
ALTERNATIVE FORMULATIONS OF THE PAGING PROBLEM FOR CACHE WITH READ THROUGH

Cathy J o Linn

Department of Computer Science
Vanderbilt UnLversity

Nashville, Tennessee 37235

Cache memory is now widely accepted as a cost effective way of improving system
performance. Significant reductLons in the average data access time have been
achieved using very simplistic paging algorithms, such as LRU, implemented in
hardware. In this paper we wish to investigate more sophisticated algorithms for
the management of intelligent cache systems.

Keywords: cache management; read through; optimal algorithms; Belady's optimal
paging algorithm; graph shortest distance problem.

I. CACHE WITH READ THROUGH

The proposed model of a cache includes the
option of r@~d through (Figure]). If desired,
the processor can fetch directly from primary
memory instead of first paging into cache. We
observe that transferlng a page, PI, into a
full cache requires the writing out of a page,
P2. If P2 is then immediately referenced, it
must be reloaded into cache. In a situation in
which PI is never referenced agaLn, performance
could be improved by using read through to
access PI and leaving P2 in the cache. Current
page replacement algorithms are not immediately
applicable to this new hardware. When a cache
page fault occurs, we now must not only decide
whether to bring in a page or use the read
through option, but also which page to replace.

2. ALGORITHMS

We will now present and analyze two
approaches to determining an optimal paging
scheme for cache with read through. In these
algorithms we will assume full knowledge of the
future reference string. Since we are dealing
with transfers between cache and primary
memory, we will also assume no rotational

Permission to copy without fee all or part of this
material is granted provided that the copies are
not made or distributed for direct commerical ad-
vantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is
given that copying is by permission of the Associ-
iation for Computing Machinery, Inc. To copy other-
wise, or to republish, requires a fee and/or spe-
cific permission.

PROCESSOR

THROUGH

CA~

PRIMARY

Fig. I. Cache with Read Through.

delays. This will mean that if a]-page
transfer takes time t, a n-page transfer will
take time nt.

Let k be the number of cache page frames
available and let M be the set of pages
available, {1,2,3,...m}. Then the reference
string will be :

w =x 1,x 2,...,x n

where xieM and represents the page being

referenced at tLme t i. Let SigM be the set of

pages in cache at time t i.

62

http://crossmark.crossref.org/dialog/?doi=10.1145%2F503506.503517&domain=pdf&date_stamp=1979-04-09

2.] AN IPP FORMULATION

Given the above definitions we can now
formalize the problem as an Integer Programming
Problem. The task is to determine S i for i=!

n

to n such that ~ Z i is minimized. Z i is the
I=I

cost incurred in moving from ti_ ! to t i and

P+C if xi~Si_ ! and xleS i

R if xi~Si_ ! and xi~S i
Zi=

C if xiESi_ ! and xieS i

P+R if xlcSi_ 1 and xi~S i.

The Si's are subject to the constraints:

ISil~k , O~i~n

S0=¢, and

SicSi_ |+xi •

We include the fourth cost for
completeness only since it is clear that it
will never occur in an optimal solution. The
last constraint is included so that demand
paging only is allowed. We also note that if
P+C~R we would never choose to use the read
through option.

Our solution to the IPP is based on the
following observation. Once we decide which
references are to be accessed via the read
through option, we have simplified the
situation to that of a standard cache where all
remaining references must be made from cache.
Also, for optimality we need only page on
demand, since it has been shown that prepaging
will offer no benefit [COFF73].

Belady [BELA66] has presented an optimal
algorithm for this simplified case. We depict
this algorithm in Figure 2. The execution time
of the initialization For-loops is
O(XM'I)=O(n). The rest of the algorithm is
contained in the next For-loop and executes n
times. In this loop we execute either the
"then" or the "else" portion of the 'If'
statement. The "then" portion takes execution
time of O(ISl)=O(k) due to the set assignment
operation. The "else" section itself contains
a loop that executes O(ISl):O(k) times. We
will separate out the while-loop contained in
that section. It will execute at most a total
of n times since there are only n elements in
all of the Appear lists. We can now see that
the entire algorithm is O(2n+nk)=O(nk).

An algorithm to determine the paging
scheme resulting in the minimum cost for cache
with read through would proceed as follows:

(l) Pick a subset of references from
the reference string. These are
the references that will be
referenced via the read through
option.

(2) Apply Belady's algorithm to the
remaining references accumulating

the cost. Add to this cost R*(number
of read throughs). We note that in
some cases this may result in using
read through to access data that is
already in cache. Clearly, these
oases will not be among the optimal
cases. They will not, however,
prevent the algorithm from locating
an optimal solution.

(3) Repeat step ! and 2 until all 2 n
subsets have been processed,
keeping track of the subset
resulting in the minimum cost.

A program implementing this algorithm is given
in Figure 3. The execution time of this

program is O(nk2n).

2.2 A GRAPH FORMULATION

The cache management problem can also be
formulated as a graph shortest-dlstance
problem. Such a formulation of the problem
results in an entirely different type of
algorithm.

The graph representing one instance of the
problem will consist of n+2 stages
corresponding to time t O through time tn+ I.

The vertices that make up stage i for l~i~n

represent all the possible subsets of pages in

cache. Let vl, j be the vertex in stage i

representing that the set of pages, $I, is

contained in cache at time t i. (There are

(~)+(k~_l)+...+(~)=O(km k) - - - _ of these subsets.)At

t O there is one state with zero pages in cache.

