not pres
ribing the drug to a nonallergi
 patient, if

alternative treatments are available.
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� In information retrieval, the 
ost of not displaying a relevant do
ument may be

lower or higher than the 
ost of displaying an irrelevant do
ument.

� For most animals, failing to re
ognize a predator and hen
e not 
eeing is far

more 
ostly than 
eeing from a non-predator.

In many domains where 
ost-sensitive learning and de
ision-making is needed, in-


luding the four 
ases above, ea
h example falls into one of two alternative 
lasses.

One 
lass is rare (for example the 
lass of allergi
 patients), but the 
ost of not

re
ognizing that an example belongs to this 
lass is high. In these domains, learning

methods that fail to take 
osts into a

ount do not perform well. In extreme 
ases,

a learning method that is not 
ost-sensitive may produ
e a model that is useless

be
ause it 
lassi�es every example as belonging to the most frequent 
lass.

In re
ent years, the realization that 
ost-sensitive learning methods are required

in many real-world appli
ations has led to a substantial amount of resear
h. Tur-

ney [Tur00℄ provides a bibliography of this resear
h. Nonetheless, the only general

method for 
ost-sensitive learning published so far is a method named MetaCost due

to Domingos [Dom99℄. In this paper we present an alternative method that we 
all

dire
t 
ost-sensitive de
ision-making. Our analysis shows that the new method is

more general than MetaCost as originally published, and our experimental results

show that the new method is preferable to MetaCost.

This paper is organized as follows. In Se
tion 2 we explain MetaCost and di-

re
t 
ost-sensitive de
ision-making. Then in Se
tion 3 we show how to apply these

methods to the diÆ
ult real-world dataset used in the KDD'98 data mining 
ontest.

Both MetaCost and dire
t 
ost-sensitive de
ision-making require a

urate estimates

of 
lass membership probabilities. In Se
tion 4 we present three te
hniques that

allow a

urate probability estimates to be obtained from a de
ision tree: binning,

smoothing and early stopping. Previous resear
h has been based on the assumption

that mis
lassi�
ation 
osts are the same for all examples and known in advan
e, but

in general these 
osts are example-dependent and unknown, in the same way that


lass membership probabilities are example-spe
i�
 and not known in advan
e. In

Se
tion 5 we dis
uss this issue and the issue of how sample sele
tion bias a�e
ts 
ost

estimation. Then in Se
tion 6 we des
ribe a heuristi
 method to 
ompensate for pos-

sible biases in estimating probabilities and 
osts. Finally, experimental results using

the KDD'98 dataset are presented in Se
tion 7, and in Se
tion 8 we summarize the

main 
ontributions of this paper. Related work is dis
ussed as ne
essary throughout

the paper.

2 MetaCost versus dire
t 
ost-sensitive de
ision-

making

In any domain where a 
ost-sensitive learning method is to be applied, ea
h training

example or test example x is asso
iated with a 
ost C(i; j; x) of predi
ting 
lass i for

x when the true 
lass of x is j. If these 
osts are known for ea
h x and for all i and

j then it is straightforward to 
ompute an optimal poli
y for de
ision-making. The

optimal predi
tion for x, i.e. the optimal de
ision 
on
erning x or label to assign to

x, is the 
lass i that leads to the lowest expe
ted 
ost

X

j

P (jjx)C(i; j; x): (1)
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Given x, for ea
h alternative i the expe
ted 
ost is a weighted average where the

weight of C(i; j; x) is the 
onditional probability of the 
lass j given x.

The 
entral idea of the MetaCost method is to 
hange the label of ea
h training

example to be its optimal label a

ording to Equation (1), and then to learn a


lassi�er that predi
ts these new labels. The basi
 MetaCost idea 
an be implemented

in many ways; our experimental results investigate 24 di�erent implementations in

total. Our implementations di�er from those des
ribed by Domingos [Dom99℄ in two

important ways. First, we do not use bagging to estimate probabilities. Instead, we

use simpler methods based on single de
ision trees, following the lead of Domingos

in a re
ent paper [DP00℄.

Se
ond, the original des
ription of MetaCost is based on the assumption that


osts are known in advan
e and are the same for all examples, i.e. that C(i; j; x) =

C(i; j) with no dependen
e on x. Provost and Faw
ett [PF99℄ have pointed out that

this assumption is not always true: \For some problems, di�erent errors of the same

type have di�erent 
osts." We generalize MetaCost by relaxing this assumption, and

we 
ompare variants of MetaCost that use di�erent methods for estimating example-

dependent 
osts.

Be
ause MetaCost uses Equation 1, it requires knowledge of the 
onditional prob-

ability P (jjx) for ea
h training example x and ea
h possible true 
lass j for x. Almost

always, these probabilities are not given as part of the training data. Instead, the

training data must be used to learn a 
lassi�er that estimates P (jjx) for ea
h train-

ing example x and ea
h j. Any 
lassi�er that 
an provide 
onditional probability

estimates for training examples 
an provide 
onditional probability estimates for test

examples also. Using these probability estimates we 
an dire
tly 
ompute the opti-

mal label for ea
h test example using Equation (1). This pro
ess is the method that

we 
all dire
t 
ost-sensitive de
ision-making.

3 A testbed: The KDD'98 
haritable donations

dataset

The dataset used in the experimental work des
ribed in this paper is a well-studied,

diÆ
ult dataset that was �rst used in the data mining 
ontest asso
iated with the

1998 KDD 
onferen
e. This dataset and asso
iated do
umentation are available at

the UCI KDD repository [Bay℄. The dataset 
ontains information about persons

who have made donations in the past to a 
ertain 
harity. The de
ision-making task

is to 
hoose whi
h donors to request a new donation from. This task is 
ompletely

analogous to typi
al one-to-one marketing tasks for many other organizations, both

non-pro�t and for-pro�t. Mathemati
ally, the task has the same stru
ture as all

the two-
lass 
ost-sensitive learning and de
ision-making problems mentioned in the

introdu
tion.

The KDD'98 dataset is divided in a �xed, standard way into a training set and a

test set. The training set 
onsists of 95412 re
ords for whi
h it is known whether or

not the person made a donation (a 0/1 response) and how mu
h the person donated,

if a donation was made. The test set 
onsists of 96367 re
ords for whi
h similar

donation information was not published until after the KDD'98 
ompetition. In

order to make our experimental results dire
tly 
omparable with those of previous

work, we use the standard training set/test set division.

Mailing a soli
itation to an individual 
osts the 
harity $0:68. The overall per-
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entage of donors among potential re
ipients is about 5%. The donation amount

for persons who respond varies from $1 to $200. Given the low response rate and

the variation in the value of gifts, it is not easy to a
hieve a pro�t that is mu
h

higher than that obtained by soli
iting all potential donors. The pro�t obtained by

soli
iting every individual in the test set is $10560, while the pro�t attained by the

winner of the KDD'98 
ompetition was $14712.

