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ABSTRACT

This paper reports on a method for extending exdsivHDL
design and verification software available for tiénx Virtex
series of FPGAs. It allows the designer to appindard
hardware design and verification tools to the desiof
dynamically reconfigurable logic (DRL). The techoe
involves the conversion of a dynamic design intdtiple static
designs, suitable for input to standard synthesis APR tools.
For timing and functional verification after APRet sections of
the design can then be recombined into a singlamissystem.
The technique has been automated by extendingistingxDRL
design tool named DCSTech, which is part of the dbyic
Circuit Switching (DCS) CAD framework. The printés
behind the tools are generic and should be readilgnsible to
other architectures and CAD toolsets. Implemeomatf the
dynamic system involves the production of part@ahfiguration
bitstreams to load sections of circuitry. The pescef creating
such bitstreams, the final stage of our design flow
summarized.
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1. INTRODUCTION

In dynamically reconfigurable logic (DRL), a cirtuair system is
adapted over time. This presents additional desand
verification problems to those of conventional heade design
[1] that standard tools cannot cope with director this reason,
DRL design methods typically involve the use of itore of
industry standard tools, along with custom toolsl aome
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handcrafting to cover the conventional tools inad&igs.

This paper introduces extensions to a previougipned CAD
tool named DCSTech [2] which was created to autenthe
process of translating dynamic designs from VHDtoiplaced
and routed circuits. The original version of tleltsupported
the Xilinx XC6200 family of FPGAs, and concentrated the
timing verification aspects of the problem. Théappr reports on
the extensions made to DCSTech to target the Xilfirtex

family, and to enhance its capabilities. As a rs@@am
commercial FPGA, the design tool capabilities al#d# with

this family exceed those of the XC6200, allowing thesigner to
work more productively at a higher level of abstiat. By

combining the Virtex platform’s capabilities withdse of the
extended DCSTech, the designer has the ability pecify

designs in RTL/behavioural VHDL, place and routenthand
verify their timing. DCSTech’'s back-annotation pog has
been extended to produce VITAL VHDL models suitafile

DRL in addition to processing SDF timing informatio This

enables back-annotated timing analysis regardiegsdevel of
abstraction at which the original design was preduc

The original DCSTech tool was written to be extblesto other
architectures. This work verifies the validity it§ extensibility
hooks. The extensibility of DCSTech to other amttures
relies on the architecture’s CAD tools supportingetect set of
capabilities. Most modern CAD tools meet the migjaf these
requirements (with the exception of configuratioitstobeam
access), although some weaknesses, particulatheioontrol of
routing, are apparent. Therefore, the design tgcles presented
here should be readily extensible to other dynaltyica
reconfigurable FPGAs.

The paper begins by reviewing existing work in gec® before
presenting the challenges of DRL design in seciofhn section
4 we provide an overview of the principles behin@$Xech
while section 5 describes how they are appliedht VYirtex.
Section 6 discusses the enhanced back annotatjmabitities
necessary for design at the RTL and behavioralradigin
levels. The tools are designed to be as archieedtdependent
as possible and section 7 describes how the toplmaxtended
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to support other dynamically reconfigurable FPGAB.section
8, we describe how partial configuration bitstreamay be
obtained from the placed-and-routed subsectiortheflynamic
design, an area of current research. The designifl illustrated
with an example in section 9 before the paper cated with
remarks on future research into the use of othedero CAD
techniques such as Static Timing Analysis (STA)himitthe
DRL design flow.