At tn+ ! there is also one state.

The arcs of this directed graph are
constructed in the following manner. From each
vertex vl,j, (for O~i~n), create an arc leaving

vl, j and entering the following vertices at

stage i+l:

(I) vi+l,j, the vertex representing

no change in the set of pages in
cache, and

(2) if ~Sjl<k then the vertex

representing the cache contents of
Sj+{x i} at time t i

(3) if ISjl=k then the vertices

representing the cache contents of
Sj+{xl}-{y} for all ycSj.

The distances on these arcs are the same as the
costs stated earlier: P+C if x i is paged in, C

if xleSi. ! and xicSi, or R if xi~Si_ ! and xi is

not paged in. There will be no arcs with a
distance of P+R since we do not include these
in the construction.

63

* Form a set M'cM of the memory pages that appear in w

M'={il~xj=i for O~j~n};

* Search the reference string x]-x n forming a list

* of the times each member ef M' is referenced.

For i:] to n do
Add i to the end of Appear list;

x i

For i~M' de
Add ~ to end of Appear i list;

Cost:O;
So=empty;

* Proceed down the reference list, changing the
* set ef pages in cache, Si, and accumulating the cost.

For l:I to n do
If xi~Si_ ! then

* If page is in cache the Just access it from cache

begin
Cost:Cost+C ;

Si=S i- ! ;

end

else

else need te page it in, so find the member of S. . that
is referenced farthest in the future and replace~

begin
Cost:Cost+P+C;
Max:O;
For j¢S i l do

begin
Our lists will tell us when the next
occurenee is but first we must delete any
occurenees we have already past
While First-element(Appearj)<i do

Appearj=Appearj-First-element(Appearj);

If First-element(Appearj)>Max then
begin
Savemax=J;
Max:First-element(Appearj);
end

end

Si:Si_l-{Savemax}+{xi};

end

Fig. 2. Belady's Optimal Demand Paging Algorithm

64

Mincost:
Save=empty

For S¢2 {i~]SiKn} (the power set of reference indices) do:
begin
Form e': ' ~ . x ' x],x ,.. n-,S,~

by deleting the references whose indices are member of S.
Call Belady's Algorithm for ~', returning Cost
Cost:Cost+IS~*R
If Mincost>Ccst then

begin
Save=S
Mincost=Cost
end

end

Fig. 3. Optimal Paging Algorithm for Cache with Read Through

~)+C

STAGE 0

2 ~ 1 P+C

STAGE 1

Fig. 4.

P+C

2 ~ - ~ 2 r ~ 2

P+C

1,2 ~ 1,2 ~ 1,2

STAGE 2 STAGE 3 STAGE 4

Graph for ~=1231, M={I,2,3], and k=2.

END

STAGE 5

65

The vertices in stage n each have one arc
leaving and entering the vertex at stage n+1.
The distances on these arcs are 0.

The arcs in the above construction include
all arcs corresponding to demand paging
operations. We can create only these arcs
because we know that a demand paging algorithm
will give an optimal answer. Figure 4 shows
the graph constructed for the reference string
w=1231, M={1,2,3}, and k=2.

A graph obtained from the above

construction has n*((~)+(km])+'''+(T))Ku- +2

vertices or O(nkmk). It has no more than

((m)+(m)+..+(~)) arcs or O(nk2mk). (n-l)(k+1)"k "k-1 "

The problem now is to find the shortest
distance from the vertex at stage 0 to the
vertex at stage n+l. Dijkstra [DIJK59]
provides a shortest distance algorithm whose

execution time is O(v2), where v is the number
of vertices. For our graph this would be

O(n2k2m2k). Since our weights can be
integerized, we could alternatlvely apply
Wagner's shortest distance algorithm for
edge-sparse graphs [WAGN76]. The execution
time of this algorithm is O(max(v,e,d)) where v
is the number of vertices, e is the number of
edges, and d is the maximum distance of any
edge. For our graph this would be

O(e)=O(nk2mk).

3. CONCLUSIONS

This paper has investigated alternative
formulations of the paging problem for cache
with read through. The IPP formulation results
in an algorithm that is linear with respect to
the cache size but exponential with respect to
the length of the reference string. The
algorithms obtained from the graph formulation
of the paging problem are linear with respect
to the length of the reference string but
exponential with respect to the cache size. We
find this apparent tradeoff in execution time
of the optimal paging algorithm quite
interesting. We note that other slmiliar
attempts to formulate this problem have
resulted in algorithms with execution times
that have this same characteristic.

REFERENCES

[BELA66] Belady, L. A. "A Study of
Replacement Algorithms for a Virtual
Storage Computer," IBM SYstems
JQurnal. 5, I (1966), 78-101.

[COFF73] Coffman, E. G. and Denning, Peter
J. Oneratin~ Systems Theory.
Englewood Cliffs: Prentice-Hall,
Inc., 1973.

[DIJK59] DiJkstra, E. W. "A Note on Two
Problems in Connexion with Graphs,"

Mathematlk. 1, (1959),
269-271.

[NAGN76] Wagner, Robert A. "A Shortest Path
Algorithm for Edge-Sparse Graphs,"
~ACM. 23 ! (1976), 50-57.

66

