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ABSTRACT 

This paper reports on a method for extending existing VHDL 
design and verification software available for the Xilinx Virtex 
series of FPGAs.  It allows the designer to apply standard 
hardware design and verification tools to the design of 
dynamically reconfigurable logic (DRL).  The technique 
involves the conversion of a dynamic design into multiple static 
designs, suitable for input to standard synthesis and APR tools.  
For timing and functional verification after APR, the sections of 
the design can then be recombined into a single dynamic system.  
The technique has been automated by extending an existing DRL 
design tool named DCSTech, which is part of the Dynamic 
Circuit Switching (DCS) CAD framework.  The principles 
behind the tools are generic and should be readily extensible to 
other architectures and CAD toolsets.  Implementation of the 
dynamic system involves the production of partial configuration 
bitstreams to load sections of circuitry. The process of creating 
such bitstreams, the final stage of our design flow, is 
summarized. 
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1. INTRODUCTION 
In dynamically reconfigurable logic (DRL), a circuit or system is 
adapted over time. This presents additional design and 
verification problems to those of conventional hardware design 
[1] that standard tools cannot cope with directly.  For this reason, 
DRL design methods typically involve the use of a mixture of 
industry standard tools, along with custom tools and some 

handcrafting to cover the conventional tools inadequacies. 

This paper introduces extensions to a previously reported CAD 
tool named DCSTech [2] which was created to automate the 
process of translating dynamic designs from VHDL into placed 
and routed circuits.  The original version of the tool supported 
the Xilinx XC6200 family of FPGAs, and concentrated on the 
timing verification aspects of the problem.  This paper reports on 
the extensions made to DCSTech to target the Xilinx Virtex 
family, and to enhance its capabilities.  As a mainstream 
commercial FPGA, the design tool capabilities available with 
this family exceed those of the XC6200, allowing the designer to 
work more productively at a higher level of abstraction.  By 
combining the Virtex platform’s capabilities with those of the 
extended DCSTech, the designer has the ability to specify 
designs in RTL/behavioural VHDL, place and route them and 
verify their timing.  DCSTech’s back-annotation support has 
been extended to produce VITAL VHDL models suitable for 
DRL in addition to processing SDF timing information.  This 
enables back-annotated timing analysis regardless of the level of 
abstraction at which the original design was produced. 

The original DCSTech tool was written to be extensible to other 
architectures.  This work verifies the validity of its extensibility 
hooks.  The extensibility of DCSTech to other architectures 
relies on the architecture’s CAD tools supporting a select set of 
capabilities.  Most modern CAD tools meet the majority of these 
requirements (with the exception of configuration bitstream 
access), although some weaknesses, particularly in the control of 
routing, are apparent.  Therefore, the design techniques presented 
here should be readily extensible to other dynamically 
reconfigurable FPGAs.   

The paper begins by reviewing existing work in section 2 before 
presenting the challenges of DRL design in section 3.  In section 
4 we provide an overview of the principles behind DCSTech 
while section 5 describes how they are applied to the Virtex.  
Section 6 discusses the enhanced back annotation capabilities 
necessary for design at the RTL and behavioral abstraction 
levels.  The tools are designed to be as architecture independent 
as possible and section 7 describes how the tool may be extended 
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to support other dynamically reconfigurable FPGAs.  In section 
8, we describe how partial configuration bitstreams may be 
obtained from the placed-and-routed subsections of the dynamic 
design, an area of current research.  The design flow is illustrated 
with an example in section 9 before the paper concludes with 
remarks on future research into the use of other modern CAD 
techniques such as Static Timing Analysis (STA) within the 
DRL design flow. 