2. EXISTING WORK

Over the last six years, researchers have develapednber of
tools and techniques, supporting different targ&LDsystems.
The target systems can be characterized by theiponent set,
the set of resources that make up the system. oRust
Computing Machines (CCMs), for example, includecpssors,
FPGAs and memory in their component set. Toolgiranfrom
high-level language compilers to structural-level
hardware/software co-design environments have hiesigned
for such target systems. CCM compilers include goaich as
Nimble [3], and compilers for the GARP chip [4], ich
compile ANSI-C. In addition to standard C compdai CCM
compilers partition the application into a softwasescutable and
a set of hardware modules that can be loaded oméo t
reconfigurable datapath or FPGA. As these toatsaamed at
achieving a rapid design flow, similar to conventbcomputer
programming, they do not usually achieve optimursults.
Tools such as JHDL [5]6], a structural/RT level
hardware/software codesign environment based oa, Jgiow
the designer to customize his circuitry and speitifyplacement.
This allows designers to use their own expertisegiimize the
layout and composition of their circuits to achiéedter results
(e.g. faster circuits and smaller reconfiguratioitstbeams if
partial reconfiguration is used) as well as designithe
associated software in one environment.

Another design challenge is found when the compbsenis a
single FPGA device or when dynamic reconfigurateapplied
within individual devices. This sort of designdius up many
situations that most industry standard tools camaoidle at all,
such as verification, partial bitstream generatio automatic
configuration controller production. Many of theldions
developed for this type of design also apply to C@&8ign. In
[7], Luk et al described a CAD framework for DRL sign
targeted at the Xilinx XC6200 FPGA. A library bdseesign
approach was used to encourage design reuse atrdl @rcuit
placement. This increases the similarity betweeocassive
configurations and reduces the size of the pacafiguration
files required. However, such a structural desigproach limits
the portability of the tools, since new librariesgeted to each
device are required. Vasilko's DYNASTY [8] CAD freework
uses a designer driven temporal floorplanning aggho in
which the designer can visualise the layout ofgsamkthe FPGA
over time. It acts as a DRL-aware replacement plaae and
route (PAR) tool and operates on synthesised gatd-Hesigns.
This has a number of advantages, such as easeaoéstimation
and the ability to control routing and componenacgiment
exactly. The designer therefore has the abilitygenerate
exactly the required layouts. However, as thest@ok closely

associated with the XC6200 architecture consideradffort
would be required to port them to operate with ptievices.

Research has also taken place into the use ofnalies

languages that have useful properties in expressipgcts of a
DRL design. Ruby [9], Pebble [10] and Lava [11]owall the

designer to specify component placement using roongenient
methods than the usual use of attributes assoocithdstandard
HDL designs. Pebble also includes a reconfigurstdtement,
which builds in support for DRL. Recent work witrata has
seen it used with the Xilinx Virtex FPGA.

The DCS CAD framework provides simulation (DCSind}, [
technology mapping and back annotation (DCSTech)af&l
configuration controller synthesis (DCSConfig) [12plthough

DYNASTY uses the same ideas as DCSTech, DCSTech

partitions the design at a higher level of abstoact This gives
two advantages in the form of portability and citcu
specialisation by the synthesis tool. Since theigdess
partitioned at an abstract level, DCSTech requingly a little
device specific knowledge. The majority of the tii@ning
process is platform independent, as is the regultircuit
description. The tool is therefore easily ported support
different architectures. As the designs are s\siteel after
partitioning any optimisations such as constanpagation can
be performed by the synthesis tools. If the desgpartitioned
after synthesis, a further optimization stage mayrdquired to
obtain the best results. At this level of abstmrctthe area
requirements of the circuit are more difficult tstimate, so
some iteration may be required to obtain the ogtlmeut.

Other researchers have concentrated on desigmvat levels of
abstraction, allowing the designer absolute contmler
component placement and routing. Such tools irclDHASTE
[13], which provides access to the XC6200 confijarafile and
the JBits SDK [14][15], which provides a variety twfols to
access, modify and verify Virtex configurations. dddition, it
allows the designer to produce new whole or partial
configurations. This approach could also be vakiasl a method
of performing final optimizations at the end of @her-level

design flow.

