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ABSTRACT 
We consider prediction-model evaluation in the context of 
marketing-campaign planning. In order to evaluate and compare 
models with specific campaign objectives in mind, we need to 
concentrate our attention on the appropriate evaluation-criteria. 
These should portray the model's ability to score accurately and to 
identify the relevant target population. In this paper we discuss 
some applicable model-evaluation and selection criteria, their 
relevance for campaign planning, their robustness under changing 
population distributions, and their employment when constructing 
confidence intervals. We illustrate our results with a case study 
based on our experience from several projects.  

Keywords 
Model Evaluation, Marketing Campaigns, Performance Measures, 
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1. INTRODUCTION 
When dealing with marketing applications, such as campaign 
management, the issue of evaluating prediction models is twofold. 
First, the evaluation has to be statistically sound, allowing us to 
compare models, choose among them and estimate their expected 
future performance. Second, and perhaps more important, we 
need to evaluate models with regard to the way they will be 
utilized from a business perspective. For example, suppose we are 
building a scoring model to predict voluntary churn (customer’s 
propensity for disconnecting services) in order to identify the 
target population for a retention campaign. If in the campaign we 
intend to contact only the 2% of our customers who are at highest 
churn risk, it seems unreasonable to evaluate a suggested model 
using accuracy over a full test data set. The model’s performance 
on 98% of the population is irrelevant to the campaign goal. [6] 
and [8], among others, present flexible and efficient techniques 
for evaluating models with regard to a wide variety of goal 
functions. However, we have found the statistical analysis of the 
most relevant scores for planning campaigns to be lacking, and 
have compiled an array of tools and techniques to fill the gaps. 

In this paper we discusses some of the approaches we take when 
evaluating model-performance in the context of campaign 
planning and executing.  We also present statistical issues that 
arise when attempting to combine relevance and rigor in the 
evaluation process. The main results we present are: 
• Description of the requirements from appropriate evaluation 

techniques for campaign planning and comparison of various 
relevant evaluation measures (Section 2). 

• Methodology for applying some of the evaluation measures 
(Section 3). This includes issues such as, score adjustment, 
distribution of scores and methods for constructing 
confidence intervals.  

• A case study (Section 4), illustrating the importance and 
usefulness of combining contextual and statistical 
considerations in model-evaluation. 

 

2. MODEL EVALUATION 
We begin our discussion at the point where a scoring model has 
been constructed. We disregard the method or algorithm that were 
used to create the model, and concentrate on the means for 
evaluating it, given the campaign objectives. A different approach 
would be to consider the objectives while constructing the model 
([1] and [4]). Once we have a candidate model, we want to 
estimate its expected performance on unlabeled data. Our standard 
model evaluation methodology is: 

1. Evaluate the models’ performance on an independent test set 
(labeled data that has been set aside beforehand and not used 
in training the model). 

2. Adjust the models’ score to fit the full population 
distribution, in case it is expected to be different from the 
sample distribution used for training and test (Section 3.1).  

We focus our discussion on the performance measures, which are 
of interest for campaign planning and analysis, and their statistical 
properties. 
 

2.1 Planning Campaigns 
When planning a campaign, one seeks to identify individuals most 
likely to respond to the campaign. Due to budget restrictions the 
number of individuals to be approached in the campaign is 
limited. Thus there is a need for a good model for selecting the 
target segment and its performance on the rest of the population is 
of little or no consequence. The success of such a model is usually 
measured by the amount of responders captured within the 
targeted population. This amount can be measured in two 
different ways: 

 

 
 



• How much better are we doing by using our model to select 
the target population relative to a random selection of the 
target population. This measure is known as the Lift. For 
example: instead of reaching 2% of the responders when 
approaching randomly 2% of the population, we could reach 
16% of the responders by approaching the top model-scored 
2% of the population. In this case we are improving the 
random model by 8 times, i.e. the lift at 2% is 8.  

• How frequently do we expect to encounter a responder when 
running our campaign? This measure is expressed by the 
Response Rate. For example: when carrying out a 
telemarketing campaign, we may be interested in knowing 
once in how many calls we should expect a responder.  

These two measures capture the essence of a models’ usefulness 
for campaign planning, from two business perspectives. The 
measures are also mathematically equivalent but have a different 
behavior in the face of changing population distribution, as 
described in Section 2.2.1.  

