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ABSTRACT
Model checking techniques have not been effective in im-
portant classes of software systems characterized by large
(or infinite) input domains with interrelated linear and non-
linear constraints over the input variables. Various model
abstraction techniques have been proposed to address this
problem. In this paper, we wish to propose domain abstrac-
tion based on data equivalence and trajectory reduction as
an alternative and complement to other abstraction tech-
niques. Our technique applies the abstraction to the input
domain (environment) instead of the model and is appli-
cable to constraint-free and deterministic constrained data
transition system. Our technique is automatable with some
minor restrictions.

Categories and Subject Descriptors
D.2.4 [ Software/Program Verification]: Model Check-
ing

General Terms
Verification

Keywords
Model checking software systems, domain abstraction, nu-
meric constraints

1. INTRODUCTION
Model checking (both explicit state and symbolic) has been
successfully used to verify properties of various finite state
systems, such as communications protocols [4], concurrent
systems [21], hardware designs [7], and some software sys-
tems [2, 8, 19]. Nevertheless, the usefulness in verifying
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properties of software systems has been limited since im-
portant classes of software systems involve large input do-
mains (e.g., unbounded integer variables) as well as inter-
related numeric constraints over the variables in the input
domain—characteristics that severely limit the usefulness
of model checking. To address this problem, various tech-
niques for abstracting the model to a simplified model that
can be model checked is an active research area. Here we
propose domain abstraction based on data equivalence and
trajectory reduction as an alternative and complement to
other abstraction techniques. This technique can be fully
automated and applies the abstractions to the input domain
instead of the constraints on transitions in the model itself.

Important classes of software systems can be viewed as con-
sisting of a finite control component and a (typically infi-
nite or very large) data component ; examples include many
safety-critical control systems. In such systems, the vari-
ables in the data component represent the input quantities
to the system, for example, in an avionics system, inputs
may be altitude, range, bearing and various pilot selectable
thresholds. The transitions in the system are guarded by
various linear and non-linear constraints on these variables.
Model checking systems with these characteristics poses se-
rious challenges.

To address this problem, various techniques to abstract the
model to a finite domain have been proposed, for exam-
ple, predicate abstraction [14]. Other researchers have at-
tempted to combine constraint solving with model check-
ing [9]. Both approaches have achieved some success. These
related efforts are discussed in some detail in Section 2.

As an alternative and a complement, we have investigated
abstractions over the input domain of the systems rather
than the system itself. Domain abstraction based on data
equivalence uses the transition conditions on the input vari-
ables to partition the infinite input domain into a finite set of
partitions from which one representative input is selected.
For systems where there are no data constraints, the ab-
stracted system bisimulates the original system; but, if there
are data constraints, the abstracted system simulates the
original system. In systems with data constraints, trajec-
tory reduction maps a possibly infinite set of input variable
trajectories through the state space to a single representa-
tive trajectory in a finite domain. This reduced domain is



computed based on the numeric constraints on the input
variables in conjunction with a fix-point computation for
the variables whose trajectories in which we are interested.

In the next section we provide an overview of related work.
After introducing our system model in Section 3, Section 4
discusses domain abstraction for constraint free systems and
provides a proof that it is a bi-simulation relation. In Sec-
tion 5, we present trajectory reduction and provide a proof
that it is a simulation relation for systems with determin-
istic data constraints. We illustrate with examples, both
abstraction techniques applied to an infinite state-space sys-
tem. Section 6 discusses the conclusions and future work.

2. RELATED WORK
State space explosion is a serious problem when verifying
systems using model-checkers. This problem is especially
pronounced in the case of software system specifications,
which often have large or infinite data domains. To deal ef-
fectively with the state space explosion problem, one should
be able to derive meaningful conclusions about the reach-
able states of the system without actually exploring those
states individually. There has been extensive work in ad-
dressing state space explosion problem in model-checkers [6,
12, 13, 15, 16, 22, 27, 28], and many techniques are being
successfully used, e.g., symbolic model-checking, partial or-
der reduction, symmetry, induction, abstraction and compo-
sitional reasoning. See [10] for a comprehensive treatment
of the subject. Here, we discuss a few specific works that
are closely related to ours.

Heitmeyer et al.[19] describe automatic abstraction tech-
niques for specifications written in SCR. Given a property
to verify, they describe an abstraction method to automat-
ically remove irrelevant data variables and remove detailed
monitored variables. The former is similar to slicing [17,
18], where dependency information from the model is used
to remove parts that do not have an effect on the property of
interest. In our proposed method, irrelevant data variables
would get replaced with a single representative value, effec-
tively removing it. The latter is a data abstraction technique
which is achieved in our method by choosing representative
elements from the data equivalence classes of the variable.

Chan et al. [9] describe a technique for model-checking cer-
tain classes of systems in which data constraints across tran-
sitions can be separated as pre-state and post-state condi-
tions connected by boolean operators. Such systems can
be model-checked by representing the conditions as boolean
variables and constraints as values of the variables before
and after the transition. During model-checking, a con-
straint solver is used to eliminate infeasible combinations
of conditions. This technique can handle systems with both
linear and non-linear numeric conditions, but is limited to
data-memoryless or data invariant system which corresponds
to our notion of constraint-free system described later. Our
proposed method, when applied to such systems, would stat-
ically find representative values in the domain of the data
variables for each feasible combination of the conditions be-
fore model-checking the system.