2. EXISTING WORK 
Over the last six years, researchers have developed a number of 
tools and techniques, supporting different target DRL systems. 
The target systems can be characterized by their component set, 
the set of resources that make up the system.  Custom 
Computing Machines (CCMs), for example, include processors, 
FPGAs and memory in their component set.  Tools ranging from 
high-level language compilers to structural-level 
hardware/software co-design environments have been designed 
for such target systems. CCM compilers include tools such as 
Nimble [3], and compilers for the GARP chip [4], which 
compile ANSI-C.  In addition to standard C compilation, CCM 
compilers partition the application into a software executable and 
a set of hardware modules that can be loaded onto the 
reconfigurable datapath or FPGA.  As these tools are aimed at 
achieving a rapid design flow, similar to conventional computer 
programming, they do not usually achieve optimum results.  
Tools such as JHDL [5][6], a structural/RT level 
hardware/software codesign environment based on Java, allow 
the designer to customize his circuitry and specify its placement. 
This allows designers to use their own expertise to optimize the 
layout and composition of their circuits to achieve better results 
(e.g. faster circuits and smaller reconfiguration bitstreams if 
partial reconfiguration is used) as well as designing the 
associated software in one environment. 

Another design challenge is found when the component set is a 
single FPGA device or when dynamic reconfiguration is applied 
within individual devices.  This sort of design throws up many 
situations that most industry standard tools cannot handle at all, 
such as verification, partial bitstream generation and automatic 
configuration controller production.  Many of the solutions 
developed for this type of design also apply to CCM design.  In 
[7], Luk et al described a CAD framework for DRL design 
targeted at the Xilinx XC6200 FPGA.  A library based design 
approach was used to encourage design reuse and control circuit 
placement.  This increases the similarity between successive 
configurations and reduces the size of the partial configuration 
files required.  However, such a structural design approach limits 
the portability of the tools, since new libraries targeted to each 
device are required.  Vasilko’s DYNASTY [8] CAD framework 
uses a designer driven temporal floorplanning approach, in 
which the designer can visualise the layout of tasks on the FPGA 
over time.  It acts as a DRL-aware replacement to a place and 
route (PAR) tool and operates on synthesised gate-level designs.  
This has a number of advantages, such as ease of area estimation 
and the ability to control routing and component placement 
exactly.  The designer therefore has the ability to generate 
exactly the required layouts.  However, as the tools are closely 

associated with the XC6200 architecture considerable effort 
would be required to port them to operate with other devices. 

Research has also taken place into the use of alternative 
languages that have useful properties in expressing aspects of a 
DRL design. Ruby [9], Pebble [10] and Lava [11] allow the 
designer to specify component placement using more convenient 
methods than the usual use of attributes associated with standard 
HDL designs. Pebble also includes a reconfigure-if statement, 
which builds in support for DRL. Recent work with Lava has 
seen it used with the Xilinx Virtex FPGA.  

The DCS CAD framework provides simulation (DCSim) [1], 
technology mapping and back annotation (DCSTech) [2] and 
configuration controller synthesis (DCSConfig) [12].  Although 
DYNASTY uses the same ideas as DCSTech, DCSTech 
partitions the design at a higher level of abstraction.  This gives 
two advantages in the form of portability and circuit 
specialisation by the synthesis tool. Since the design is 
partitioned at an abstract level, DCSTech requires only a little 
device specific knowledge.  The majority of the partitioning 
process is platform independent, as is the resulting circuit 
description.  The tool is therefore easily ported to support 
different architectures.  As the designs are synthesised after 
partitioning any optimisations such as constant propagation can 
be performed by the synthesis tools.  If the design is partitioned 
after synthesis, a further optimization stage may be required to 
obtain the best results.  At this level of abstraction the area 
requirements of the circuit are more difficult to estimate, so 
some iteration may be required to obtain the optimal layout. 

Other researchers have concentrated on design at lower levels of 
abstraction, allowing the designer absolute control over 
component placement and routing.  Such tools include CHASTE 
[13], which provides access to the XC6200 configuration file and 
the JBits SDK [14][15], which provides a variety of tools to 
access, modify and verify Virtex configurations. In addition, it 
allows the designer to produce new whole or partial 
configurations. This approach could also be valuable as a method 
of performing final optimizations at the end of a higher-level 
design flow. 