3. IMPLEMENTATION CHALLENGES

DRL is based on a many-to-one temporal logic mappifhis
means that different logic functions occupy the sarea of the
logic array at different points in time. Tasksttehare physical
resources cannot be active at the same time; tleeynatually
exclusive. Tasks can also be mutually exclusiveafgorithmic
reasons. A set of mutually exclusive tasks isechimutex set
and the swappable tasks are termgdamic tasks Tasks that
are not altered in any way over time are descradssiatic tasks

In designing a dynamic system, the various taskst toe placed
in such a way as to ensure that no task is accithgmverwritten

while it is active. The consequences of such eor eange from
subtle errors in operation to damage to the FPG&fit

Dynamic tasks are added to and removed from thay aoy
loading partial configuration files to alter logand routing. The
designer has to guarantee that all necessary coomebetween
the dynamic task and the surrounding environmehtbgi made.



The routing paths configured onto the array wite ttynamic
task must meet the routing coming from the surrinmdrray to
which they are intended to connect. The bitstreanust not
cause contention, for example by configuring a sdcdriver
onto a bidirectional routing resource.

The final problem the designer faces is that stah@sAD tools,
which are intended for the design of static ciguivill not
accept the mapping of more than one function tcadiqular
logic resource. Similarly, multiple drivers forparticular signal
would be treated as an error, since no mechanisistseio
indicate that the drivers are scheduled to opeaateifferent
times.

4. AUTOMATING DYNAMIC DESIGN
PROCESSING WITH DCSTech

4.1 Overview

DCSTech was designed as a tool to help the desitmer

overcome these problems. It can be thought of @®main
converter between the static and dynamic domaigs1f The
input dynamic system is split into a series ofistdesigns on
which conventional design tools (synthesis and ARR) be
used. After the required implementation steps haeen
performed on these static sub-designs, a numbedilesf are
produced. VITAL compliant VHDL files that describie
systems functionality are created, along with SDifesf
specifying the circuit's timing and configurationitdtreams.
These files all require further processing befbeytare useful.

To verify the designs functionality and timing, tisDF and
VHDL files must be converted back to the dynamiend, in
order to simulate them in the context of the olesgstem. To
implement the dynamic system, the configuratiorstléams
must also be converted into valid partial reconfigions. The
original version of DCSTech supported the domainveosion
of timing information. This was because designsenapecified
at the netlist level, and therefore a VITAL compligimulation
model could be produced from the original desighe Tise of
higher design abstractions such as behavioural codgbined
with synthesis means that no such netlist exisisréeynthesis.
The current version has therefore added netlistemion to the

static designs

original SDF conversion, leaving bitstream conwamsias a
manual process. The progress so far is illustratdig. 2.

4.2 Design and File Flow

The dynamic design input to DCSTech consists of VHiles

describing the systems functionality. Each dynataisk is
represented as a component instantiation. Heheetop-level
of the design is structural. Within each componeaty
synthesisable level of abstraction can be usede désigner
assigns each dynamic task to a mutex set. Thigxrset is
assigned a zone on the logic array and all dynaasks within
that set must reside within the corresponding zohkus, tasks
within a mutex set can overwrite each other, batisiogic and
tasks in other mutex sets are unaffected. Theecbsystem

operation is then assured so long as an appropriate

reconfiguration schedule is used (it is possiblet thihe
configuration control mechanism used to activate @eactivate
tasks could cause problems if it is incorrectly igesd).
Clearly, the zone of each mutex set must be largrigh to
accommodate its largest task.

lOriginaIVersionI This Version l Future work I

DCSTech

Figure 2: Domain transforms performed by different
DCSTech versions

The dynamic intent of the system is captured in

Reconfiguration Information Format (RIF) file.  Bhifile

describes the conditions under which tasks activéaee

configured onto the FPGA) and deactivate (are rexdowr

stopped), the mutex set to which they belong aneir th
placement. Information on the RIF file was pubgigfin [2].