Many parti
ipants in the KDD'98 
ompetition submitted entries that were worse

than useless, i.e. that a
hieved pro�ts substantially lower than $10560. This fa
t

indi
ates that the individuals in the KDD'98 dataset have already been �ltered to

be a reasonable set of targets. The task for any 
ost-sensitive learning and de
ision-

making method is to improve upon the already good performan
e of the unknown

method that has already been applied to 
reate the KDD'98 dataset.

Resear
h on 
ost-sensitive learning has traditionally been 
ou
hed in terms of


osts, as opposed to bene�ts or pro�ts. However, in many domains, in
luding the


haritable donations domain, it is easier to talk 
onsistently about bene�ts than

about 
osts. The reason is that all bene�ts are straightforward 
ash
ows relative

to a baseline wealth of $0, while some 
osts are 
ounterfa
tual opportunity 
osts.

A

ordingly, our formulation of the problem is in terms of bene�ts instead of 
osts.

The optimal predi
ted label for example x, i.e. the optimal de
ision whether or not

to soli
it x, is the 
lass i that maximizes

X

j

P (jjx)B(i; j; x) (2)

where B(i; j; x) is the bene�t of predi
ting 
lass i when the true 
lass is j.

Let the label j = 0 mean the person x does not donate, and let j = 1 mean the

person does donate. If the person donates, the donation is of a variable amount, say

y(x). The 
ost of mailing a soli
itation is $0.68, so we have the following bene�t

matrix B(i; j; x):

a
tual non-donor a
tual donor

predi
t non-donor 0 0

predi
t donor (mail) �0:68 y(x)� 0:68

Noti
e that B(1; 1; x) is example-dependent and unknown for test examples. We

shall argue later that no �xed matrix of 
osts or bene�ts 
an lead to good de
ision-

making{there is no 
onstant 
 su
h that it would reasonable to repla
e B(1; 1; x) by


. All approa
hes to this task, and to other tasks with the same stru
ture, that are

based on a �xed 
ost or bene�t matrix will have poor performan
e. Of 
ourse, some

approa
hes 
an take into a

ount the fa
t that y(x) is example-dependent without

estimating y(x) expli
itly.

The expe
ted bene�t of not soli
iting a person x, i.e. of de
iding i = 0 for x, is

P (j = 0jx)B(0; 0; x) + P (j = 1jx)B(0; 1; x) = 0:

The expe
ted bene�t of soli
iting x is

P (j = 0jx)B(1; 0; x) + P (j = 1jx)B(1; 1; x)

= (1� P (j = 1jx))(�0:68) + P (j = 1jx)(y(x)� 0:68)

= P (j = 1jx)y(x)� 0:68:
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The optimal poli
y is to soli
it exa
tly those people for whom the expe
ted bene�t

of mailing is greater than the expe
ted bene�t of not mailing: individuals for whom

P (j = 1jx)y(x)� 0:68 > 0:

In other words, the optimal poli
y is to mail to people for whom the expe
ted return

P (j = 1jx)y(x) is greater than the 
ost of mailing a soli
itation:

P (j = 1jx)y(x) > 0:68: (3)

In order to apply this poli
y, we need to estimate the 
onditional probability of

making a donation P (j = 1jx) and the donation amount y(x) for ea
h example x in

the training set, in the 
ase of MetaCost. We need to estimate these values for both

training and test examples in the 
ase of dire
t 
ost-sensitive de
ision-making.

Although we use the KDD'98 dataset for 
on
reteness, the methods des
ribed in

this paper apply to 
ost-sensitive learning in general. In any 
ost-sensitive learning

appli
ation, in order to use Equation (1) to obtain an optimal labeling, we need to

estimate 
onditional 
lass membership probabilities a

urately. Costs must also be

estimated whenever they are unknown for some examples. In general, if x is a test

example then C(i; j; x) will be unknown for all i and j. If x is a training example

then C(i; j; x) will be known for some i and j pairs, but unknown for other pairs.

Of 
ourse, if 
osts are not example-dependent, that is if C(i; j; x) = C(i; j; y) for all

examples x and y, then 
osts do not need to be estimated for any training or test

examples. This spe
ial 
ase is the only 
ase 
onsidered in previous general resear
h

on 
ost-sensitive learning. In the remainder of this paper, we dis
uss methods for

estimating 
osts and probabilities that 
an be applied in a wide variety of domains.

4 Estimating 
lass membership probabilities

An estimate of the 
onditional probability of membership in ea
h 
lass is required

for ea
h training example if MetaCost is used, and for ea
h test example if dire
t


ost-sensitive de
ision-making is used.

We use the C4.5 de
ision tree learning method [Qui93℄ with pruning disabled to

obtain s
ores that are usefully 
orrelated with true 
lass membership probabilities.

In the KDD'98 domain, all examples in the training set are used as training data for

C4.5, with the following seven �elds as attributes:

� in
ome: household in
ome 
ode (range 1{8)

� firstdate: date of �rst gift

� lastdate: date of most re
ent gift

� pgift = ngiftall/numprom: number of gifts/number of promotions re
eived

� RFA 2F: frequen
y 
ode (range 1{4)

� RFA 2A: amount of last gift 
ode (range A{G)

� PEPSTRFL: RFA (re
en
y, frequen
y, amount) star status (X or blank).

The derived attribute pgift is well-de�ned be
ause numprom is never zero, sin
e all

re
ords in the dataset 
on
ern people who have donated at least on
e in the past.

Sin
e our resear
h for this paper is not 
on
erned with feature sele
tion, our 
hoi
e

of attributes is �xed and based informally on a KDD'99 winning submission [GM99℄.
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When 
lassifying test examples, by default C4.5 assigns the raw training fre-

quen
y p = k=n as the s
ore of any example that is assigned to a de
ision tree leaf

that 
ontains k positive training examples and n total training examples. These

training frequen
ies are not a

urate 
onditional probability estimates for at least

two reasons:

1. High bias: The C4.5 algorithm tries to make leaves homogeneous, so observed

frequen
ies are systemati
ally shifted towards zero and one. This problem has

been noted by Walker [Wal92℄ and others.

2. High varian
e: When the number of training examples asso
iated with a leaf

is small, observed frequen
ies are not statisti
ally reliable.

Pruning methods [EMS97℄ 
an in prin
iple alleviate problem (2) by removing leaves

that 
ontain too few examples. However, the 
urrent C4.5 pruning method is not

suitable for unbalan
ed datasets, be
ause it is based on error rate minimization, not


ost minimization. On the KDD'98 dataset this method generates a pruned tree

that is a single leaf. Sin
e the base rate of positive examples P (j = 1) is about

5%, the error rate of the single leaf tree is only 5%, but this tree is useless for

estimating example-spe
i�
 
onditional probabilities P (j = 1jx). In general trees

pruned by C4.5 are not useful for de
ision-making when the 
ost of mis
lassifying a

rare true positive example is mu
h higher than the 
ost of mis
lassifying a 
ommon

true negative example.