3. IMPLEMENTATION CHALLENGES 
DRL is based on a many-to-one temporal logic mapping.  This 
means that different logic functions occupy the same area of the 
logic array at different points in time.  Tasks that share physical 
resources cannot be active at the same time; they are mutually 
exclusive.  Tasks can also be mutually exclusive for algorithmic 
reasons.  A set of mutually exclusive tasks is called a mutex set 
and the swappable tasks are termed dynamic tasks.  Tasks that 
are not altered in any way over time are described as static tasks. 

In designing a dynamic system, the various tasks must be placed 
in such a way as to ensure that no task is accidentally overwritten 
while it is active.  The consequences of such an error range from 
subtle errors in operation to damage to the FPGA itself. 

Dynamic tasks are added to and removed from the array by 
loading partial configuration files to alter logic and routing.  The 
designer has to guarantee that all necessary connections between 
the dynamic task and the surrounding environment will be made.  



The routing paths configured onto the array with the dynamic 
task must meet the routing coming from the surrounding array to 
which they are intended to connect. The bitstreams must not 
cause contention, for example by configuring a second driver 
onto a bidirectional routing resource. 

The final problem the designer faces is that standard CAD tools, 
which are intended for the design of static circuits, will not 
accept the mapping of more than one function to a particular 
logic resource.  Similarly, multiple drivers for a particular signal 
would be treated as an error, since no mechanism exists to 
indicate that the drivers are scheduled to operate at different 
times.  

4. AUTOMATING DYNAMIC DESIGN 
PROCESSING WITH DCSTech 

4.1 Overview 
DCSTech was designed as a tool to help the designer to 
overcome these problems.  It can be thought of as a domain 
converter between the static and dynamic domains, fig. 1.  The 
input dynamic system is split into a series of static designs on 
which conventional design tools (synthesis and APR) can be 
used.  After the required implementation steps have been 
performed on these static sub-designs, a number of files are 
produced.  VITAL compliant VHDL files that describe the 
systems functionality are created, along with SDF files 
specifying the circuit’s timing and configuration bitstreams. 
These files all require further processing before they are useful.  

To verify the designs functionality and timing, the SDF and 
VHDL files must be converted back to the dynamic domain, in 
order to simulate them in the context of the overall system. To 
implement the dynamic system, the configuration bitstreams 
must also be converted into valid partial reconfigurations.  The 
original version of DCSTech supported the domain conversion 
of timing information. This was because designs were specified 
at the netlist level, and therefore a VITAL compliant simulation 
model could be produced from the original design. The use of 
higher design abstractions such as behavioural code combined 
with synthesis means that no such netlist exists before synthesis.  
The current version has therefore added netlist conversion to the 

original SDF conversion, leaving bitstream conversion as a 
manual process. The progress so far is illustrated in fig. 2. 

4.2 Design and File Flow 
The dynamic design input to DCSTech consists of VHDL files 
describing the systems functionality.  Each dynamic task is 
represented as a component instantiation.  Hence, the top-level 
of the design is structural. Within each component, any 
synthesisable level of abstraction can be used.  The designer 
assigns each dynamic task to a mutex set.  This mutex set is 
assigned a zone on the logic array and all dynamic tasks within 
that set must reside within the corresponding zone.  Thus, tasks 
within a mutex set can overwrite each other, but static logic and 
tasks in other mutex sets are unaffected.  The correct system 
operation is then assured so long as an appropriate 
reconfiguration schedule is used (it is possible that the 
configuration control mechanism used to activate and deactivate 
tasks could cause problems if it is incorrectly designed).  
Clearly, the zone of each mutex set must be large enough to 
accommodate its largest task.  
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The dynamic intent of the system is captured in a 
Reconfiguration Information Format (RIF) file.  This file 
describes the conditions under which tasks activate (are 
configured onto the FPGA) and deactivate (are removed or 
stopped), the mutex set to which they belong and their 
placement.  Information on the RIF file was published in [2]. 