In the static domain, one of the sub-designs deitls all the
static tasks in the design while each dynamic imgkaced into a

static results dynamic

j
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VHDL CAD Tools

timing results

Timing
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Information
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Figure 1: DCSTech: Domain conversion between static and dynamic domains



A and D are static tasks
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Figure 3: Floorplan of a DRL circuit containing two dynamic tasks before and after
processing by DCSTech

sub-design of its own. The concept of terminalsused to
ensure the correct routing connectivity with thenawic tasks
surrounding environment. These are special comysnesed to
lock the end of hanging signals to a particulaat@mn on the
logic array. By locating both hanging ends of iignal at the
same place, the connection can be easily producé€zhe

reserved area is added to the static sub-desigeafdr mutex set
in the original design. Similarly, the dynamickasmponents
are surrounded by a bounding-box that ensurestliegtwill be

placed within the reserved area for their mutex figt 3.

After the sub-designs have been placed and routestemdard
back-end tools, accurate estimates of their tindag be made.
These estimates are typically written out into &FSile. To

allow evaluation of the performance of the systethis

information must be applied to the overall dynarsicstem.
DCSTech is capable of mapping the SDF informatitio the

dynamic design simulation model that DCSim creaaéiswing

timing simulation.

To apply the SDF file to the dynamic domain, théscenust
each be changed to match the hierarchy of the dignaystem
simulation to which it is applied. In additiongthiming entries
for the terminals are removed and their relevamhirg
information mapped to isolation switches (simulatiartefacts
added by DCSim to mimic the design’s dynamic bedrain a
conventional simulator).  Although the system hieg is
altered during this domain conversion process atttaal timing
information is unaltered, providing an accurate itign model.
Further details of the process can be found in [2].

5. CHANGESMADE TO DCSTech TO
TARGET THE VIRTEX

A number of changes were required in order to geththe static
design representations to Virtex synthesis and AB#ts, as

summarized in table 1. These changes allow usfflicate the
capabilities DCSTech made available for the XC6200the
Virtex.

Table 1. Methods of implementing DCST ech requirements
on XC6200 and Virtex

Problem XC6200 Solution Virtex Solution

Reserving areas of

Prohibit constrain
the array

Reserve constraint

loc constraint allows
ranges to be
assigned

Locating dynamic bbox attribute
tasks within a assigns a bounding
zone box

Use register as
terminal

component on

hanging signals

Preventing partial
circuits from
being removed

Changes to design
representation and
software settings

Terminal Terminal
components with | components with log
rloc constraints constraints

Lock hanging
signals to fixed
array locations

Reserving areas on the logic array is a simple ghan attribute
from a RESERVE constraint which prevents XACT600ant
placing logic in the specified zone to specifyindPROHIBIT
constraint which does the same task in the XililxDCtools.
This is added to the User Constraints Format (UdE.

Dynamic task locations can be set using a comhinaif an rloc
and a bbox attribute in XACT6000. The Virtex toa#iow

location ranges to be specified with the loc atiiih

Because registers could be read from and writtethrimugh the
XC6200 configuration interface, any line connecteénd from
registers was considered a valid connection, evéenwthe



register had incomplete connectivity, such as ndpwu
connection. Using registers to terminate hangiet therefore
prevented partial circuits from being removed. sTteéchnique
does not work with the Virtex synthesis tools, nmakitwo
changes necessary in the way that dynamic desigae w
represented in the static domain. Firstly, the \IH&ntity of
each dynamic task must have ports in it to desciiise
connectivity, whereas before terminal componentseved! that
was required. In addition, to prevent large arefishe static
design being optimised away, the connectivity betwehe
inputs and outputs of the reserved area shouldnbiated.
Instantiating a black-box “mutex set” componentsagsulating
the inputs and outputs of all the dynamic taskthenmutex set
solves this problem. The Xilinx Foundation toolgpport an
option not to remove unconnected logic, which seffi for the
placement and routing stage.

The terminal component used to terminate hanging mes been
changed to a wire or buffer mapped to a look-upetabThis
component replaces the RPFDs and FDCs used onGie200
and has an advantage in that it does not contrilzutg
functionality, while accepting location constraints This
simplifies the changes required in the final béatn generation
stage and the netlist conversion process.