The standard C4.5 pruning method is not alone in being inappropriate for 
ost-

sensitive tasks. Quinlan's latest de
ision tree learning method, C5.0, and CART

[BFOS84℄ also do pruning based on error minimization. Both C4.5 and C5.0 have

rule set generators that are a 
ommonly used alternative to pruning [Qui93℄. Given a

de
ision tree, these methods produ
e a set of rules that is typi
ally simpler and more

a

urate than the original tree. However, like pruning, these methods are based on

error minimization, so they are not suitable for highly 
ost-sensitive appli
ations.

Given the unsuitability of standard methods for pruning or otherwise restru
tur-

ing de
ision trees, we 
hoose instead to attempt to improve the a

ura
y of de
ision

tree probability estimates dire
tly. The 
hoi
e to do no pruning is supported by

the results of Bradford et al. [BKK

+

98℄, who �nd that performing no pruning and

variants of pruning adapted to loss minimization both lead to similar performan
e.

Not using pruning is also suggested by Bauer and Kohavi (Se
tion 7.3, [BK99℄).

4.1 Improving probability estimates by binning

The binning or histogram method is a simple non-parametri
 approa
h to probability

density estimation [Bis95℄. Given a set of examples for whi
h an attribute z is

measured, we obtain a histogram by dividing the z axis into a number of bins. The


onditional probability of membership in 
lass 
 given z is approximated by the

fra
tion of examples in the bin 
ontaining z that belong to 
.

Instead of using a raw attribute to separate examples into bins, we use the C4.5

leaf frequen
y s
ore of ea
h example. Given a test example, we 
ompute its raw C4.5

s
ore and pla
e it in a bin a

ording to this s
ore. The binned 
onditional probability

estimate for the test example is then the fra
tion of true positive training examples

in this bin.

In order to obtain binned estimates that do not over�t the training data, we

partition the training set into two subsets. One subset is given to C4.5 for use

in learning a de
ision tree and the other subset is used for validation, i.e. for the
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binning pro
ess. The two subsets are strati�ed, meaning that the proportion of

positive examples in ea
h subset is �xed to be identi
al. The subset used for training,


alled C4.5train, 
ontains 70% of all training examples. The other subset, C4.5val,


ontains the remaining 30%. More training examples are assigned to C4.5train

be
ause learning the tree involves making many more 
hoi
es than setting the binned

probabilities.

Con
retely, we train C4.5 using C4.5train and then apply the resulting de
ision

tree to ea
h example in C4.5val. We then sort these examples a

ording to their

raw de
ision tree s
ores, and divide them into ten equal-sized bins. For ea
h bin,

we 
ompute an unbiased estimate of the 
onditional probability that an example is

positive given that its de
ision tree s
ore pla
es it in this bin, by averaging the true

0/1 labels for the examples from C4.5val in that bin.

0 0.5 1 1.5 2 2.5 3

x 10
4

0

0.05

0.1

0.15

0.2

0.25

0.3

S
c
o
re

s

C4.5val examples sorted by score

Figure 1: Binning. The solid line is the C4.5 de
ision tree s
ore for the examples in

C4.5val. The verti
al dashed lines show the separation into ten bins. The stars are the

average probability of membership in the positive 
lass for ea
h bin.

Figure 1 shows the results of exe
uting this pro
edure. The solid line is the

output of the de
ision tree learned by C4.5, for the examples in C4.5val. The verti
al

dashed lines show how these s
ores are separated into bins. The stars are the average

probability of donation for ea
h bin, i.e. the binned s
ore for the examples in that bin.

Note that C4.5 
onsiderably overestimates the s
ores of the examples in the rightmost

bin. Similarly, it underestimates the s
ores of the examples in the leftmost bin. This

phenomenon is expe
ted be
ause C4.5 tries to make the leaves of the de
ision tree

homogeneous. A separate validation set is ne
essary be
ause averaging the 0/1 labels

of the examples from C4.5train in a bin would not eliminate the overestimation and

underestimation bias.
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In order to obtain 
onditional probability estimates for all the examples in the

entire dataset, we map the raw C4.5 s
ore of ea
h example into a bin. This mapping

is obtained by determining the bin for whi
h the raw s
ore falls between the upper

and lower bounds of the bin. The binned s
ore for any example is the average

probability of donation in the bin to whi
h the example is mapped.

The number of di�erent probability estimates that binning 
an yield is limited by

the number of alternative bins. This number, ten in our experiments, must be small

in order to redu
e the varian
e of the binned probability estimates, by in
reasing

the number of 0/1 values from the validation set that are averaged for ea
h bin.

Therefore, binning redu
es the resolution, i.e. the degree of detail, of 
onditional

probability estimates, while improving the a

ura
y of these estimates by redu
ing

both varian
e and the bias.

4.2 Improving probability estimates by smoothing

As dis
ussed by Provost and Domingos [DP00℄ and others, one way of improving the

probability estimates given by de
ision trees is to make these estimates smoother,

i.e. to adjust them to be less extreme. Provost and Domingos suggest using the

Lapla
e 
orre
tion method. For a two-
lass problem, this method repla
es the 
on-

ditional probability estimate p =

k

n

by p

0

=

k+1

n+2

where k is the number of positive

training examples asso
iated with a leaf and n is the total number of training exam-

ples asso
iated with the leaf.

The Lapla
e 
orre
tion method adjusts probability estimates to be 
loser to 1/2,

whi
h is not reasonable when the two 
lasses are far from equiprobable, as is the 
ase

in many real-world appli
ations. In general, one should 
onsider the overall average

probability of the positive 
lass, i.e. the base rate, when smoothing probability es-

timates. From a Bayesian perspe
tive, a 
onditional probability estimate should be

smoothed towards the 
orresponding un
onditional probability.

We repla
e the probability estimate p =

k

n

by p

0

=

k+b�m

n+m

where b is the base

rate and m is a parameter that 
ontrols how mu
h s
ores are shifted towards the

base rate. This smoothing method is 
alled m-estimation [Cus93℄. For example, if

a leaf 
ontains only two training examples, one of whi
h is positive, the raw C4.5

de
ision tree s
ore of any example assigned to this leaf is 0.5. The smoothed s
ore

with m = 10 and b = 0:05 is

p

0

=

1 + 0:05 � 10

2 + 10

=

1:5

12

= 0:1250;

while the smoothed s
ore with m = 100 and b = 0:05 is

p

0

=

1 + 0:05 � 100

2 + 100

=

6

102

= 0:0588:

As m in
reases, observed training set frequen
ies are shifted more towards the

base rate. Previous papers have suggested 
hoosing m by 
ross-validation. Given a

base rate b, we suggest using m su
h that bm = 5 approximately. This heuristi
 is

similar to the rule of thumb that a 
hi-squared goodness of �t test is reliable if the

number of examples in ea
h 
ell of the 
ontingen
y table is at least �ve.