When data constraints cannot be separated as above, one
may have to approximate the system behavior using ab-

stract data. For example, consider a transition of the form
[a −→ b when y > 50] with the constraint y′ = y + 1. If we
are only interested in global properties that check if y > 50,
we may be able to approximate the system behavior using
Predicate abstraction [26, 14]. A specific predicate of in-
terest is modeled as an abstract boolean variable. In this
case y > 50 can be represented as p. The values of the
data-variables appearing in the predicate and constraints in-
volving them are then mapped to values of and constraints
involving the abstract variable. Thus, the domain of the
non-negative integer y is implicitly mapped as y = [0..50] →
p = false and y = (50..∞) → p = true. y′ = y + 1
would then be transformed to p′ = true if (p = true) and
p′ = one of true or false if (p = false). This is a conserva-
tive abstraction since it introduces more behavior. When
mapped back to the concrete domain, the corresponding
transitions in the concrete system can be seen as y′ ∈ [0..∞)
when y ≤ 50 and y′ ∈ [51..∞) when y > 50. This is a super-
set of the transitions represented by y′ = y+1. However, by
this conservative abstraction, we have now reduced a large
domain [0..∞] to a two-element domain true, false. In the
process, we also had to modify the data-constraint to map it
to the abstract domain. Such an abstraction, however, may
not be able to capture path properties that depend on the
data-constraints in the original system.

An alternative approach would be to retain the data-con-
straints as they are, but bound the domain of the data
variables to make model-checking feasible. However, one
should be careful not to remove existing behavior in the
process of bounding the domains, for then the resulting sys-
tem may satisfy some properties that were not true in the
original system (e.g., restricting y to [0..10], would result in
AG(y < 50)) becoming true). Such under-approximations
could be useful when the goal is to show the existence of an
error. In such a case, one could presumably retain a sub-
set of the behavior of the original system and yet success-
fully exhibit the presence of errors. However, in the context
of verification, the abstraction must ensure that the data
that is excluded by bounding the domain does not have any
unique behavior that is not captured by the data included
within the bound. We pursue this alternative approach by
suggesting such a method for bounding data domains. This
method ensures that satisfaction of a property expressed in
∀CTL∗ by the abstract system guarantees satisfaction of the
property in the original system.

It must be noted here that there are other approaches for
model checking infinite state systems with data transition
constraints in the domain of hybrid systems and concur-
rent systems [1, 5]. These approaches are based on building
special-purpose tools (e.g., [20]) to model-check such sys-
tems. In contrast, we apply abstraction techniques statically
and use a traditional model-checking tool like SMV [23, 24]
to verify properties on the abstract system.

3. SYSTEM MODEL AND DEFINITIONS
We first define some terms and formalisms that are used in
the remainder of the paper.

3.1 System Model
Our system model is a tuple (N, N0, v, D, D0, ∆, C, Ψ)
where:



N is a finite set of control nodes;

N0 is a subset of N containing initial control nodes;

v is a finite vector [v1, . . . , vk] of data variables;

D is the domain of v obtained as a cross-product of the
domains of the components vi as D1 × . . .×Dn;

D0 is a subset of D describing the initial values of data
variables;

C is a finite set of conditions on data variables of the
form c(v) ./ 0 where ./∈ {<,≤, =, 6=,≥, >} and c :
D −→ <;

Ψ is a finite set of data constraints of the form ψ(v, v′) ./
0 where v′ is a vector of data variables identical to v
and ψ : D ×D −→ <; and,

∆ is a relation between N ×N and b(C)× b(C)× b(Ψ),
where b(C) and b(Ψ) are sets of finite boolean combi-
nations of data-conditions C and data-constraints Ψ,
respectively.

Data conditions in C define data regions of the state-space
in terms of numeric inequalities while the data constraints
in Ψ capture joint constraints involving data values in the
pre-sate and post-state. This system model can be used to
represent a wide range of reactive systems. For our purposes,
we require some restrictions on the type of data-constraints
ψ, which are presented later in this section.

This system model can be considered to be a basic transition
system M = (S, S0, R, L, AP ), where:

• S = N ×D; the state has control and data parts.

• S0 = N0×D0; the initial states are given by the initial
values for control and data parts.

• R((m, x), (n, y)) ⇐⇒ ∃α, β ∈ b(C), ∃γ ∈ b(Ψ) :
∆((m, n), (α, β, γ))∧α(x)∧β(y)∧γ(x, y); i.e., there is
a transition between two states exactly when the sys-
tem model has a transition between the corresponding
control and data parts as defined by ∆.

• AP = N ∪ C; i.e., propositions are control nodes and
data conditions.

• L(n, x) = {n} ∪ {α ∈ C | α(x)}; i.e., states are labeled
by their control nodes and data conditions.

In this paper, when we refer to a basic transition system, it
is assumed that there is an underlying system model, which
is viewed as the basic transition system. For notational con-
venience we write (s, t) ∈ R as R(s, t) and call s and t the
pre-state and post-state respectively.

We define some common notations below that we use in this
paper.