2.2 Performance Measures 
Having established the need for adapted model evaluation in the 
context of campaign planning and mentioned some useful 
measures, we now concentrate on the statistical properties of 
evaluation measures, and consider their robustness in changing 
population distributions. We roughly divide them into two 
categories: overall performance measures and measures calculated 
per cutoff points. The evaluation process commences with sorting 
all test entities according to their model-produced scores. This 
ranked list serves as the basis for calculation of all possible 
performance measures, together with the following terminology: 

• A, B – total number of responders and non-responders, 
respectively. 

• Aj, Bj – total number of responders and non-responders, 
respectively, in the j-th top quantile. 

• j* (A+B) or (Aj + Bj ) – all cases in the j-th top quantile 
• A/(A+B) – overall response rate 
 
2.2.1 Measures at Pre-Specified Cutoff Points 
Response Rate 
The Response Rate (RR) represents the responders’ percentage 
you reach out of all the customers approached in a campaign. 
Customers approached in a campaign are the j-th top quantile and 
the RR is the response rate within that quantile: 

( )jjjj BAARR += /)(  

This measure is useful for calculating the expected profit from a 
campaign, however, it is extremely sensitive to the overall 
response rate. It drops almost linearly with the drop of the overall 
response rate in the population. Thus, models created based on 
populations with different response rates can not be compared 
using this measure, without applying an appropriate 
normalization. Furthermore, if the response rate in the “future” 
population on which a campaign is going to be run is unknown, 
there is no way to get a reliable estimate of the RR for that 
campaign.  
Lift 
The Lift measures the ratio between the RR and the overall 
response rate: 
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The Lift shows directly how much better would be a campaign 
based on the model than a campaign based on a random selection. 
Thus it is also a useful measure for campaign evaluation, from a 
different perspective than RR. The Lift is somewhat sensitive to 
the overall response rate (it mildly increases as the overall 
response decrease), but much less than the RR. Despite this slight 
disadvantage it is an intuitive evaluation criterion and a common 
(and sensible) choice.  
Response Non-Response Ratio 
The Response to Non-Response Ratio (RNR) is the ratio between 
the percentage of all responders and the percentage of all non-

responders in the top j-th quantile: 
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Statistically the RNR is robust and independent of the overall 
response rate. Thus, it is easy to compare model performance with 
it. However, there is no intuitive way to define the RNR in terms 
of planning campaigns and it is hard to use it in order to illustrate 
campaign effectiveness. 
Table 1 summarizes the advantages and limitations of each 
measure. 

Table 1. Comparison of Cut-Point Measures 

Measure Sensitivity to 
population response rate 

Interpretation for 
campaign evaluation 

RR Extremely Sensitive Frequency of  
encountering a responder 

Lift Somewhat Sensitive Improvement over 
a random model 

RNR Invariant No immediate interpretation 

 

2.2.2 Overall measures 
In some cases it is difficult or undesirable to decide in advance on 
a specific size for the target population, or a specific model may 
be used for many campaigns. In such cases, it may be preferable 
to estimate the models’ performance simultaneously with regard 
to a whole range of potential targets. 
 
Misclassification Rate 
If the task is classification, i.e. each entity is to be classified as a 
responder or a non-responder, it is necessary to set a threshold 
score. The Misclassification Rate (MCR) is the percentage of 
entities classified incorrectly among all entities (an alternative 
suggested by [5] is the Misclassification Cost that weights costs 
into the error calculation). In the campaign-planning context the 
MCR is usually inappropriate since a campaign inherently focuses 
on some small sub-populations and not the entire population. 
Further discussion of its inadequacy can be found in [6].  
 



Receiver Operating Characteristic (ROC) Curve  
In order to define the ROC Curve we first present the following 
definitions: 
Sensitivity – the percent of responders classified as responders. 
Specificity – the percent of non-responders classified as non-
responders. 
When classifying, increasing the cutoff-point increases Sensitivity 
and decreases Specificity. ROC curve is a plot of the Sensitivity 
against 1-Specificity at many cut-points. The area under the curve 
(AUC) is a measure of a models’ ability to separate responders 
from non-responders. When comparing two models by their ROC 
curves, we’re actually comparing their RNR at all possible cutoff 
points simultaneously. Further discussion can be found in [6], 
who also introduce the ROC convex hull method, for comparing a 
large number of classifiers. 
 