Figure 2 shows the smoothed s
ores with m = 100 of the KDD'98 test set exam-

ples sorted by their raw C4.5 s
ores. As expe
ted, smoothing shifts all s
ores towards

the base rate of approximately 0.05, whi
h is desirable given that C4.5 s
ores tend

to be overestimates or underestimates. While raw C4.5 s
ores range from 0 to 1,
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Figure 2: Smoothed s
ores and raw C4.5 s
ores for test examples sorted by raw s
ore.

smoothed s
ores range from 0.0187 to 0.1262. The s
ores of two sets of examples are

essentially una�e
ted by smoothing. These sets appear as horizontal stret
hes in the

line of C4.5 s
ores. They 
orrespond to two leaves in the de
ision tree that 
ontain

a number of training examples mu
h larger than m.

4.3 Improving probability estimates by early stopping

As dis
ussed before, C4.5 without pruning tends to over�t training data and to


reate leaves in whi
h the number of examples is too small to indu
e 
onditional

probability estimates that are statisti
ally reliable. Smoothing attempts to 
orre
t

these estimates by shifting them towards the overall average probability, i.e. the base

rate b. However, if the parent of a small leaf, i.e. a leaf with few training examples,


ontains enough examples to indu
e a statisti
ally reliable probability estimate, then

assigning this estimate to a test example asso
iated with the small leaf may be

more a

urate then assigning it a 
ombination of the base rate and the observed leaf

frequen
y, as done by smoothing. If the parent of a small leaf still 
ontains too few

examples, we 
an use the s
ore of the grandparent of the leaf, and so on until the

root of the tree is rea
hed. At the root, of 
ourse, the observed frequen
y is the

training set base rate.

This method of improving 
onditional probability estimates is 
alled early stop-

ping be
ause when 
lassifying an example, we stop sear
hing the de
ision tree as

soon as we rea
h a node that has less than v examples, where v is a parameter of

the method. The s
ore of the parent of this node is then assigned to the example in

question. As for smoothing, v 
an be 
hosen by 
ross-validation, or using a heuristi


su
h as making bv = 5. We 
hoose v = 100 for all our experiments, but the example

9



Figure 3: Part of the de
ision tree generated by C4.5 used to 
lassify a test example

with in
ome=7, firstdate=9202, lastdate=9603, pgift=0.170213, RFA 2F=3, RFA 2A=E,

PEPSTRFL=X. Nodes in grey are on the path that is followed from the root to the leaf when

the example is 
lassi�ed.

in the remainder of this se
tion uses v = 200 in order to have a smaller de
ision tree.

Figure 3 shows part of the de
ision tree generated by C4.5 from the entire KDD'98

training set. Without pruning, this tree has over 1000 leaves. The grey nodes are

on the path that is followed from the root to the leaf when the following test ex-

ample is 
lassi�ed: in
ome=7, firstdate=9202, lastdate=9603, pgift=0.170213,

RFA 2F=3, RFA 2A=E, PEPSTRFL=X. Note that the leaf 
ontains only 147 examples.

If we do early stopping with v = 200, we use the s
ore of the parent of the leaf,

whi
h 
ontains 1906 examples, providing a more reliable probability estimate. The

estimated probability for the test example is 
hanged from 0.0816 to 0.0635.

By eliminating nodes that have few training examples, early stopping e�e
tively


reates the de
ision tree shown in Figure 4. The distin
tion between internal nodes

and leaves is blurred in this tree, be
ause a node may serve as an internal node

for some examples and as a leaf for others, depending on the attribute values of

the examples. Early stopping is not equivalent to any type of pruning, be
ause

pruning eliminates all the 
hildren of a node simultaneously, while early stopping

may eliminate some 
hildren and keep others, depending on the number of training

examples asso
iated with ea
h 
hild. Intuitively, early stopping is preferable to

pruning for probability estimation be
ause nodes are removed from a de
ision tree

only if they are likely to give unreliable probability estimates.

Grafting is a variant of pruning used by C4.5 that 
an eliminate internal nodes

as well as leaves [EMS97℄. Although early stopping is reminis
ent of grafting, the

10



Figure 4: De
ision tree obtained by early stopping with v = 200 from the tree in Figure 3.

two methods have a fundamental di�eren
e. Grafting repla
es a subtree by one of

its bran
hes. This operation 
ompletely eliminates swit
hing based on the attribute

tested at the root of the subtree. Early stopping, on the other hand, eliminates

swit
hing based on some values of an attribute, those values for whi
h too few training

examples are available, but keeps swit
hing based on the other values of the same

attribute. In other words, both pruning and grafting either split based on all the

di�erent values of an attribute, or based on none. Early stopping allows splitting for

some but not all of the values of an attribute.

Figure 5 shows the early stopping s
ores with v = 100 of the test set examples

sorted by their raw C4.5 s
ores. The jagged lines in the 
hart show that many s
ores

are 
hanged signi�
antly by early stopping. As with smoothing, the s
ores of two

subsets of examples, whi
h appear as horizontal lines in the 
hart, are not a�e
ted

by early stopping. These subsets 
orrespond to two leaves in the de
ision tree that


ontain a number of training examples mu
h larger than v. Overall, the range of

s
ores is redu
ed as with smoothing, but not as mu
h. The minimum early stopping

s
ore is 0.0045 while the maximum is 0.2414.

4.4 Combining smoothing and early stopping

Early stopping e�e
tively eliminates from a de
ision tree nodes that yield probability

estimates that are not statisti
ally reliable be
ause they are based on a small sample

of training examples. But sin
e C4.5 tries to make de
ision tree nodes homogeneous,

even probability estimates that are based on many training examples tend to be

too high or too low. As explained in Se
tion 4.2, smoothing 
an 
ompensate for

11
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Figure 5: Early stopping s
ores and raw C4.5 s
ores for test examples. Examples are sorted by

raw C4.5 s
ore.

this bias by shifting estimates towards the overall average probability. Therefore we

investigate the 
ombination of smoothing and early stopping.

Figure 6 shows smoothed early stopping s
ores with m=100 and v=100 for the

KDD'98 test set examples sorted by their raw C4.5 s
ores. Comparing this 
hart

with the one in Figure 5 shows that the smoothed early stopping s
ores are less

extreme, as expe
ted. They range from 0.0187 to 0.1837.

5 Estimating donation amounts

In general in 
ost-sensitive learning we need to estimate example-spe
i�
 mis
lassi-

�
ation 
osts as well as example-spe
i�
 
lass 
onditional probabilities. We need to

estimate mis
lassi�
ation 
osts for training examples if using MetaCost, and for test

examples if using dire
t 
ost-sensitive de
ision-making.

When 
osts and probabilities are both unknown, estimating 
osts well 
an be

more important for making good de
isions than estimating probabilities well. Cost

estimates are more important if the relative variation of 
osts a
ross di�erent exam-

ples is greater than the relative variation of probabilities. The dynami
 range of 
osts

may be greater than the dynami
 range of probabilities either be
ause the dynami


range of true 
osts is greater, or be
ause estimating 
osts a

urately is easier than

estimating probabilities a

urately. In the KDD'98 domain for example, estimating

donation probabilities is diÆ
ult. Our best method for this task, early stopping with

smoothing, gives 
onditional probabilities in the narrow range from 0.0187 to 0.1837.