In the static domain, one of the sub-designs deals with all the 
static tasks in the design while each dynamic task is placed into a 

Figure 1: DCSTech: Domain conversion between static and dynamic domains 

Figure 2: Domain transforms performed by different 
DCSTech versions 
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sub-design of its own.  The concept of terminals is used to 
ensure the correct routing connectivity with the dynamic tasks 
surrounding environment.  These are special components used to 
lock the end of hanging signals to a particular location on the 
logic array.  By locating both hanging ends of the signal at the 
same place, the connection can be easily produced.  One 
reserved area is added to the static sub-design for each mutex set 
in the original design.  Similarly, the dynamic task components 
are surrounded by a bounding-box that ensures that they will be 
placed within the reserved area for their mutex set, fig. 3. 

After the sub-designs have been placed and routed by standard 
back-end tools, accurate estimates of their timing can be made.  
These estimates are typically written out into an SDF file.  To 
allow evaluation of the performance of the system, this 
information must be applied to the overall dynamic system.  
DCSTech is capable of mapping the SDF information into the 
dynamic design simulation model that DCSim creates, allowing 
timing simulation. 

To apply the SDF file to the dynamic domain, the cells must 
each be changed to match the hierarchy of the dynamic system 
simulation to which it is applied.  In addition, the timing entries 
for the terminals are removed and their relevant timing 
information mapped to isolation switches (simulation artefacts 
added by DCSim to mimic the design’s dynamic behavior in a 
conventional simulator).  Although the system hierarchy is 
altered during this domain conversion process, the actual timing 
information is unaltered, providing an accurate timing model.  
Further details of the process can be found in [2]. 

5. CHANGES MADE TO DCSTech TO 
TARGET THE VIRTEX 

A number of changes were required in order to retarget the static 
design representations to Virtex synthesis and APR tools, as 

summarized in table 1.  These changes allow us to replicate the 
capabilities DCSTech made available for the XC6200 on the 
Virtex. 

Table 1.  Methods of implementing DCSTech requirements 
on XC6200 and Virtex 

Problem XC6200 Solution Virtex Solution 

Reserving areas of 
the array 

Reserve constraint Prohibit constraint 

Locating dynamic 
tasks within a 

zone 

bbox attribute 
assigns a bounding 

box 

loc constraint allows 
ranges to be 

assigned 

Preventing partial 
circuits from 

being removed 

Use register as 
terminal 

component on 
hanging signals 

Changes to design 
representation and 
software settings 

Lock hanging 
signals to fixed 
array locations 

Terminal 
components with 
rloc constraints 

Terminal 
components with loc 

constraints 

 

Reserving areas on the logic array is a simple change of attribute 
from a RESERVE constraint which prevents XACT6000 from 
placing logic in the specified zone to specifying a PROHIBIT 
constraint which does the same task in the Xilinx CAD tools.  
This is added to the User Constraints Format (UCF) file.  
Dynamic task locations can be set using a combination of an rloc 
and a bbox attribute in XACT6000. The Virtex tools allow 
location ranges to be specified with the loc attribute. 

Because registers could be read from and written to through the 
XC6200 configuration interface, any line connected to and from 
registers was considered a valid connection, even when the 
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Figure 3: Floorplan of a DRL circuit containing two dynamic tasks before and after 
processing by DCSTech 



register had incomplete connectivity, such as no output 
connection.  Using registers to terminate hanging nets therefore 
prevented partial circuits from being removed.  This technique 
does not work with the Virtex synthesis tools, making two 
changes necessary in the way that dynamic designs were 
represented in the static domain.  Firstly, the VHDL entity of 
each dynamic task must have ports in it to describe its 
connectivity, whereas before terminal components were all that 
was required.  In addition, to prevent large areas of the static 
design being optimised away, the connectivity between the 
inputs and outputs of the reserved area should be indicated.  
Instantiating a black-box “mutex set” component, encapsulating 
the inputs and outputs of all the dynamic tasks in the mutex set 
solves this problem.  The Xilinx Foundation tools support an 
option not to remove unconnected logic, which suffices for the 
placement and routing stage. 