The changes described above allow most of the basic

requirements outlined in section 3 to be met by stendard
Virtex tools. However, one area of weakness istraiming the
placement of routing. The constraints describedvabonly
apply to logic placement, and therefore the roufiogn circuits
can exceed their bounding boxes and invade reserveds,
although the Xilinx modular design tools [16] cagiphalleviate
this problem. These are factors that the designest take
account of when configuration bitstreams are bengduced,
either by re-routing the offending lines, or by limting the
routes in the appropriate configurations. In effébe dynamic
task bounding-box should be increased in size tmramodate
any wayward routing.

6. ENHANCED BACKANNOTATED
TIMING SUPPORT

The original static-to-dynamic domain conversiompurt for
SDF files has been enhanced in the new revisioD@sTech.
SDF information can only be applied to gate-levelTAL

Dynamic design domain

compliant designs. If a design is produced atlzsiract level,
then SDF information cannot be applied to it.

As with most modern APR tools, the Virtex tools aepable of
writing out a VITAL VHDL netlist that matches the8DF files.
The netlists are typically flat “seas of gates”twito hierarchy
(although many tools allow control over hierarchgttening).
These files must be included in the domain conearprocess in
order to allow timing analysis to be performed whagsign
abstractions above the structural level are use@STech
handles this domain conversion process by instamgiathe
dynamic tasks into the VHDL netlist for the statiesign. The
resulting dynamic circuit is, in effect a gate-leversion of the
original RTL design, such as a DRL aware synthesis might
produce. DCSim is used to simulate the circuitinc& the
hierarchy of the system often changes if synth@stsAPR tools
flatten the design, it may not match the hierarehyries in the
original RIF file. Therefore, a new RIF file is itten as part of
the domain conversion process. The domain corwersi
therefore produces a complete new dynamic
representation that DCSim can use to build a sitimmanodel.

As reported in section 4, the relevant timing infiation
associated with the terminal components is usuatlplied to
DCSim’s isolation switches while the referenceshi® terminal
components are removed from the design. HowekerVirtex
terminal components have no functionality and tfoeeedo not
interfere with the simulation of the system. Aseault, those
components that contribute timing data do not némdbe
removed during the static to dynamic domain corigarshence,
there is no need to retarget the timing data to ittméation
switches (although the isolation switches are sitlloduced as
they are needed to simulate the circuit). Thispéiies the
conversion process thereby reducing the runtime thoé
DCSTech tool.

7. THE EXTENDED DCSTech TOOL

DCSTech now provides multi-architecture support emerfaces
with several third party CAD tools. It was origilyadesigned to
be extensible with as much of the technique as rgernd
device independent as possible. Obviously, chaimyge CAD
environment and device architectures will mean gaats of the
technique will need to be changed, either to tadkeaatage of
device features or to coexist with its supportingADC

VITAL
VHDL

XC6200 dependent
functions

DCSim'’s

CRE file DCSTech

Virtex dependent
functions

A

A
v v \ 4
CRF file] |Log file| [VHDL SDFD

Static design domai

VITAL I
VHDL
|

Other device
dependent functions

Figure 4: Fileflow for the extended DCST ech tool

design



framework. The major changes came on the backtanoo

side, where support for VHDL domain conversion veafled.

However, this is not something that is specificte Virtex

device, but a necessary step to enable designemsrkoat higher
levels of abstraction. Therefore, the conceptsinokbithe tool

remain generic and architecture independent and dé®gn

methodology, outlined in section 4, remains unclkeanm this

revision. To facilitate this extensibility, the viee dependent
functions are stored in dynamic link libraries. viNdevices can
therefore be supported with the addition of a DLThe file flow

for DCSTech is shown in fig. 4.

The shaded files represent non-design files usegaas of
DCSTech’s operation. The CRF files are cross-ezfee files
used to store information such as terminal compbnen
connectivity and isolation switch locations (DCSimYhe log
file contains reports for the user. The optiofs dian be used as
an alternative to typing in command line switches.