Estimating donation amounts is easier be
ause past amounts are ex
ellent predi
tors

12
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Figure 6: Smoothed early stopping s
ores and raw C4.5 s
ores for test examples. The examples
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of future amounts.

It may appear that for non-donors in the training set we should impute a dona-

tion amount of zero, sin
e their a
tual donation amount is zero. But this imputation

would be analogous to imputing a donation probability of zero for the non-donors

based on the fa
t that they have not donated, whi
h is 
learly wrong. When re-

sponding to a soli
itation a person has to make two de
isions. The �rst is whether

to donate or not, while the se
ond is how mu
h to donate. Con
eptually, these de-


isions are governed by two di�erent random pro
esses, not ne
essarily sequential or

independent of 
ourse. For donors in the training set, the out
ome of the random

pro
ess that sets the donation amount is known, while for non-donors, this out
ome

is unknown. For individuals in the test set, the out
ome of both random pro
esses is

unknown. Whenever the out
ome of one or both pro
esses is unknown, the learning

task is to estimate its out
ome. For non-donors in the training set, the task is to

estimate the amounts that they would have donated, if they had made donations.

We 
ompare three di�erent methods for obtaining donation amount estimates.

The �rst method uses the average donation amount �y of known donors, for individuals

for whom the a
tual donation amount is unknown. For donors in the training set

whose a
tual donation amount is known, this method uses the a
tual amount. Note

that using the same donation estimate for all test examples means that the de
ision

whether or not to soli
it a person is based ex
lusively on the probability that they will

donate. This method is equivalent to using a �xed 
ost matrix for test examples. In

general, whenever mis
lassi�
ation 
osts are assumed to be �xed, di�erent de
isions

for di�erent examples 
an only be based on di�erent 
onditional probability estimates

for those examples.
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The se
ond method of estimating donation amounts uses least-squares multiple

linear regression (MLR). The donors in the training set that have donated at most

$50 are used as input for the regression, whi
h is based on one original attribute and

two derived attributes:

� lastgift: dollar amount of most re
ent gift,

� pgift = ngiftall/numprom: number of gifts/number of promotions re
eived,

� ampergift: average gift amount in responses to the last 22 promotions.

As mentioned above, the topi
 of this paper is not variable sele
tion, so we somewhat

arbitrarily 
hoose these three attributes based on previous work. Also as mentioned

above, pgift is well-de�ned be
ause numprom is always at least one. We use the

linear regression equation to estimate donation amounts for all examples in both the

training and test sets.

Donations of more than $50 are very rare in our domain: 46 of 4843 donations

re
orded in the training set. We eliminate these examples from the regression training

set as a heuristi
 attempt to redu
e the impa
t of outliers on the regression. If

in
luded, these examples have the most in
uen
e on the regression equation, be
ause

they have the highest y values and the regression equation is 
hosen to minimize the

sum of squared y errors. However, it is less important to estimate y values a

urately

for these individuals, be
ause the optimal de
ision is always to soli
it them, given that

predi
ted donation probabilities are always over 1.5%. A

urate predi
ted donation

probabilities are never 
lose to zero be
ause of the intrinsi
 diÆ
ulty of predi
ting

whether or not a person will donate.

5.1 The problem of sample sele
tion bias

When estimating donation amounts, a fundamental problem is that any estimator,

for example a regression equation, must be learned based on examples of people who

a
tually donate. But this estimator must then be applied to a di�erent population,

i.e. both donors and non-donors. This problem is known in general as sample sele
-

tion bias. It o

urs whenever the training examples used to learn a model are drawn

from a di�erent probability distribution than the examples to whi
h the model is

applied.

In the donations domain, the donation amount and the probability of donation

are negatively 
orrelated. People who are more likely to respond to a soli
itation tend

to make smaller donations, while people who make larger donations are less likely to

respond. This relationship is illustrated in Figure 7. Sin
e examples of people who

a
tually donate are the only training examples for the regression, donation amounts

estimated by the regression equation tend to be too low for test examples that have

a low probability of donation.

As we have explained previously [Elk00℄, the standard method of 
ompensat-

ing for sample sele
tion bias in e
onometri
s is a two-step pro
edure due to James

J. He
kman of the University of Chi
ago [He
79℄. In O
tober 2000 He
kman was

awarded the Nobel prize in e
onomi
s for developing and applying this pro
edure.

Expressed using our notation, He
kman's pro
edure is appli
able when ea
h example

x belongs to one of two 
lasses, i.e. j(x) = 0 or j(x) = 1, and the dependent variable

to be estimated y(x) is observed for a training example if and only if j(x) = 1. The

�rst step of the pro
edure is to learn a probit linear model to estimate 
onditional

probabilities P (j = 1jx). A probit model is a variant of logisti
 regression where the
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Figure 7: A
tual donation amount versus estimated probability of donation, for all donors in

the training set. A negative 
orrelation between donation amount and probability of donation is

visible.


umulative Gaussian probability density fun
tion is the sigmoid fun
tion. The se
-

ond step of He
kman's pro
edure is to estimate y(x) by linear regression using only

the training examples x for whi
h j(x) = 1, but in
luding for ea
h x a transforma-

tion of the estimated value of P (j = 1jx). He
kman has proved that this pro
edure

yields estimates of y(x) that are unbiased for all x, regardless of whether j(x) = 0

or j(x) = 1, under 
ertain 
onditions [He
79℄.

Our third method for estimating donation amounts is a nonlinear variant of

He
kman's pro
edure. Instead of using a linear estimator for P (j = 1jx), we use

a de
ision tree to obtain probability estimates, as des
ribed in Se
tion 4. We then

in
lude these probability estimates dire
tly as an additional attribute when applying

a learning method to obtain an estimator for y(x). This learning method 
ould be a

nonlinear method, for example a neural network method, but in order to investigate


arefully the usefulness of He
kman's idea, we hold everything else 
onstant and

just provide the estimated P (j = 1jx) values as a fourth attribute of x to a linear

regression that is otherwise the same as in the se
ond method.

6 Choosing a threshold for de
isions

As seen in Se
tion 3, in the 
haritable donations domain the optimal poli
y is to

assign the predi
ted label i = 1 to an example x if and only if P (j = 1jx)y(x) >

0:68. Here y(x) is the estimated amount of the donation that x might 
ontribute,

P (j = 1jx) is the probability that x a
tually donates, and $0.68 is the 
ost of mailing
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a soli
itation.