The terminal component used to terminate hanging nets has been 
changed to a wire or buffer mapped to a look-up-table.  This 
component replaces the RPFDs and FDCs used on the XC6200 
and has an advantage in that it does not contribute any 
functionality, while accepting location constraints.  This 
simplifies the changes required in the final bitstream generation 
stage and the netlist conversion process. 

The changes described above allow most of the basic 
requirements outlined in section 3 to be met by the standard 
Virtex tools.  However, one area of weakness is constraining the 
placement of routing.  The constraints described above only 
apply to logic placement, and therefore the routing from circuits 
can exceed their bounding boxes and invade reserved zones, 
although the Xilinx modular design tools [16] can help alleviate 
this problem.  These are factors that the designer must take 
account of when configuration bitstreams are being produced, 
either by re-routing the offending lines, or by including the 
routes in the appropriate configurations. In effect, the dynamic 
task bounding-box should be increased in size to accommodate 
any wayward routing. 

6. ENHANCED BACKANNOTATED 
TIMING SUPPORT 

The original static-to-dynamic domain conversion support for 
SDF files has been enhanced in the new revision of DCSTech.  
SDF information can only be applied to gate-level VITAL 

compliant designs.  If a design is produced at an abstract level, 
then SDF information cannot be applied to it.  

As with most modern APR tools, the Virtex tools are capable of 
writing out a VITAL VHDL netlist that matches their SDF files.  
The netlists are typically flat “seas of gates” with no hierarchy 
(although many tools allow control over hierarchy flattening).  
These files must be included in the domain conversion process in 
order to allow timing analysis to be performed when design 
abstractions above the structural level are used. DCSTech 
handles this domain conversion process by instantiating the 
dynamic tasks into the VHDL netlist for the static design.  The 
resulting dynamic circuit is, in effect a gate-level version of the 
original RTL design, such as a DRL aware synthesis tool might 
produce.  DCSim is used to simulate the circuit.  Since the 
hierarchy of the system often changes if synthesis and APR tools 
flatten the design, it may not match the hierarchy entries in the 
original RIF file.  Therefore, a new RIF file is written as part of 
the domain conversion process.  The domain conversion 
therefore produces a complete new dynamic design 
representation that DCSim can use to build a simulation model. 

As reported in section 4, the relevant timing information 
associated with the terminal components is usually applied to 
DCSim’s isolation switches while the references to the terminal 
components are removed from the design.  However, the Virtex 
terminal components have no functionality and therefore do not 
interfere with the simulation of the system.  As a result, those 
components that contribute timing data do not need to be 
removed during the static to dynamic domain conversion; hence, 
there is no need to retarget the timing data to the isolation 
switches (although the isolation switches are still introduced as 
they are needed to simulate the circuit).  This simplifies the 
conversion process thereby reducing the runtime of the 
DCSTech tool.  

7. THE EXTENDED DCSTech TOOL 
DCSTech now provides multi-architecture support and interfaces 
with several third party CAD tools.  It was originally designed to 
be extensible with as much of the technique as generic and 
device independent as possible.  Obviously, changes in the CAD 
environment and device architectures will mean that parts of the 
technique will need to be changed, either to take advantage of 
device features or to coexist with its supporting CAD 
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framework.  The major changes came on the back annotation 
side, where support for VHDL domain conversion was added.  
However, this is not something that is specific to the Virtex 
device, but a necessary step to enable designers to work at higher 
levels of abstraction.  Therefore, the concepts behind the tool 
remain generic and architecture independent and the design 
methodology, outlined in section 4, remains unchanged in this 
revision.  To facilitate this extensibility, the device dependent 
functions are stored in dynamic link libraries.  New devices can 
therefore be supported with the addition of a DLL.  The file flow 
for DCSTech is shown in fig. 4. 

The shaded files represent non-design files used as part of 
DCSTech’s operation.  The CRF files are cross-reference files 
used to store information such as terminal component 
connectivity and isolation switch locations (DCSim).  The log 
file contains reports for the user.  The options file can be used as 
an alternative to typing in command line switches. 