The design philosophy described in this paper bl able to
provide DRL design support for any FPGA and CADI teet
provided it complies with the following requirement

*  The FPGA is dynamically reconfigurable

e Synthesis or design translation from VHDL is
available

e A suitable component can be found to lock the erids
hanging nets to a particular location on the lagray

« A method is available to prevent unconnected discui
being removed from the design

e Components can be assigned a bounding-box
constraining them to a location on the array

e Areas of the array can be reserved, prohibitingioth
logic from being placed within that area

«  The APR tools produce back annotated VITAL VHDL
and SDF files

«  The names of elements instantiated into the design
structural manner are predictable within the SDH an
VITAL VHDL models. Components generated by
synthesis tools generally have unpredictable names,
but structural components are usually named afsr t
instantiation label and the hierarchy above therthn
original design. DCSTech has to be able to find the
terminal components that are added to the desigmein
dynamic-to-static conversion as part of the stttic-
dynamic conversion after APR

«  The configuration file is open to modification, \éa
open file format or APIs such as JBits. This i no
necessary for DCSTech itself, but would be necgssar
to modify the bitstreams in order to actually implnt
the system

Since most modern CAD packages fulfil these requénats,
with the exception of bitstream access, supportter majority
of modern dynamically reconfigurable FPGAs shoulé b
possible with only minor alterations in addition those
described in sections 5 and 6.

8. BITSTREAM GENERATION

Conventional CAD tools can provide a configuratioitstream
for each of the partial circuits produced by DCSTsadynamic-
to-static conversion process. As shown in fig.tf& partial

circuits consist of one configuration representaifthe static
circuits and a configuration for each dynamic dircurhe static
circuits are connected to terminal components ltiekt the ends
of floating connections to dynamic circuits in macSimilarly,

floating connections to the static circuits withéach dynamic
task are locked in place by identically locatedrigals. These
overlying terminal components must be converted &o
connection between the two routes, by alteringcth&iguration

bitstream.

Unless the tools are capable of producing partafiguration

files, their output files represent a configuratioheach partial
circuit on an otherwise unconfigured FPGA. If thdibles were

applied to the FPGA, they would blank out all thastng

circuitry. For the system to operate correctlywbwer, only

circuitry that shares resources with the partiacuit to be

loaded should be disrupted when it is activateche Partial

circuit configurations need to be converted to ipart
configurations, which reconfigure only the areaugmed by a
dynamic task within its mutex set zone.

A further complication is caused by the lack of wohover
routing placement noted in section 5. It is pdssthat routing
in a dynamic task will use the same line as routm@ static
task. If the dynamic task is then configured othie array, the
routing conflict will cause errors in operation armbssibly
device damage. The designer must ensure that dieéng
resources used by each dynamic task are not slbgyredatic
tasks or dynamic tasks in other mutex sets.

The target device configuration mechanism is arrofhetor in

the strategy used to produce partial configuratiofise XC6200
allows individual parts of the logic array to béeatd; therefore,
only parts of the array in the dynamic task bougéebdox need be
considered. In the Virtex, however, reconfiguratiakes place
in columns. The smallest unit of configurationad#ttat can be
applied is a frame, which configures a subset efrésources in
a column. Forty-eight frames are required to catgly

configure a column [17]. As a result, all the lpgind routing in
any column which makes up part of a dynamic tasknding-

box must be included in the partial reconfiguratlutstreams.
Therefore, any static logic or routing that ovesgaphese
columns, must be included in the partial configiorabitstream
of that dynamic task otherwise it could be overtgrit

For devices that contain bidirectional routing rases, care
must be taken not to configure a second driver aritoe during
the course of a partial reconfiguration otherwiseide damage
may occur. One possible solution to this problentoi apply a
deactivate configuration, which blanks out existiigeuitry on

part of the array, prior to loading a new dynanaski, but this
would increase the reconfiguration interval. Teyant static
circuit disruption, the deactivate configurationede to contain
any static logic within the reconfiguration zone.