Using $0.68 as a threshold for making de
isions is optimal only if the estimates

of y(x) and P (j = 1jx) are unbiased. As an attempt to 
ompensate for errors in

estimated donation probabilities and amounts, we 
an repla
e the $0.68 threshold

by another threshold 
. Heuristi
ally, Equation 3 in the optimal de
ision-making

strategy is 
hanged to

P (j = 1jx)y(x) > 
: (4)

The threshold 
 is determined empiri
ally by �rst ranking the examples in the train-

ing set a

ording to the produ
t P (j = 1jx)y(x), and then �nding the threshold that

yields maximum pro�t. This threshold is then used when test examples are labeled.

The relationship between attained pro�t and threshold value is illustrated in

Figure 6. For ea
h possible value of the threshold 
, the 
hart shows the pro�t

obtained by sending soli
itations to all examples x in the training set su
h that

P (j = 1jx)y(x) > 
.
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Figure 8: Dependen
e of the attained pro�t for the training set on the threshold value. The

optimal threshold value, marked by the dashed line, is $0.74.

For low values of 
, although the revenue from donations is high, the 
ost of

mailing soli
itations is also high be
ause almost every individual is soli
ited. On the

other hand, for high values of 
, too few people are soli
ited. In this 
ase, although

mailing 
osts are lower, the total pro�t is low be
ause many donors do not re
eive

a soli
itation. In the 
ase shown in the 
hart, the threshold that is optimal for the

training set is $0.74, but the standard threshold $0.68 yields almost the same total

pro�t.

Changing a single number, the de
ision-making threshold, is mathemati
ally suÆ-


ient to 
ompensate for biases in estimating P (j = 1jx) and y(x) only if the estimated

produ
t P (j = 1jx)y(x) is a monotoni
ally in
reasing fun
tion of the real produ
t. A

perfe
tly monotoni
 relationship is not likely to be exa
tly true. In general, adjust-
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ing the threshold 
 
annot 
ompensate 
ompletely for errors in estimated donation

probabilities and amounts, but may still be useful in pra
ti
e.

The 
hart in Figure 6 is similar to a lift 
urve, also 
alled a gains 
hart. The

major di�eren
e is that lift 
urves are based on probabilities, i.e. P (j = 1jx), instead

of on expe
ted revenue, i.e. P (j = 1jx)y(x). One 
onventional approa
h to 
ost-

sensitive learning and de
ision-making is to learn an estimator s(x) of P (j = 1jx),

and then to sele
t a threshold d su
h that an individual x is soli
ited if and only

s(x) > d. The 
hoi
e of threshold d heuristi
ally takes into a

ount the 
ost matrix

and also 
ompensates for the fa
t that s(x) is typi
ally not well-
alibrated as an

estimate of P (j = 1jx). A major point of this paper is that any poli
y of this type is

usually suboptimal. In any marketing domain, it is rational to soli
it a person whose

probability of responding is low, if the expe
ted value of their response, if they

do respond, is high. Conversely, it is irrational to soli
it someone whose response

probability is high, if the expe
ted value of their response is low.

Note that when 
osts or bene�ts are di�erent for di�erent individuals, then to

make rational de
isions we need unbiased estimates of true example-spe
i�
 
lass

probabilities. Numeri
al s
ore that are 
orrelated with true probabilities, but not


alibrated well, are inadequate. On the other hand, when 
osts or bene�ts are the

same for all individuals, and there are only two possible 
lasses, then any monotoni


transformation of an estimator for P (j = 1jx) is just as useful as a well-
alibrated

version of the same estimator, be
ause 
hanging the de
ision threshold 
an 
ompen-

sate for any 
alibration error.

7 Experimental results

The previous three se
tions have dis
ussed alternative methods for ea
h of three

subproblems:

(a) estimating example-spe
i�
 
lass probabilities,

(b) estimating example-spe
i�
 
osts or bene�ts, and

(
) setting a threshold for making de
isions.

We also have two alternative general methods for 
ost-sensitive learning: MetaCost

and dire
t 
ost-sensitive de
ision-making. We label this last 
hoi
e (d) and present

experimental results for ea
h possible 
ombination of alternatives for (a), (b), (
)

and (d). Ea
h 
ombination is one experimental trial.

For ea
h trial, we report the number of people that are soli
ited, the number

of donors that are rea
hed, and the total pro�t a
hieved. We give these numbers

for the training set and for the test set. The most important number, of 
ourse, is

the total pro�t a
hieved on the test set. Tables 1, 2, 3, 4 and 5 show the results of

trials using raw C4.5 s
ores, binned s
ores, smoothed s
ores, early stopping s
ores

and smoothed early stopping s
ores, respe
tively.

For the MetaCost experiments, there are two alternative ways of measuring per-

forman
e on the training set: (i) using the relabeling of training examples dire
tly, or

(ii) applying the 
lassi�er learned from the relabeling to the examples on the training

set to obtain new labels. Sin
e (i) is the same for dire
t 
ost-sensitive de
ision-making

and for MetaCost, we report (ii) for the MetaCost experiments. The results of (ii)

are better predi
tors of test set results, be
ause they re
e
t the behavior of the 
las-

si�er that is applied to test examples. A signi�
ant di�eren
e between the results of
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Training Set Test Set

Amount Thresh. Method Mailed Hit Pro�t Mailed Hit Pro�t

average �xed MetaCost 37535 2907 $10966 37640 2586 $5229

average �xed dire
t 37124 2526 $25966 37643 2592 $5284

average adjusted MetaCost 53435 3563 $12007 53638 3290 $6361

average adjusted dire
t 53371 3526 $28047 53572 3592 $6569

MLR �xed MetaCost 48747 2913 $15522 49311 2615 $10764

MLR �xed dire
t 49735 2997 $17261 50319 2648 $12469

MLR adjusted MetaCost 36570 2370 $16236 36805 2038 $10941

MLR adjusted dire
t 37554 2457 $17507 38080 2062 $11430

He
kman �xed MetaCost 48723 2900 $15455 49279 2617 $10768

He
kman �xed dire
t 49919 3008 $17246 50508 2662 $12493

He
kman adjusted MetaCost 36784 2376 $16135 37072 2054 $10940

He
kman adjusted dire
t 37718 2467 $17502 38237 2057 $11510

Table 1: Experimental results using raw C4.5 de
ision tree s
ores as probability estimates. The

method a
hieving the highest pro�t on the test set is highlighted.

(i) and (ii) indi
ates that C4.5 is not able to �nd a de
ision tree that 
aptures the

relationship between the attributes and the result of the relabeling.

7.1 Statisti
al signi�
an
e

When 
omparing the results of di�erent trials, it is important to evaluate whether

di�eren
es in attained pro�t are statisti
ally signi�
ant. We 
an quantify signi�
an
e

roughly with a simple argument. There are 4872 donors in the �xed test set. For

these individuals, the average donation is $15.62. On a di�erent test set drawn

randomly from the same probability distribution, one would expe
t a one standard

deviation 
u
tuation of

p

4872 in the number of donors. This 
u
tuation would


ause a 
hange of about $15:62 �

p

4872 = $1090 in total pro�t. Therefore, a pro�t

di�eren
e of less than $1090 between two methods is not statisti
ally signi�
ant.