1. For s ∈ S, R(s) = {t ∈ S | R(s, t)} and for A ⊆
S, R(A) =

⋃
s∈A R(s).

2. R0(s) = R(s) and Rn+1(s) = R(Rn(s)) for n ≥ 0.

3. s|N = n, s|D = d, when s = (n, d) ∈ S,

4. R|D = {(x, y) | R((m, x), (n, y)) for some m, n ∈ N}.

R|D denotes the projection of the transition relation R onto
the data component, and s|N , s|D denote respectively, the
control and data components of state s. We would use Di

instead of D, if the projection to the ith data variable is
required.

3.2 Basic Definitions
Following basic definitions will be used throughout this pa-
per.

Definition 1. Two data points x, y ∈ D are data equiv-
alent, written x ≡ y, if ∀c ∈ C : c(x) = c(y).

D/≡ denotes the set of equivalence classes induced by ≡ on
D, ei denotes the ith data equivalence class, and rep(D/≡)
denotes a set of representatives from D, one per equivalence
class ei. Intuitively, x is data equivalent to y if and only if x
and y have the same valuations (i.e., same truth values) for
all data conditions. A data equivalence class ei is a set of
data values that have same valuations for all data conditions.

Definition 2. Two states s, s′ ∈ S are state equiva-
lent, written s ' s′, if L(s) = L(s′), i.e., s|N = s′|N ∧
s|D ≡ s′|D.

Two states are state equivalent when they have the same
control node and also their data nodes have same valuations
for all data conditions. Note that two states are equivalent
if and only if they have the same labels according to our
system model. Data nodes from two equivalent states are
data equivalent, but the reverse case is not necessarily true.
S/' denotes the set of equivalence classes induced by '
on S and Ei denotes the ith state equivalence class. A state
equivalence class Ei is a set of states that are state equivalent
to each other, i.e., a set of states with the same label.

We consider transition systems according to two categories:
constraint free data transition systems, and constrained data
transition systems.

Definition 3. A transition system M is a constraint-
free data transition system if R(s, t) for some s, t implies
R(s′, t′) for all s′ ' s, t′ ' t.

In a constraint-free data transition system, existence of a
transition between two states (s and t) implies the exis-
tence of a transition between any pair of states (s′ and t′)
from their corresponding state-equivalence classes. In other
words, the systems does not impose any constraints on how
data variables change value.

When a system is not a constraint-free data transition sys-
tem, the transition relation constrains how the data vari-
ables may change values. In general, the data constraints



that determine how the data variables can change value can
be an arbitrary relation. In the work presented here we
consider only relations that are functions over the data do-
main that satisfy certain restrictions. These restrictions are
formally defined in the following paragraphs.

Definition 4. R|Di is said to be a constrained transi-
tion if for each state-equivalence class Ej, there is a unique
function fEj : Di −→ Di such that, t|Di = fEj (s|Di), when-
ever s ∈ Ej and R(s, t) holds for states s, t ∈ S.

A constrained data transition means that the transition re-
lation imposes constraints on the specific data values of the
pre-state and the post-state. The type of constraints we
consider here are functions—i.e., the data in the post-state
is an application of a function to the data in the pre-state.
The specific function to be applied may be dependent on the
label of the pre-state. Thus, whether or not a transition ex-
ists between two states is determined by the data transition
function as well as the state labels.

When the transition functions are the same for all state
equivalence classes, i.e., fEi = fEj for all Ei, Ej ∈ S/',
we say that the data transition is a global data transition.
Otherwise, we call it a local data transition. Global data
transitions are defined uniformly over D while local data
transitions are defined depending on each state label. Typi-
cally, global data transitions are used for imposing environ-
mental constraints, such as physical laws, on data variables.
Local data transitions are used for data maintained by the
system such as counters and flags.

Definition 5. A transition system M is a constrained
data transition system if R|Di is a local or a global data
transition for some i.

A data variable vi is said to be globally constrained if R |Di is
a global transition, and locally constrained if R |Di is a local
transition, and unconstrained if there is no data transition
constraint imposed on the transition.

3.3 Bisimulation and Simulation Relations
We use definitions of bisimulation and simulation relations
borrowed from [10] for formal proofs presented in the next
two sections.

Definition 6. Let M = (S, S0, R, L, AP ) and M ′ =
(S′, S′0, R

′, L′, AP ) be two structures with the same set of
atomic propositions AP . A relation B ⊆ S×S′ is a bisim-
ulation relation between M and M ′ if and only if for all s
and s′, if B(s, s′) then following conditions hold:

1. L(s) = L′(s′)

2. For every state s1 such that R(s, s1) there is s′1 such
that R′(s′, s′1) and B(s1, s

′
1).

3. For every state s′1 such that R′(s′, s′1) there is s1 such
that R(s, s1) and B(s1, s

′
1).

Definition 7. The structures M and M ′ are bisimu-
lation equivalent if there exists a bisimulation relation B
such that for every initial state s0 ∈ S0 in M there is an
initial state s′0 ∈ S′0 in M ′ such that B(s0, s

′
0). In addition,

for every initial state s′0 ∈ S′0 in M ′ there is an initial state
s0 ∈ S0 in M such that B(s0, s

′
0).