The generation of partial bitstreams for the Virteevice
therefore consists of several steps. Firstly, thé routing



resources used by each partial circuit must beueted. JRoute
[18], part of the JBits SDK includes functions tipgrform this
step. The routing should then be checked for aiafbetween
circuits that can reside on the array concurrenflihe physical
bounding-box for each dynamic task (which inclubegh logic
and routing) should then be determined and, froisy the area
occupied by each mutex set. The circuitry to lmemégured for
each dynamic task therefore includes all logic mmding within
all the columns occupied by the mutex set areathénVirtex
FPGA, the terminal components can be converted to
connections, simply by connecting the routes td lsades of the
LUT (i.e. merging the routing to and from the tweedapping
terminals). This is because the LUT is configuethehave like
a wire. Once these processes have been complebetil
bitstreams for the affected FPGA areas can be gtater
(possibly including deactivate configurations). itdBincludes
support for this process via JRTR [15].

9. EXAMPLE COMPLEX NUMBER
MULTIPLIER

As a simple example to demonstrate the operatidbG@BTech,

a dynamically reconfigurable constant complex numbe
multiplier is presented. Complex numbers consigivm parts:
the real part and the imaginary part, which is afficient of j
(the square root of —1). The product of two complambers is
calculated as follows:

p_real=a_realxb_real-a_imagxb_imag
p_imag=a_realxb_imag+a_imagxb _real

where p_real and p_imag are the real and imagipars of the
product, p, of complex numbers a and b. The ojuerdiherefore
requires four multipliers, an adder and a subtmacto

In the example, the complex product is formed bytiplying

the input complex number, X, by a constant compteefficient.
The constant coefficient values can be hardwireéd @onstant
coefficient multipliers potentially saving area aivproving
performance. A diagram of the system, with a doigffit of 10
+j12, is presented in fig. 5. The constant compleefficient is
dependent on the multiplication factors of the fooultiplier

circuits. Therefore, to support a different cogfnt, the four
constant coefficient multipliers need to be changed

x_real D
» X10 o
Q
P>
x_imag 5 ’ — p_real
—> X12 D £
Q
D
L.- Q
, —» p_imag
—E@ |

Figure5. Circuit to multiply by 10+j12

The multipliers can be reconfigured to alter thainltiplication
factor and thus allow the system to support otlwsffeients.
The remaining circuitry does not require alteratiorany way.

The set of four multipliers therefore forms a dynatask. One
dynamic task is required for each coefficient sufgmh As the
different coefficients are mutually exclusive, thgnamic tasks
are all members of the same mutex set and candignaed the
same area of the logic array. Since the registes adders
surrounding the dynamic multipliers are not alteceding the
reconfigurations, they constitute its static citgui Based on
these assignments, DCSTech can partition the dyndesign
into multiple static designs that can be placed ended as
shown in fig. 1.

Terminal Components

Dynamic Tast Bounding-Box
Figure 6. Post-APR layout of the 10+ 12 dynamic
task. Thiscomprisesthe four multipliersshown in
fig. 5, surrounded by terminal components. The
areas highlighted in gray indicate terminal

components, whilethe area highlighted in white
indicates the dynamic task bounding-box

Terminal Components

Dynamic Task Bounding-Box

Figure 7. Layout of the complex multiplier’s static circuitry.
This consists of the registers, adder and subtractor in fig. 5,
with terminal components locking the ends of connections to
and from the multipliersin place.

A complex multiplier with two dynamic tasks allowgn
multiplication by the coefficients (10 + j12) anth(+ j14) was
created. The layout of the (10 + j12) dynamic tas# the static
circuitry after APR on a XCV50 is shown in figsafd 7. Fig. 6
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Figure 8. A backannotated timing simulation waveform for the dynamically reconfigurable complex multiplier

shows evidence of routing exceeding the dynamid’sas
bounding-box. Similarly, fig. 7 shows that somethé static
circuit's routing has been placed within the bomgdbox. When
implemented, the partial configuration bitstrearnewd include
such stray routing as discussed in section 8.