Many of the pro�t di�eren
es between methods that we observe are mu
h less

than $1090. There are several avenues we 
ould follow to obtain statisti
ally sig-

ni�
ant di�eren
es between methods. One avenue would be to use 
ross-validation,

instead of a single training set and a single test set. However, the training set/test

set split we use is standard. If we did not use it, our results would not be 
omparable

with those of previous work using the same dataset.

Another avenue would be to use multiple datasets for 
omparing di�erent meth-

ods, as done for example by Domingos [Dom99℄. But, despite the unquestioned

importan
e of di�erential 
osts in many learning tasks, the KDD'98 dataset is the

only dataset in the UCI repositories for whi
h real-world mis
lassi�
ation 
ost infor-

mation is available. Most previous experimental resear
h on 
ost-sensitive learning

has used arbitrary 
ost matri
es. We prefer to use real 
ost data, espe
ially sin
e we

are interested in the situation where 
osts are di�erent for di�erent examples.

The main purpose of the experiments reported here is not so mu
h to identify

a single best method for 
ost-sensitive learning and de
ision-making, but rather to


ompare the usefulness of the alternative submethods proposed in previous se
tions.
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Training Set Test Set

Amount Thresh. Method Mailed Hit Pro�t Mailed Hit Pro�t

average �xed MetaCost 58061 3601 $9690 58510 3548 $7578

average �xed dire
t 56849 2383 $12612 58537 3553 $7586

average adjusted MetaCost 38319 2869 $10616 38447 2613 $4848

average adjusted dire
t 37722 2328 $24918 38505 2626 $5206

MLR �xed MetaCost 53517 2816 $14619 54344 2696 $12174

MLR �xed dire
t 54653 2876 $15595 55287 2711 $14068

MLR adjusted MetaCost 39261 2124 $14550 39588 1980 $11708

MLR adjusted dire
t 40235 2241 $15844 40678 2006 $13056

He
kman �xed MetaCost 55519 2858 $14676 56235 2752 $12543

He
kman �xed dire
t 56139 2883 $15625 56792 2727 $14176

He
kman adjusted MetaCost 59058 3048 $14956 59895 2926 $12520

He
kman adjusted dire
t 59625 3090 $15775 60246 2918 $14291

Table 2: Experimental results using binned de
ision tree s
ores as probability estimates. The

method a
hieving the highest pro�t on the test set is highlighted.

Therefore, our experiments are designed so that ea
h alternative for ea
h of the


hoi
es (a), (b), (
), and (d) is tried while holding all other 
hoi
es �xed. This

experimental design allows us to investigate whether a parti
ular alternative for (a)

for example systemati
ally yields a higher pro�t than other alternatives, regardless

of what 
hoi
es are made for (b), (
), and (d).

For (a), (b), (
), and (d) there are respe
tively �ve, three, two, and two 
hoi
es,

for a total of 60 
hoi
es. Consider for example 
hoi
e (d). We have results for 30 pairs

of trials where one trial uses MetaCost and the other trial uses the same 
hoi
es for

(a), (b), and (
), but uses dire
t 
ost-sensitive de
ision-making instead of MetaCost.

Under the null hypothesis that the two methods are equally su

essful, one would

expe
t MetaCost to appear superior in about 30 � 0:5 = 15 pairs, with a standard

deviation of

p

30 � 0:5 � 0:5 = 2:7 approximately if the pairs are independent.

In fa
t, in all 30 pairs, the test set pro�t a
hieved using MetaCost is lower. This

result is highly signi�
ant statisti
ally, whether or not the magnitude of the di�eren
e

in individual trials is above or below $1090. We 
hoose not to quantify the level of

this statisti
al signi�
an
e be
ause doing so would require making assumptions that

are 
ertainly false. In parti
ular, be
ause all trials use the same training and test

sets, the 30 pairs of trials are not statisti
ally independent.

7.2 Comparing methods for estimating donation amounts

In all trials where the average donation is used as a �xed donation amount estimate,

results on the test set are bad. These trials all yield pro�t on the test set signi�
antly

lower than that a
hievable trivially by 
lassifying all test examples as positive.

Many trials show a huge di�eren
e in pro�t for the training and test sets, whi
h

seems surprising, given that the number of people soli
ited and the number of donors

rea
hed are approximately the same for both sets. However, 
onsider the se
ond line

of Table 1. In the training set, the average donation of people who are soli
ited

and who then donate is $20.27, but for the test set, the analogous average is only
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Training Set Test Set

Amount Thresh. Method Mailed Hit Pro�t Mailed Hit Pro�t

average �xed MetaCost 41057 2970 $10410 41191 2809 $5692

average �xed dire
t 40344 2239 $21975 41322 2828 $5766

average adjusted MetaCost 59182 3671 $9936 59574 3634 $7905

average adjusted dire
t 58850 3354 $23870 59592 3642 $7984

MLR �xed MetaCost 49155 2728 $15347 49823 2553 $12378

MLR �xed dire
t 49772 2740 $16009 50429 2555 $14100

MLR adjusted MetaCost 51404 2853 $15653 52132 2643 $12134

MLR adjusted dire
t 51826 2845 $16031 52571 2650 $13974

He
kman �xed MetaCost 50609 2639 $15042 51213 2522 $12610

He
kman �xed dire
t 51107 2678 $16010 51791 2507 $14397

He
kman adjusted MetaCost 56964 2985 $15092 57613 2854 $12789

He
kman adjusted dire
t 56949 2997 $16179 57572 2819 $14419

Table 3: Experimental results using smoothed de
ision tree s
ores as probability estimates. The

method a
hieving the highest pro�t on the test set is highlighted.

$11.91. Other experiments using the average training set donation amount as a �xed

estimate of unknown donation amounts exhibit similar dis
repan
ies.

The dis
repan
ies o

ur be
ause the true donation values are used for the positive

examples in the training set, but the average donation amount is used for all examples

in the test set. On the training set, this pro
ess leads to the sele
tion of people who

donate larger amounts. But on the test set, be
ause the donation estimate y(x) = �y

is the same for all examples and the probability of donation P (j = 1jx) tends to

be lower for large donors, the produ
t P (j = 1jx)y(x) tends to be lower for these

people. Therefore, individuals that are likely to donate smaller amounts are sele
ted.

Both MetaCost and dire
t 
ost-sensitive de
ision-making are subje
t to this problem.

These results 
on�rm the 
laim that it is wrong to impute any �xed quantity as a

donation estimate for test examples.

When linear regression (MLR) is applied to estimate donation amounts, results

are signi�
antly improved for both dire
t 
ost-sensitive de
ision-making and Meta-

Cost. He
kman's pro
edure, whi
h uses the probability estimates as an additional

attribute in the linear regression, improves results further, ex
ept in one trial (raw,

He
kman, adjusted, MetaCost) where pro�t is redu
ed by $1.