Bisimulation equivalence guarantees that M and M ′ satisfy
the same set of CTL∗ formulas constructed using the atomic
propositions in AP . However, bisimulation is a strong re-
quirement and for many systems it may not yield a signif-
icant reduction in the state-space. In other to achieve a
greater reduction, the notion of a simulation relation is in-
troduced.

Definition 8. Given two structures M and M ′ with
AP ′ ⊆ AP , a relation H ⊆ S × S′ is a simulation re-
lation between M and M ′ if and only if for all s and s′, if
H(s, s′) then the following conditions hold.

1. L(s) ∩AP ′ = L′(s′).

2. For every state s1 such that R(s, s1), there is a state
s′1 such that R′(s′, s′1) and H(s1, s

′
1).

Definition 9. M ′ simulates M if there exists a simu-
lation relation H such that for every initial state s0 in M
there is an initial state s′0 in M ′ such that H(s0, s

′
0).

When M ′ simulates a structure M , every behavior of M is
also a behavior of M ′. However, the abstracted structure
M ′ may have behaviors that are not possible in the original
structure M . It is shown that if M ′ simulates M then every
∀CTL∗ formula satisfied by M ′ is also satisfied by M [10].

4. CONSTRAINT-FREE SYSTEMS
When the system does not have data constraints, one could
bisimulate it with a structure that has one representative
from each equivalence class. This is formally established
here.

4.1 Abstraction
For a given constraint-free data transition system M =
(S, S0, R, L, AP ), let D′ = rep(D/≡) and M ′ =
(S′, S′0, R

′, L′, AP ) where S′ = N ×D′, R′ = R ∩ (S′ × S′),
S′0 = S0 ∩ S′ and L′ : S′ −→ 2AP .

Theorem 1. The state equivalence relation ' is a bisim-
ulation relation between M and M ′.

Proof. Suppose s ' s′ where s ∈ S, s′ ∈ S′.

1. L(s) = L(s′) = L′(s′) since s and s′ have the same
control label and the same valuation for all data con-
ditions.



Figure 1: The ASW system

2. Suppose R(s, t) holds for some t ∈ S. Let ei be the
data-equivalence class of t, i.e., t|D ∈ ei. By the defi-
nition of D′, there is some ri ∈ D′ such that ri ∈ ei.
Let t′ = (t|N , ri). t ' t′ is obvious. Since M is a
constraint-free data transition system, by definition,
R(s, t) ∧ s ' s′ ∧ t ' t′ implies R(s′, t′). Therefore
R′(s′, t′) holds since R′ = R∩ (S′×S′) and s′, t′ ∈ S′.

3. Suppose R′(s′, t′) holds for some t′ ∈ S′. By the def-
inition of R′, R(s′, t′) holds in M where t′ ∈ S′ ⊆ S.
Let t = t′. From the fact that M is a constraint-free
data transition system, R(s′, t′) ∧ s′ ' s ∧ t′ ' t
implies R(s, t).

Theorem 2. The structures M and M ′ are bisimulation
equivalent.

Proof. Given an initial state s0 ∈ S0, let ei ∈ D/≡ be
the equivalence class to which s0 belongs. By definition,
D′ contains a representative ri of the class ei. Let s′0 =
(s0|N , ri). Then, s′0 ∈ S′ and s0 ' s′0. The converse is
trivial.

As a result, we can reduce the number of states of the ab-
stracted system by choosing one representative from each
data equivalence class without affecting the system behav-
ior. The resulting system M ′ is an exact abstraction of the
concrete system M . The idea behind this abstraction tech-
nique is similar to that of partition testing. When the input
data space can be partitioned in a way such that the system
behavior is determined completely by identifying the parti-
tion to which a given input data belongs irrespective of the

actual data values, one could completely test the system by
selecting one representative from each input partition [3].

4.2 Example: Constraint Free Altitude
Switch

Now, we show a practical application of the abstraction tech-
nique for a constraint-free system. Here, an integer valued
representative of each equivalence class is effectively com-
puted by finding real-valued representatives and obtaining
the closest integer in the class—a problem of polynomial
complexity.

Our example is drawn from the the avionics domain: the
Altitude Switch (ASW) [25]. The ASW is a hypotheti-
cal device that turns on another subsystem (the Device-
Of-Interest–DOI), whenever the aircraft descends below a
threshold altitude and turns the power back off again when
the aircraft ascends above the threshold (plus a hystere-
sis factor). The hysteresis factor is defined in terms of the
threshold—the ASW turns off the DOI when the aircraft
ascends above threshold + threshold

50
. Other systems in the

cockpit may independently turn the DOI off and on. The in-
put variable DOIval indicates the status of the DOI. There
are no initial values or data constraints in the system — this
is a constraint-free system. Figure 1 shows the ASW state
transition diagram.

In this setting we may want to check properties such as “the
command will not be issued if DOIval=Off and altitude is
above threshold”. This property can be specified in CTL∗

as:
safety1: AG((DOIval = Off)∧ (altitude > threshold) ⇒
AX¬command)

Model checking properties such as this without abstraction
is infeasible because of the large numeric variables in this



eq class min(a) max(a) min(t) representative (a, t)
e1 0 35000 2000 when a = 0 (0, 2000)
e2 2000 35000 2000 when a = 2000 (2000, 2000)
e3 2040 40000 2000 when a = 2040 (2040,2000)
e4 2001 35700 2000 when a = 2001 (2001,2000)

Table 1: Selection of a representative from each equivalence class

system; altitude: 0..40,000 and threshold: 2,000..35,000.