Gain Chart 
A Gain Chart (a.k.a Cumulative Lift chart) is a graph displaying 
the proportion of all responders vs. the proportion of the 
population (the quantile) sorted according to the model scores. 
Had the population been sorted randomly we would have 
expected each quantile to include the same response proportion. 
Similarly to the ROC curve, a Gain Chart displays the Lift in all 
quantiles simultaneously. The area under the curve is a measure of 
the models’ relative ability to identify responders. In the direct 
marketing domain this chart is sometimes referred to as the Pareto 
Curve since it expresses a similar notion as the “80/20 rule” [7]. 
 
The relationship between the two graphs 
ROC and Gain Chart are methods for evaluating the ranking 
performance of models, thus they make good criteria when the 
aim is to identify high or low tendency among the whole 
population. [8] demonstrates that the two diagrams are equivalent 
and presents several significance tests for the difference between 
AUCs that can be used to determine differences between overall 
performance of models. As with the RNR and the Lift, ROC 
Curve is good for comparing models, especially when response 
rate may vary, and the Gain Chart is good for evaluating campaign 
targeting effectiveness. 
 

3. PREDICTING MODEL PERFORMANCE 
The performance measures, discussed in details in the previous 
section, are usually calculated on a test sample data set. These 
measures need to be adjusted to the full population, in case its 
distribution is different from the sample distribution used for 
training and test (the sample may be biased due to intentional 
under-sampling of the larger class). The transformation method is 
presented in Section 3.1. The next stage after the transformation is 
to calculate reliable predictions based on the performance 
measures for future data. We do that by building proper 
Confidence Intervals (CI’s). Methods for building exact and 
approximate CIs are introduced in Section 3.2. We limit the 
discussion to the Lift and RR measures. Note that in the previous 
section lift was defined as (Aj/A)/j. Assuming j is fixed and to 
simplify the formula, this section refers to (Aj/A) as the lift. 

3.1 From Sample to Population 
Models are usually evaluated on a test set (TS) put aside from the 
sample population. In many cases the response rate in the full 
population (FP) is very small but in the sample the 2 classes are 

much more balanced.  Suppose we sort the TS according to the 
model-scores and calculate certain measures at each percentile. 
Due to the different response rates, TS percentiles do not 
correspond to percentiles in the FP. It is therefore necessary to 
translate the percentiles from the TS to the FP and we call this 
procedure the “Inverse Transformation”. [9] introduce a similar 
issue - they account for the differences between the training-set 
consideration test-set distributions when measuring error rate. 
The following quantities are given prior to performing the 
transformation: 
A, B - the number of responders and non-responders in the FP, 
respectively. 
a , b - the number of responders and non-responders in the TS, 
respectively. 
ai , bi - the number of responders and non-responders in percentile 
i in the TS, respectively.  
The first step is to extrapolate each percentile pair (ai, bi) in the TS 

to ( )ii BA ˆ,ˆ in the FP, where )/(ˆ aAaA ii =  and )/(ˆ bBbB ii = . 

Each extrapolated percentile pair ( )ii BA ˆ,ˆ  does not add up to a 
FP percentile, so TS percentiles are merged or split in order to 
attain FP percentiles.  
Lets assume that instead of TS single percentiles we are using 
accumulated TS percentiles and we want to transform them into 
accumulated FP percentiles. Let d(j) be the number of top TS 
percentiles necessary to comprise the top j FP percentiles. Note 
that d(100) = 100 and that d(j) might not be integer. The estimator 
for the number of responders and non-responders in the top j FP 
percentiles are: 
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Thus, the estimated lift for the FP at percentile j is AAj /ˆ  

and the estimated RR for the FP at percentile j is 
)(/ˆ)/(ˆ BAjABAA jjjj +=+ . 

 

3.2 Confidence Intervals 
Percentile point-estimators are not sufficient for evaluating the 
model predictive ability. When attempting to predict a model’s 
performance on future data we also build confidence intervals. 
There are two main uses for CI’s in the context of model 
evaluation:  
• The Lower Bound (LB) of a one-sided CI can be used to give 

a realistic (more conservative) approximation for the future 
performance of a model.  

• A two-sided CI for the difference between scores of two 
models can be used to compare their performance. 