After APR, the circuits timing can be verified. BTech is used
to reassemble the static parts of the system intdITRAL
compliant gate-level model of the dynamic systerd areate a
matching SDF file. A new RIF file is written asrpaf this
process, to match any design hierarchy changeshwdtcurred
during synthesis and APR. This model is then fmritrocessed
by DCSim to produce a dynamic simulation model, imglkise
of the new RIF file. A waveform for the timing simation of
the system is shown in fig. 8.

The input number is represented by x_real and xgieral is set
to 15 + j16. At 110 ns, the n_Rst (reset) inputiésasserted,
allowing the multiplier to begin operation. The awstatus
signals at the bottom of fig. 8 indicate the coufaion status of
the two dynamic tasks. Initially, task 15 + jl4ieates. The
first multiplication is therefore:

(15+ j16) x (15+ j14) ,

which equals (1 + j450), matching the result digpthon the
outputs p_real and p_imag after 200 ns. At 24fask 10 + j12
activates. For simplicity, a time of 50 ns is ased for the
reconfiguration. Two clock edges occur
reconfiguration interval. The exact configuratiohthe mutex
set zone is uncertain during this time. The sitiofamodel
therefore puts ‘X’ on all the dynamic task outpdisring this
period. These can be seen emerging from the ppdletween
290 and 355 ns. Thereafter, the result of muttgilon by (10 +
j12), which is (-42 + j340), is displayed on theugput.

10. FUTURE WORK

For large systems, the use of timing simulatiovedfy timing
is a slow process. Not only does the simulatouireqong run-
times, but also a lot of effort is required to gexte a testbench
with sufficient test-vectors and coverage.  Stafianing
Analysis (STA) is a timing verification approachathevaluates
the timing of each path through the circuit withoest-vectors.

during the

These tools can read a variety of file formatsudotg VHDL
and SDF. Since the new version of DCSTech prodbotls
these files, it therefore may enable the applicatibSTA to the
dynamic design. While this would not take into@aatt the time
consumed by reconfigurations, it would allow theifieation of
all the timing issues that affect circuit perforroan such as
maximum clock speed, critical path and set-up asid times.

In the DRL design flow presented in this paper, disigner is
faced with the problem of partitioning the designhe RT level,
rather than a lower level of abstraction. At th@gel, the exact
area occupied by each block is unknown, althougbait be
estimated approximately. Therefore, some iteratiand

refinement may be required to obtain a suitableitgaring. A

design management tool could simplify this proceby,

estimating area requirements for each task in pipiiGation and
presenting the information graphically. Tempotabfplanners
for netlists have already been developed. Thisldvdae a
similar idea but at a higher level of abstraction.

Most of the bitstream generation steps outlineddation 8 are
currently carried out manually. As the APIs in t3B¢arry out
many of the more complex functions associated Wittiex
partial bitstream generation, it is possible toomudte the
process and this is the focus of future work.

11. CONCLUSIONS

This paper shows how the major similarities betwehbr
standard CAD tools available for different FPGA harectures
can be exploited to implement an easily portable DCA
framework for DRL design. The technique reliesaoselect set
of capabilities, supported by most CAD toolsetsthimi the
underlying FPGA platform’s supporting tools.  Frothis,
automated support for the main stages of the DRdigdeflow
can be provided, including design specificatiormugation,
synthesis, APR and timing extraction.

The final stage of the design flow is partial tséam generation.
The ideas behind partial bitstream generation, whare
common across different FPGA families, were outine
However, the exact method used to produce thestrdzitns
depends on both the capabilities of the standar® @ls and
the FPGA's configuration interface. The broad &hnities



evident in the standard CAD tool support for mdsatfprms are
not replicated at this level. Indeed, most vendmsvide no
mechanism for accessing configuration bitstreamallatsince
this compromises design security. As a resultstigiam
generation techniques will not port well betweemifees. For
the Virtex, however, the availability of the JBBOK provides
convenient access to its bitstream along with a bmmof
functions useful in bitstream generation.
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