To compute the equivalence classes needed for abstraction,
the numeric conditions are extracted from the transition re-
lation and the property in question. In this example, alti-
tude < threshold, altitude ≥ threshold, altitude ≥ threshold

+ threshold
50

are the data conditions extracted from the tran-
sition constraints and altitude > threshold is extracted from
the property safety1. Note that this condition is not part
of the system description (i.e., initial state and transition
conditions) but is rather an environment condition specified
in the property for verification. These conditions define the
equivalence classes.

In general, if we have n conditions, we have 2n possible
equivalence classes—in this case 16. In actuality, the number
of satisfiable equivalence classes is much smaller. There are
ways of reducing the number of equations we need to solve to
find the equivalence classes, but this problem is beyond the
scope of this report and will not be discussed further here. In
the ASW, there are only four satisfiable equivalence classes:
(below, a represents altitude, t represents threshold)

e1 : a < t ∧ a ≤ t ∧ a < t +
t

50

e2 : a ≥ t ∧ a ≤ t ∧ a < t +
t

50

e3 : a ≥ t ∧ a > t ∧ a ≥ t +
t

50

e4 : a ≥ t ∧ a > t ∧ a < t +
t

50

Using a constraint solver, the maximum and the minimum
value in the class are identified and one of them is used for
selecting the representative (Table 1). The constraint solver
CLP (q, r) [11] is used for this purpose. The last column
shows the (altitude, threshold) pair representing each equiv-
alence class—this reduces the input domain to altitude: {0,
2000, 2001, 2040} and threshold: {2000}. With this ab-
straction, the property safety1 is verified to be true using
the model checker NuSMV [24] in seconds.

Since the DOI may be a safety system that is only turned on
as the aircraft is descending, a desired property may be that
the ASW shall never turn the DOI on while ascending. One
could formulate the property that the DOI is not turned on,
using the following CTL∗ property:
safety2: AG((DOIval = OFF ∧ ¬(DOI Status = On)) ⇒
AX¬(DOI Status = On)).
The abstraction for constraint-free Altitude Switch de-
scribed above is not sufficient to express the fact that the
aircraft is ascending without imposing data constraints on
altitude. In the system as described above, the altitude may

change unconstrained (thus we have no concept of the air-
craft climbing) or the threshold may be changed at any time
so that in one step the aircraft is above the threshold and in
the next it is below because of an increase in threshold. In
actuality, the environment of the ASW is constrained—the
threshold is always fixed before flight and constant there-
after, and the altitude can only change so much between two
steps. This gives us a data constrained system where thresh-
old’ = threshold, and the altitude can be constrained to be
in an ascent, for example, altitude’ = altitude + 10. Such a
system is a constrained data transition system – specifically,
global data transition system – and will be discussed in the
next section.

5. CONSTRAINED SYSTEMS
When a system has constrained data variables, domain re-
duction based on state equivalence still produces a conser-
vative abstraction, but it is not sufficient to preserve path
properties in the concrete system. A more refined abstrac-
tion is required to preserve interesting path properties while
at the same time reducing the size of the data domain.

To get such a refined data abstraction for constrained data
systems, we define a reduced domain D′ such that it includes
every possible data path in terms of data equivalence. The
approach can be conceptually viewed as follows: For each
path in M , find the sequence of data equivalence classes as
given by the states in the path in order. Find a shortest
path in M that passes through the same sequence of data
equivalence classes. The reduced domain D′ contains all
the data values in the shortest path. As we will show later,
with some restrictions, the abstract system obtained by such
a domain abstraction simulates the concrete system.

5.1 Definitions and Assumptions
First, we introduce some necessary definitions and two as-
sumptions that are used to establish the simulation relation.

Definition 10. A path in the structure M from a state
s is an infinite sequence of states π = s0s1s2 . . . such that
s0 = s and R(si, si+1) holds for all i ≥ 0. π(s0) denotes a
path with initial state s0.

For the purposes of the abstraction approach described here,
the constrained data transition systems that we consider are
assumed to satisfy the following assumptions.

Assumption 1. Constrained and unconstrained data are
exclusive in a system, i.e., a data condition cannot refer to
both unconstrained and constrained data variables.



Assumption 2. Transition relations between control
nodes are deterministic on labels and data transition con-
straints; i.e., R(s, t) ∧ s ' s′ ∧ t ' t′ ∧ (s′|D, t′|D) ∈ R|D
implies R(s′, t′).

The first assumption is to separate out non-determinism in
the transition system. Based on the first assumption, we
can separate numeric conditions with constrained data vari-
ables from numeric conditions with unconstrained data vari-
ables. For data equivalence classes partitioned by numeric
conditions with unconstrained data variables, applying the
abstraction technique described in the previous section suf-
fices. Thus in this section, without loss of generality, we
assume that all data variables are constrained.

By the second assumption, the control node transition is
deterministic on state labels and the data transition con-
straint. In other words, given a valid path (refer to Defini-
tion 10), any sequence of states that are state-equivalent to
the corresponding states in the given path, is also a valid
path, provided that the data nodes in the sequence satisfy
the same data transition constraints as those in the given
path, in order.