The design philosophy described in this paper will be able to 
provide DRL design support for any FPGA and CAD tool set 
provided it complies with the following requirements: 

• The FPGA is dynamically reconfigurable 

• Synthesis or design translation from VHDL is 
available 

• A suitable component can be found to lock the ends of 
hanging nets to a particular location on the logic array 

• A method is available to prevent unconnected circuits 
being removed from the design 

• Components can be assigned a bounding-box 
constraining them to a location on the array 

• Areas of the array can be reserved, prohibiting other 
logic from being placed within that area 

• The APR tools produce back annotated VITAL VHDL 
and SDF files 

• The names of elements instantiated into the design in a 
structural manner are predictable within the SDF and 
VITAL VHDL models. Components generated by 
synthesis tools generally have unpredictable names, 
but structural components are usually named after their 
instantiation label and the hierarchy above them in the 
original design. DCSTech has to be able to find the 
terminal components that are added to the design in the 
dynamic-to-static conversion as part of the static-to-
dynamic conversion after APR  

• The configuration file is open to modification, via an 
open file format or APIs such as JBits.  This is not 
necessary for DCSTech itself, but would be necessary 
to modify the bitstreams in order to actually implement 
the system  

Since most modern CAD packages fulfil these requirements, 
with the exception of bitstream access, support for the majority 
of modern dynamically reconfigurable FPGAs should be 
possible with only minor alterations in addition to those 
described in sections 5 and 6. 

8. BITSTREAM GENERATION 
Conventional CAD tools can provide a configuration bitstream 
for each of the partial circuits produced by DCSTech’s dynamic-
to-static conversion process.  As shown in fig. 3, the partial 
circuits consist of one configuration representing all the static 
circuits and a configuration for each dynamic circuit.  The static 
circuits are connected to terminal components that lock the ends 
of floating connections to dynamic circuits in place.  Similarly, 
floating connections to the static circuits within each dynamic 
task are locked in place by identically located terminals.  These 
overlying terminal components must be converted to a 
connection between the two routes, by altering the configuration 
bitstream. 

Unless the tools are capable of producing partial configuration 
files, their output files represent a configuration of each partial 
circuit on an otherwise unconfigured FPGA.  If these files were 
applied to the FPGA, they would blank out all the existing 
circuitry.  For the system to operate correctly, however, only 
circuitry that shares resources with the partial circuit to be 
loaded should be disrupted when it is activated.  The partial 
circuit configurations need to be converted to partial 
configurations, which reconfigure only the area occupied by a 
dynamic task within its mutex set zone. 

A further complication is caused by the lack of control over 
routing placement noted in section 5.  It is possible that routing 
in a dynamic task will use the same line as routing in a static 
task.  If the dynamic task is then configured onto the array, the 
routing conflict will cause errors in operation and possibly 
device damage.  The designer must ensure that the routing 
resources used by each dynamic task are not shared by static 
tasks or dynamic tasks in other mutex sets. 

The target device configuration mechanism is another factor in 
the strategy used to produce partial configurations.  The XC6200 
allows individual parts of the logic array to be altered; therefore, 
only parts of the array in the dynamic task bounding-box need be 
considered.  In the Virtex, however, reconfiguration takes place 
in columns.  The smallest unit of configuration data that can be 
applied is a frame, which configures a subset of the resources in 
a column.  Forty-eight frames are required to completely 
configure a column [17].  As a result, all the logic and routing in 
any column which makes up part of a dynamic task bounding-
box must be included in the partial reconfiguration bitstreams.  
Therefore, any static logic or routing that overlaps these 
columns, must be included in the partial configuration bitstream 
of that dynamic task otherwise it could be overwritten.   

For devices that contain bidirectional routing resources, care 
must be taken not to configure a second driver onto a line during 
the course of a partial reconfiguration otherwise device damage 
may occur.  One possible solution to this problem is to apply a 
deactivate configuration, which blanks out existing circuitry on 
part of the array, prior to loading a new dynamic task, but this 
would increase the reconfiguration interval.  To prevent static 
circuit disruption, the deactivate configuration needs to contain 
any static logic within the reconfiguration zone. 