Although the improvement due to He
kman's pro
edure is systemati
, it is only

$385 on average. The average improvement is small be
ause two of the attributes

used in the original linear regression, namely pgift and ampergift, are highly 
or-

related with the probability of making a donation. Indeed, pgift is the histori
al

probability of a person responding, whi
h unsurprisingly is highly 
orrelated with the

probability of a future response. He
kman's pro
edure is e�e
tively already mostly

implemented via these attributes. Nonetheless, the fa
t that improvement is sys-

temati
 indi
ates that He
kman's pro
edure su

eeds in 
orre
ting sample sele
tion

bias. We expe
t the bene�
ial impa
t of He
kman's pro
edure to be mu
h greater

whenever the e�e
t of sample sele
tion bias is not already mostly a

ounted for in a

heuristi
 way.
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Training Set Test Set

Amount Thresh. Method Mailed Hit Pro�t Mailed Hit Pro�t

average �xed MetaCost 42107 2975 $8515 42353 2938 $6473

average �xed dire
t 41576 2442 $22597 42381 2943 $6489

average adjusted MetaCost 58248 3635 $9692 58505 3605 $8034

average adjusted dire
t 58126 3508 $24936 58521 3610 $8069

MLR �xed MetaCost 52501 2971 $14081 53370 2897 $12281

MLR �xed dire
t 53372 2988 $14709 54148 2918 $14020

MLR adjusted MetaCost 40175 2391 $14247 40658 2303 $12349

MLR adjusted dire
t 40908 2435 $15052 41576 2307 $12982

He
kman �xed MetaCost 54488 2952 $14412 55243 2861 $12502

He
kman �xed dire
t 55663 2967 $15093 56583 2908 $14416

He
kman adjusted MetaCost 56116 3055 $14459 56719 2967 $13081

He
kman adjusted dire
t 57130 3069 $15362 57997 2988 $14507

Table 4: Experimental results using early stopping s
ores as probability estimates. The method

a
hieving the highest pro�t on the test set is highlighted.

7.3 Adjusting the threshold for making de
isions

In many trials, adjusting the threshold for making de
isions away from $0.68 is not

bene�
ial. When the threshold is 
hanged based on the training data, there is a

serious risk of over�tting this data. Results for the test set 
an then be signi�
antly

worse.

If 
onditional probabilities and donation amounts are estimated in an unbiased

way, then adjusting the threshold is unne
essary. For example, in the trials using

binned probability estimates des
ribed in Table 2 that use He
kman's pro
edure, the

adjusted threshold is $0.66. This number is very 
lose to $0.68, whi
h is the optimal

threshold if probability and 
ost estimates are unbiased. For this reason, the results

with �xed and adjusted thresholds are very similar. We 
on
lude that adjusting

the threshold is useful only when probability and 
ost estimates are biased, and in

parti
ular when He
kman's pro
edure is not used.

7.4 Comparing methods for estimating probabilities

The results of trials using binned s
ores are mu
h better than those of trials using

unmodi�ed C4.5 s
ores, on average by $1250. We attribute this improvement to the

fa
t that binning 
orre
ts C4.5 s
ores that are extreme underestimates or overesti-

mates. Smoothing and early stopping are both systemati
ally slightly better than

binning. Compared to binning, smoothing and early stopping improve the a

ura
y

of probability estimates without redu
ing their resolution so mu
h, i.e. without re-

du
ing the number of distin
t probability estimates down to just the number of bins.

Combining smoothing and early stopping yields slightly better results than either

method separately, on average $226 more than early stopping by itself and $313

more than smoothing by itself.
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Training Set Test Set

Amount Thresh. Method Mailed Hit Pro�t Mailed Hit Pro�t

average �xed MetaCost 42783 3003 $8727 43118 2952 $6669

average �xed dire
t 42124 2335 $21519 43151 2957 $6671

average adjusted MetaCost 59016 3655 $9610 59432 3635 $7863

average adjusted dire
t 58787 3414 $24177 59461 3642 $7913

MLR �xed MetaCost 51064 2835 $14680 51960 2743 $12625

MLR �xed dire
t 52039 2834 $14951 52957 2798 $14558

MLR adjusted MetaCost 65885 3548 $14462 66687 3530 $12386

MLR adjusted dire
t 66951 3618 $15043 67758 3548 $14462

He
kman �xed MetaCost 52296 2831 $14564 53172 2772 $12860

He
kman �xed dire
t 53716 2859 $14951 54601 2803 $14651

He
kman adjusted MetaCost 58516 3185 $14703 59286 3091 $12649

He
kman adjusted dire
t 59020 3152 $15233 59910 3048 $14608

Table 5: Experimental results using smoothed early stopping s
ores as probability estimates.

The best result on the test set is highlighted.

7.5 MetaCost versus dire
t 
ost-sensitive de
ision-making

MetaCost performs 
onsistently less well than dire
t 
ost-sensitive de
ision-making.

The best result obtained with MetaCost is $13081, while the best result obtained

with the dire
t method is $14651, whi
h is statisti
ally indistinguishable from the

result obtained by the winner of the KDD'98 
ontest, $14712. We 
on
lude that

dire
t 
ost-sensitive de
ision-making is preferable to MetaCost. We attribute the

worse performan
e of MetaCost to the diÆ
ulty that any single model must have in

estimating 
osts and probabilities as a

urately as two separate models. Learning

a single 
lassi�er from relabeled training data 
auses more errors in approximating

the ideal de
ision boundary than learning two estimators.

8 Con
lusions

The main 
ontributions of this paper are the following:

� We explain a general method of 
ost-sensitive learning that performs system-

ati
ally better than MetaCost in our experiments.

� We provide a solution to the fundamental problem of 
osts being di�erent for

di�erent examples, and unknown in general. Our solution in
ludes a solution to

the problem of sample sele
tion bias, i.e. the fa
t that the training set available

for learning to estimate 
osts is not representative of test examples, or indeed

of other training examples.

All the methods we propose are evaluated 
arefully with experiments using a large,

diÆ
ult and highly 
ost-sensitive real-world dataset, not small datasets with arbi-

trary 
ost data as in previous resear
h.

We have used simple methods for both probability estimation and 
ost estimation

in this paper in order to illustrate our general 
ost-sensitive learning approa
h and to

provide a baseline for future resear
h. Using a more sophisti
ated regression method
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for estimating donation amounts, we already have preliminary results that are better

than those of the winners of the KDD'98 and KDD'99 
ontests.

Our experiments are designed so that both MetaCost and the alternative we

propose use the same methods for estimating 
osts and probabilities. Therefore,

we expe
t our 
on
lusion that dire
t 
ost-sensitive de
ision-making is preferable to

remain valid with other estimation methods. In parti
ular, both MetaCost and dire
t


ost-sensitive de
ision-making will be improved by any improvement in te
hniques

for probability estimation. For example, if future work shows that bagging [Bre96℄ is

useful for probability estimation, then MetaCost and our method will both bene�t.
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