Definition 11. A trace T [π(s0)] of a path π(s0) is a
sequence of data equivalence classes e0e1e2 . . . with ei 6= ei+1

for all i such that s0|D ∈ e0 and for all i, j ≥ 0, si|D ∈ ej

implies si+1|D ∈ ej or si+1|D ∈ ej+1.

In other words, a trace T [π(s0)] is a permutation of a subset
of data equivalence classes of D that are reachable from s0

in order.

Definition 12. A node of change in a path π(s0) is
either s0 or a state si such that si|D ∈ ej and si−1|D 6∈ ej

for some data equivalence class ej.

Nodes of change are defined with respect to a given path.
These are states along the path at which there is a change
in data equivalence class as one traverses the path in order
starting from s0.

Definition 13. The segment length sequence
N [π(s0)] of a path π(s0) is an ordered sequence of
natural numbers where ni = q − p, sp and sq are nodes of
change such that sp|D ∈ ei, sq|D ∈ ei+1, p = Σi−1

j=0nj and
there is no node of change between sp and sq.

Thus, N [π(s0)] = {n1, n2, . . . } is an ordered set of natural
numbers that represents the minimum number of steps to
reach from one equivalence class to another along the path
π(s0).

We say N [π(s0)] ¹ N [π′(s′0)] if ∀i, ni ≤ mi where ni ∈
N [π(s0)] and mi ∈ N [π′(s′0)], N [π(s0)] ≺ N [π′(s′0)] when
N [π(s0)] ¹ N [π′(s′0)] and ni < mi for some i.

Definition 14. A path π(s0) is a minimal path if
and only if N [π(s′0)] 6≺ N [π(s0)] for any path π′(s′0) with
T [π(s0)] = T [π′(s′0)] and s0 ' s′0.

We call s0 a minimal state when π(s0) is a minimal path.
Intuitively, a minimal path is a path with minimal segment
lengths among all paths with the same trace.

Our reduced domain for data variables is composed of data
nodes on the minimal paths.

Definition 15. D′ is a subset of D in-
cluding {Rn|D(s0) | 0 ≤ n ≤ Σnj , nj ∈
N [π(s0)], s0 : minimal state, π(s0) : minimal path}.

D′ is the reduced domain for abstraction including one trace
representative per minimal path up to the last node of
change. It includes every data node on a minimal path ob-
tained by repeatedly applying the data transition relation
from each minimal state until it reaches the last node of
change.

5.2 Abstraction
We first introduce a data identity transition RD

id defined as
((n, x), (n′, x)) ∈ RD

id if ((n, x), (n′, x′)) ∈ R for any control
nodes n, n′ and data nodes x, x′. Intuitively, the data iden-
tity transition allows the system to stay in the same data
node while the control node changes according to the tran-
sition relation R. This allows for stuttering of data nodes.

For a given constrained data transition system M =
(S, S0, R, L, AP ), let M ′ = (S′, S′0, R

′, L′, AP ′) be an ab-
stracted transition system of M where AP ′ = AP , S′ =

N×D′, S′0 = N0×D′
0, L′ : S′ −→ 2AP ′ , and R′ = (R∪RD

id)∩
(S′ × S′). Here, D′ is the reduced bound defined in Defini-
tion 15 and D′

0 = {d′0 ∈ D′ | d′0 ≡ d0 for some d0 ∈ D0}.

Theorem 3. For any path π = s0s1 . . . sn . . . in M , there
exists an equivalent path π′ = s′0s

′
1 . . . s′n . . . in M ′ such that

si ' s′i for all i.

Proof. By definition of D′, there exists a minimal path
π̃(t0) in M ′ such that T [π] = T [π̃] and N [π̃] ¹ N [π] where
t0 ' s0. Define π′ = s′0s

′
1 . . . s′n . . . as follows:

(1) ∀i, s′i |N= si |N .
(2)

s′i |D=





t0 |D if i = 0
x = R |D (s′i−1) if x ≡ si |D and x ∈ D′

s′i−1 |D otherwise

si ' s′i is guaranteed by the fact that T [π] = T [π̃] and
N [π̃] ¹ N [π]. s′i ∈ S′ for all i since any node of change
along the path π̃ is included in D′. π′ is a path in M ′

since R′(s′i, s
′
i+1) holds either by R(s′i, s

′
i+1) or by the data

identity transition.

By Theorem 3, for any path in M there is an equivalent
path in M ′ with equal length with data stuttering.



Definition 16. s′ ∈ S′ is on the same trajectory as s ∈
S if and only if

1. s ' s′ and

2. Existence of trajectory reduction :
Given path π(s) = ss1s2 . . . in M , ∃π′(s′) = s′s′1s

′
2 . . .

in M ′ such that

(a) trace equivalence : T [π(s)] = T [π′(s′)] and

(b) path equivalence of each trace segment :
si |D≡ s′i |D implies si ' s′i for all i, and

(c) trajectory reduction : N [π′(s′)] ¹ N [π(s)].