The generation of partial bitstreams for the Virtex device 
therefore consists of several steps.  Firstly, all the routing 



resources used by each partial circuit must be evaluated. JRoute 
[18], part of the JBits SDK includes functions that perform this 
step.  The routing should then be checked for conflicts between 
circuits that can reside on the array concurrently.  The physical 
bounding-box for each dynamic task (which includes both logic 
and routing) should then be determined and, from this, the area 
occupied by each mutex set.  The circuitry to be reconfigured for 
each dynamic task therefore includes all logic and routing within 
all the columns occupied by the mutex set area.  In the Virtex 
FPGA, the terminal components can be converted to 
connections, simply by connecting the routes to both sides of the 
LUT (i.e. merging the routing to and from the two overlapping 
terminals).  This is because the LUT is configured to behave like 
a wire.  Once these processes have been completed, partial 
bitstreams for the affected FPGA areas can be generated 
(possibly including deactivate configurations).  JBits includes 
support for this process via JRTR [15]. 

9. EXAMPLE COMPLEX NUMBER 
MULTIPLIER 

As a simple example to demonstrate the operation of DCSTech, 
a dynamically reconfigurable constant complex number 
multiplier is presented.  Complex numbers consist of two parts: 
the real part and the imaginary part, which is a coefficient of j 
(the square root of –1).  The product of two complex numbers is 
calculated as follows: 

imagbimagarealbrealarealp _____ ×−×=
realbimagaimagbrealaimagp _____ ×+×=  

where p_real and p_imag are the real and imaginary parts of the 
product, p, of complex numbers a and b.  The operation therefore 
requires four multipliers, an adder and a subtractor. 

In the example, the complex product is formed by multiplying 
the input complex number, x, by a constant complex coefficient.  
The constant coefficient values can be hardwired into constant 
coefficient multipliers potentially saving area and improving 
performance.  A diagram of the system, with a coefficient of 10 
+ j12, is presented in fig. 5.  The constant complex coefficient is 
dependent on the multiplication factors of the four multiplier 
circuits.  Therefore, to support a different coefficient, the four 
constant coefficient multipliers need to be changed. 
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Figure 5. Circuit to multiply by 10+j12 

The multipliers can be reconfigured to alter their multiplication 
factor and thus allow the system to support other coefficients.  
The remaining circuitry does not require alteration in any way.  

The set of four multipliers therefore forms a dynamic task.  One 
dynamic task is required for each coefficient supported.  As the 
different coefficients are mutually exclusive, the dynamic tasks 
are all members of the same mutex set and can be assigned the 
same area of the logic array.  Since the registers and adders 
surrounding the dynamic multipliers are not altered during the 
reconfigurations, they constitute its static circuitry.   Based on 
these assignments, DCSTech can partition the dynamic design 
into multiple static designs that can be placed and routed as 
shown in fig. 1.  

  

 

Figure 7. Layout of the complex multiplier’s static circuitry. 
This consists of the registers, adder and subtractor in fig. 5, 
with terminal components locking the ends of connections to 
and from the multipliers in place. 

A complex multiplier with two dynamic tasks allowing 
multiplication by the coefficients (10 + j12) and (15 + j14) was 
created.  The layout of the (10 + j12) dynamic task and the static 
circuitry after APR on a XCV50 is shown in figs. 6 and 7.  Fig. 6 

Figure 6. Post-APR layout of the 10+j12 dynamic 
task. This comprises the four multipliers shown in 
fig. 5, surrounded by terminal components. The 
areas highlighted in gray indicate terminal 
components, while the area highlighted in white 
indicates the dynamic task bounding-box 



shows evidence of routing exceeding the dynamic task’s 
bounding-box. Similarly, fig. 7 shows that some of the static 
circuit’s routing has been placed within the bounding-box. When 
implemented, the partial configuration bitstreams should include 
such stray routing as discussed in section 8.  