Here we present the generation of one-sided CI’s for a single 
model, but the extensions to two-sided CI’s are trivial. The 
proportions we are interested in estimating are: 
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In Section 3.2.1 we discuss the exact distribution of the estimators 
and in Section 3.2.2 we propose alternative distribution 
approximations to use when constructing CIs for these 
proportions. Section 3.2.3 compares the different approaches with 
empirical results.  
 
3.2.1 The Exact Distribution of the Lift and the 
Response-Rate Estimators 
Our aim is to construct CIs for the lift and the RR based on the 
sample lift and sample RR. 

Sample Lift:           
a
ap d

j =
)1(ˆ     (5) 

Sample Response Rate:   
)(

ˆ )2(

bad
a

ba
ap d

dd

d
j

+

=

+

=  (6) 

Note, that instead of d(j) we use d in this section (assuming j is 
fixed ). In order to use these estimators, it is actually necessary to 
know the distribution of da . Since we’re not dealing with infinite 
populations but rather the total test population sizes a and b are 
given, we are in a “hyper-geometric”-like setting. The hyper-
geometric (HG) distribution is inappropriate, of course, since it 
inherently assumes we are selecting a sub-population at random. 
We are selecting a sub-population according to our model, which 
we hope and assume is non-random. What we need is a “biased 
hyper-geometric” (BHG) distribution: 

da  ~ BHG (a+b, a, d(a+b), )1(
jp ) 

Which would have the mean )1(
jpa ⋅  compared to a⋅ d in the HG 

distribution, and variance approximately )1( )1()1(
jj ppa −⋅ , 

representing our knowledge of the overall sums a and b. 
We have not found an appropriate distribution in the statistics 
literature. We are currently working on formulating such 
distribution and consider this an interesting research issue. 
 
3.2.2 CIs Based on Approximations 
Since the formula of the exact distribution is not known explicitly, 
in practice we can use either Binomial or HG “like” 
approximations for constructing CIs. 
 
Binomial CIs 
 
Lift Confidence Interval 
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Thus, we can directly calculate the LB of a one-sided CI for the 
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Response Rate Confidence Interval 
The sample RR (6) can also be expressed as following: 
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But we are interested in a different proportion: 
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*)2(ˆ jp  is a monotonic increasing function of )2(ˆ jp , therefore it is 

possible to calculate a LB for *)2(
jp  based on the LB for )2(
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That is the proper way for constructing this CI, since our 
uncertainty is at the TS level. Thus, the CI should be calculated 
based on the TS quantities and then “inverse transformed” to the 
FP. 
 
The Connection between the two Binomial CI’s 
The sample lift and the sample RR can each be represented as a 
monotonic increasing function of the other. It is therefore possible 
to calculate the CI for each based on the CI of the other. Under 
certain conditions, doing that might result in a shorter CI. We 
illustrate this notion only on constructing the Lift CI based on the 
RR CI, but it obviously works in the opposite direction as well.  
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Comparing (6) and (12): 
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The alternative *)1(

jLB  will achieve a shorter CI under the 

following condition: 
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Obviously, this shift from one proportion to another would 
produce the same LB if we used the exact distribution. However, 
since the binomial approximations are conservative (with larger 
variance), we believe that given a precentile, it’s acceptable to 
choose the method that yields a shorther CI. 
 
Hyper-Geometric “like” CIs 
When applying the normal approximation, a less conservative 
approach would be, to use the HG-like approximate variance 
instead of the binomial variance: 
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 Just as demostrated for the binomial based CIs we construct 
parallel HG based CIs )1(

jLB  and *)2(
jLB  for the Lift and the RR, 

respectively. 
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In this case constructing a LB for the lift based on the RR (and 
vice versa) will produce the same LB as constructing it directly. 

 
3.2.3 Comparing the CIs with Empirical Results 
Our experience shows that the CIs built based on approximations 
are generally satisfactory. Furthermore, we made an experiment 
with real data that gave an idea of the quality of the practical 
methods we suggest. We implemented bootstrap sampling [2] and 
compared the various CIs to the empirical bootstrap distribution. 
Table 2 displays the Lift 99% CI-LB based on the binomial 
approximation directly (B), via the RR (B*), and based on the 
HG-like approximation (HG). These LBs are compared to the 1% 
bootstrap quantile statistic. For example, at the 3rd percentile the 
Lift LBs obtained by the B, B* and HG approximations are 0.170, 
0.239, 0.234, respectively, and all three are more conservative 
than the Lift LB obtained by the bootstrap - 0.278. 
 