Intuitively, a state s′ ∈ M ′ is on the same trajectory as
s ∈ M if a path π′(s′) has the same trace as a path π(s) and
it reduces the number of steps needed to reach each data
equivalence class along the path π(s). Note that if π′(s′0)
in M ′ is an equivalent path of π(s0) then s′0 is on the same
trajectory as s0 when M is a system with deterministic data
transition constraints.

Now, we define a relation between M and M ′ to prove that
M ′ simulates M .

Definition 17. H ⊆ S × S′ is a relation on S × S′ such
that H(s, s′) if and only if s′ is on the same trajectory as s.

Theorem 4. H is a simulation relation between M and
M ′.

Proof. 1. Given H(s, s′), L(s) = L(s′) = L′(s′) from
s ' s′ and by the definition of the labeling function.
L(s) ∩AP ′ = L′(s′) is obvious since AP = AP ′

2. Suppose R(s, t) for some t ∈ S. By the determin-
ism of control node transition and data transition con-
straints, the path π(st) is uniquely defined and there
is a path π′(s′k) in M ′ such that T [π(st)] = T [π′(s′k)]
and N [π′(s′k)] ¹ N [π(st)] by H(s, s′).

(a) Case 1 : k ' t when k |D≡ t |D
Let t′ = k and π′(t′) = π′(s′k) − {s′}. t′ ' t is
clear and R′(s′, t′) is a regal transition in M ′ by
R′(s′, k). H(t, t′) directly follows from H(s, s′).

(b) Case 2 : t ' s ' s′ when k |D 6≡ t |D.
Let t′ = s′ and π′(t′) = π′(s′k). t′ ' t and
R′(s′, t′) holds by identity transition. π′(t′) satis-
fies the trace equivalence and path equivalence
condition. To see that the trajectory reduc-
tion holds, let N [π′(s′k)] = {n0, n1, n2, . . . } and
N [π(st)] = {m0, m1, m2, . . . }. We can infer that
n0 < m0 and ∀i, ni ≤ mi from N [π′(s′k)] ¹
N [π(st)] ∧ t ' s ∧ k 6' t. Note that N [π(t)] =
{m0 − 1, m1, m2, . . . }, i.e., m′

0 = m0 − 1 and
∀i, m′

i = mi for m′
i ∈ N [π(t)]. N [π′(s′k)] =

N [π′(t′)] ¹ N [π(t)] follows.

Therefore, t′ is on the same trajectory as t and H(t, t′)
holds.

min trace(ei, SAT, step, REACH)
while REACH 6= ∅

pick ej ∈ REACH
REACH := REACH − {ej}
k := 1;, distance := ∞
while

Target := fk+step(ej)
if SAT ∧ Target is satisfiable

SAT := SAT ∧ Target
step := step + k
min trace(ei, SAT, step, REACH)

else
d := distance test(SAT, Target)
if d < distance

distance := d ; k++;
else break;

add (SAT, step) for a minimal state.

Figure 2: Trace and minimal state generation Algo-
rithm

Theorem 5. M ′ simulates M .

Proof. Directly follows from Theorem 3.

We conclude that domain abstraction based on trajectory
reduction is conservative.

5.3 Example: Constrained Altitude Switch
In this section, we show a possible approach for automated
domain reduction for constrained data transition systems
using the constrained Altitude Switch example discussed in
Section 4.2.

For constrained data transition systems, constructing a re-
duced data domain is more involved; it is necessary to iden-
tify data values along a minimal path for each unique trace.
There is no guarantee that the abstraction will produce a
reduced domain for all systems and we may end up with the
original domain D in the worst case. Nevertheless, in prac-
tice, this method results in domain reduction for many sys-
tems. For example, domain reduction can be automated for
systems that satisfy following assumptions: (see Figure 2).

1. Data transition constraints are independent of control
nodes.

2. Data transition constraints are not cyclic. A data tran-
sition constraint R|D is cyclic if starting from a state
it is possible to reach the same equivalence class of D
more than once by applying the data constraints.

3. Each numeric function appearing in the numeric con-
ditions is continuous and grows within a polynomial
bound. This guarantees that the numeric conditions
are not periodic. Together with Assumption 2, this
guarantees that the trace of each path is finite since
the number of equivalence classes is finite.

By these assumptions, we know that the number of reach-
able data equivalence classes is finite. Therefore, for any



trace step k SAT ∧ Target satisfy? d continue? (a,t)
e1 → e3 0 1 a < t & a < t + t/50 no 30 yes

& a + 10 ≥ t & a + 10 ≥ t + t/50
2 a < t & a < t + t/50 no 20 yes

& a + 20 ≥ t & a + 20 ≥ t + t/50
3 a < t & a < t + t/50 no 10 yes

& a + 30 ≥ t & a + 30 ≥ t + t/50
4 a < t & a < t + t/50 no 0 yes

& a + 40 ≥ t & a + 40 ≥ t + t/50
5 a < t & a < t + t/50 yes finish a = 1990,

& a + 50 ≥ t & a + 50 ≥ t + t/50 t = 2000
e1 → e3 5 1 a < t & a < t + t/50 no 10 yes
→ e2 & a + 50 ≥ t & a + 50 ≥ t + t/50

&a + 60 ≥ t & a + 60 < t + t/50
2 a < t & a < t + t/50 no 20 no

& a + 50 ≥ t & a + 50 ≥ t + t/50
&a + 70 ≥ t & a + 70 < t + t/50

Table 2: Sample trace computation for Altitude Switch

given equivalence class that may have the initial data nodes,
we can compute a sequence of reachable equivalence classes
with minimum segment lengths based on the data transi-
tion constraints with the aid of a constraint solver. Figure 2
outlines a prototype minimal state generation algorithm.