After APR, the circuits timing can be verified.  DCSTech is used 
to reassemble the static parts of the system into a VITAL 
compliant gate-level model of the dynamic system and create a 
matching SDF file.  A new RIF file is written as part of this 
process, to match any design hierarchy changes which occurred 
during synthesis and APR.  This model is then further processed 
by DCSim to produce a dynamic simulation model, making use 
of the new RIF file.  A waveform for the timing simulation of 
the system is shown in fig. 8. 

The input number is represented by x_real and x_imag and is set 
to 15 + j16.  At 110 ns, the n_Rst (reset) input is de-asserted, 
allowing the multiplier to begin operation.  The two status  
signals at the bottom of fig. 8 indicate the configuration status of 
the two dynamic tasks.  Initially, task 15 + j14 activates.  The 
first multiplication is therefore: 

)1415()1615( jj +×+ , 

which equals (1 + j450), matching the result displayed on the 
outputs p_real and p_imag after 200 ns.  At 240 ns task 10 + j12 
activates.  For simplicity, a time of 50 ns is assumed for the 
reconfiguration.  Two clock edges occur during the 
reconfiguration interval.  The exact configuration of the mutex 
set zone is uncertain during this time.  The simulation model 
therefore puts ‘X’ on all the dynamic task outputs during this 
period.  These can be seen emerging from the pipeline between 
290 and 355 ns.  Thereafter, the result of multiplication by (10 + 
j12), which is (-42 + j340), is displayed on the p output. 

10. FUTURE WORK 
For large systems, the use of timing simulation to verify timing 
is a slow process.  Not only does the simulator require long run-
times, but also a lot of effort is required to generate a testbench 
with sufficient test-vectors and coverage.  Static Timing 
Analysis (STA) is a timing verification approach that evaluates 
the timing of each path through the circuit without test-vectors.  

These tools can read a variety of file formats including VHDL 
and SDF.  Since the new version of DCSTech produces both 
these files, it therefore may enable the application of STA to the 
dynamic design.  While this would not take into account the time 
consumed by reconfigurations, it would allow the verification of 
all the timing issues that affect circuit performance, such as 
maximum clock speed, critical path and set-up and hold times.  

In the DRL design flow presented in this paper, the designer is 
faced with the problem of partitioning the design at the RT level, 
rather than a lower level of abstraction.  At this level, the exact 
area occupied by each block is unknown, although it can be 
estimated approximately.  Therefore, some iteration and 
refinement may be required to obtain a suitable partitioning.  A 
design management tool could simplify this process, by 
estimating area requirements for each task in the application and 
presenting the information graphically.  Temporal floorplanners 
for netlists have already been developed.  This would be a 
similar idea but at a higher level of abstraction. 

Most of the bitstream generation steps outlined in section 8 are 
currently carried out manually.  As the APIs in JBits carry out 
many of the more complex functions associated with Virtex 
partial bitstream generation, it is possible to automate the 
process and this is the focus of future work. 

11. CONCLUSIONS 
This paper shows how the major similarities between the 
standard CAD tools available for different FPGA architectures 
can be exploited to implement an easily portable CAD 
framework for DRL design.  The technique relies on a select set 
of capabilities, supported by most CAD toolsets, within the 
underlying FPGA platform’s supporting tools.  From this, 
automated support for the main stages of the DRL design flow 
can be provided, including design specification, simulation, 
synthesis, APR and timing extraction.  

 The final stage of the design flow is partial bitstream generation.  
The ideas behind partial bitstream generation, which are 
common across different FPGA families, were outlined.  
However, the exact method used to produce these bitstreams 
depends on both the capabilities of the standard CAD tools and 
the FPGA’s configuration interface.  The broad similarities 

Figure 8. A backannotated timing simulation waveform for the dynamically reconfigurable complex multiplier 
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evident in the standard CAD tool support for most platforms are 
not replicated at this level. Indeed, most vendors provide no 
mechanism for accessing configuration bitstreams at all, since 
this compromises design security.  As a result, bitstream 
generation techniques will not port well between families.  For 
the Virtex, however, the availability of the JBits SDK provides 
convenient access to its bitstream along with a number of 
functions useful in bitstream generation. 
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