Table 2. Comparing methods for constructing Lift LBs 

Percentile B B* HG Bootstrap 

1% 0.040 0.102 0.102 0.123 

3% 0.170 0.239 0.243 0.278 

5% 0.279 0.336 0.344 0.373 

10% 0.438 0.471 0.479 0.503 

20% 0.628 0.635 0.649 0.680 

50% 0.970 0.954 0.972 0.965 

 
The experiment conclusions are: 
• All methods generated very close LBs – not seen in Table 2, 

which describes only the coverage of the CI’s.  
• For most percentiles, at least 99% of the lift observations 

according to the bootstrap distribution where higher than the 
approximated LBs. This means that in this example (for most 
percentiles), the CI’s produced by the practical methods have 
a confidence level of at least 99%. 

 

4. CASE STUDY 
This work was done by the Data Mining group, which is part of 
the R&D Business Insight unit at Amdocs Ltd. Amdocs is a 
leading provider of CRM, Billing and Order Management 
solutions to the communications and IP industry worldwide. The 
Amdocs Business Insight™ suite includes solutions for customer 
retention, reduction of bad debt, credit scoring, collection 
optimization, customer profitability analysis, sales analysis 
(cross/up sell) and relationship optimization. 
In this section we describe, our experience in projects where we 
have found some of the concepts described in this paper to be 
useful. The type of model we consider is a prediction model for a 
retention campaign, in which responders are potential churners 
and the overall response rate is the overall churn rate. 
The performance of a suggested new model was compared to that 
of a legacy model. Initially the legacy model’s RR at 10% was 
2.75 times better than the new model and thus it was concluded 
(mistakenly) that the legacy’s prediction is better. However, when 
the actual evaluation process was investigated, it turned out that 
the two models were evaluated based on different test 
populations. The population used to evaluate the legacy’s model 
had a 4.5 times higher overall churn rate. Given that fact, the RR 
was not the appropriate comparison criterion, since it is biased in 



favor of the model evaluated based on a population with higher 
churn rate. We considered the lift as an alternative, since we use it 
often. When we calculated the lift, it turned out that the new 
model’s lift was 1.62 times higher. Yet, as stated previously this 
measure too is not completely objective and independent of the 
population distribution. The lift for a smaller churn rate 
population is slightly higher. In order to compare the legacy and 
the new model, we had to use a more robust measure so we chose 
the RNR, which for the new model was 1.57 times greater than 
the legacy model. Table 3 summarizes the values of each measure 
for each model. 
 

Table 3. Evaluating two models based on populations with 
different churn rates (measured at the 10th percentile) 

Model Churn Rate RR Lift RNR 

Legacy Model 1:60 6.6% 4 4.2 

New Model 1:273 2.4% 6.5 6.6 

 
To demonstrate the principle difference between the measures we 
introduce a model we built for churn prediction. For this single 
model we calculate each measure and display its value after 
performing the inverse transformation (twice according to two 
different churn rates). Figure 1 demonstrates the extreme 
sensitiveness of the RR, the relative robustness of the lift, and the 
high robustness of the RNR. 
 

Figure 1. The impact of changing churn-rate over model-
evaluation measures 

RR, Lift and RNR are portrayed vs. the ranked population (by 
percentiles). The two lines show the same model results transformed 
into two different populations using their  different churn rates. 

5. CONCLUSION 
In this paper we discussed a few model-evaluation criteria, their 
robustness under changing population distributions, and their 
relevance for campaign planning. We demonstrated how 
problematic a comparison based on a non-robust measure like RR 
may be, and commended the use of the Lift and RNR measures. 
Still in many cases RR is what the user expects. Discussing the 
robustness of a measure is usually not the best strategy for 
convincing the end-user which model to choose, therefore we 
introduced the inverse transformation. Inverse transformation, 
which was previously described for the purpose of transforming 
test-set class-distribution into full-population distribution, helps 
create a uniform presentation. After performing the proper 
transformation, it is possible and correct to compare models (with 
no bias) based on the RR. Such uniform presentation would be 
more intuitive for decision-makers. 
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