Initially, step = 0, SAT is an equivalence class ei and
REACH = {e1, e2, e3, e4}−{ei}. The algorithm recursively
computes the satisfiability of SAT ∧ (fm(ej)) by exercising
all permutations of the set of equivalence classes until there
are no more equivalence classes to be added in the trace
SAT . We use the Euclidean distance between SAT and
fm(ej) as a progress measure. When there are no more sat-
isfiable equivalence classes to be added to SAT , we then pick
a vector x from the region of SAT . x generates a sequence
of reachable equivalence classes in a minimum number of
steps.

Note that the constrained altitude switch example satisfies
the above assumptions: since the data constraint is global,
it is independent of control nodes; the data transition con-
straint function is linear and so the second assumption is
satisfied; and, the numeric conditions are also linear, and so
the third assumption is satisfied.

Recall that the property we want to check is safety2 :
AG((DOIval = OFF ∧ ¬(DOI Status = On)) ⇒
AX¬(DOI Status = On)), assuming the system mod-
els an ascending aircraft. Again, the data conditions
altitude < threshold, altitude ≥ threshold, and altitude ≥
threshold + threshold

50
extracted from the transition con-

straints are used to define data equivalence classes (refer to
Section 4.2). The other data condition altitude > threshold
is not used since safety2 does not contain it. This produces
slightly different data equivalence classes from the previous
case.

e1 : a < t ∧ a < t +
t

50

e2 : a ≥ t ∧ a < t +
t

50

e3 : a ≥ t ∧ a ≥ t +
t

50

Using the algorithm, we compute a data node for a minimal
state and corresponding trace based on the set of equivalence
classes {e1, e2, e3} as follows. Starting from an equivalence
class ei, we check the satisfiability of ei ∧ f(ej) where f(ej)
is a transformation of each numeric condition in ej by ap-
plying the data transition constraint. For example, the data
condition a < t that helps define e1 would be transformed
to a + 10 < t since the data constraints force t′ = t and
a′ = a + 10. If ei ∧ f(ej) is satisfiable, it means that ej

is reachable from ei in one step. Otherwise, there are two
cases; ej is not reachable from ei or is reachable from ei in
more than one step. We measure progress by computing the
Euclidean distance between the two regions ei and fn(ej)
from n = 1—if the distance increases in an iteration, given
our restrictions, we know the equivalence class is not reach-
able and we can terminate this computation. If the distance
is shrinking, we keep applying the transformation to ej until
ei ∧ fn(ej) is satisfied. When ei ∧ fn(ej) is satisfiable, then
n is the minimum number of steps required to move from ei

to ej . The constraint solver CLP (q, r) [11] is used for the
satisfiability check in the algorithm.

Table 2 shows a sample trace generation starting from the
equivalence class e1. The domain constraints 0 ≤ a ≤ 40000
and 2000 ≤ t ≤ 35000 are assumed in the table. The table
shows that e3 is reachable from e1 in five steps and there are
no other reachable classes further. This produces the trace
e1 → e3.

Two traces {e1 → e3}, {e1 → e2 → e3} are generated by
the application of the algorithm to e1, e2, and e3 in order.
Both traces required 5 steps. We identified the initial points
of the traces to be (a, t) = (1990, 2000) in the region that
satisfies {e1 → e3} and (a, t) = (1991, 2000) in the region
that satisfies {e1 → e2 → e3}. With these initial points,
we can generate the required domain for altitude (a) and
threshold (t) by iterating the data constraints five times (one
for each trajectory—in this case they were both five steps
long). This yields the following domains:
altitude: {1990, 1991, 2000, 2001, 2010, 2011, 2020, 2021, 2030,

2031, 2040, 2041 }
threshold: { 2000 }



Using the reduced domains, the property safety2 is verified
in seconds with NuSMV [24].

6. DISCUSSION
In this paper we described domain abstraction as a comple-
ment and alternative to other abstraction techniques, such
as predicate abstraction. The abstraction technique yields
a bisimulation for constraint free systems with large inte-
ger inputs and polynomial transition constraints over the
data domain. We also show how the technique is extended
to data constrained systems with deterministic constraints,
but in this case the abstraction yields a simulation relation.
We provided proofs for both these claims.

We are aware that the limitation to deterministic data con-
straints is quite severe. Most realistic applications require
at least limited non-determinism in the data constraints, for
example, we would like to model the altitude to change at
most 300 up or down each step. We believe that the tech-
nique will extend to systems with non-deterministic data
constraints—we have to date, however, been unable to com-
plete a proof for this case. This is a topic currently under
investigation.

In our case studies, the technique has been remarkable effec-
tive and we believe that in conjunction with other reduction
techniques, such as slicing, we will be able to extend the
reach of model checking into the domain of software spec-
ification for a class of systems of particular interest to us,
namely safety-critical control systems.
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