44

, IMPLEMENTATION OF A PORTABLE DATABASE MANAGEMENT SYSTEM

Check for
Updates

Richard Omer
and
Michael J. Smith
Department of Computer and Information Sciences
University of Florida

Gainesville, Florida 32611

ABSTRACT

A solution to the problem of database software portability and interchange
has been achieved by the implementation of the Automated Information Management
(AIM) system. AIM, a CODASYL-type database management system, is written
entirely in a high-level industry-wide standard language. The technique of
implementation is carefully designed to eliminate any machine dependencies such
as word size or internal data representation. Thus, a program written using AIM

will run on any machine supporting a commonly available subset of ANSI 1974
COBOL. : :

The specifications of the Data Base Task Group, published in 1969 and 1971,
and the later enhancements by the Data Definition Language Committee, published
in 1973, have gained increasing acceptance by the data processing community.
Although various computer manufacturers have introduced database management
systems based on these proposals, each of these systems represent mutually non-
compatible versions of the standard. The approach taken in the development of
AIM has overcome this problem and made CODASYL database facilities available to
a broader class of machines than ever before.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F503561.503572&domain=pdf&date_stamp=1976-04-22

45

INTRODUCTION

Within the past decade, there has been a growing recognition of the complex-
ities surrounding the maintenance of large masses of data. This has lead to the
introduction of many software systems dedicated to the specific problems of
centralized control and access to computer information files. Unfortunately, these
systems are typically highly bound to the family of machines for which they were
written. Because of the perceived need for a machine-independent database manage-
ment system (DBMS), work on the AIM project was begun in the summer of 1974.

The result has been the successful implementation of a portable DBMS based on the
1969 report of the Data Base Task Group (CODASYL committee).

This paper outlines the functional capabilities of AIM, as well as the tech-
niques employed in its design. First, criteria are set down which lead to machine-
independence; next, the operational capabilities of AIM are briefly delineated;

a short discussion of data attributes and storage structures follows; concluding

remarks are presented in a summary at the end. The appendix contains a sample
AIM program,

IMPLEMENTATION CRITERIA

In order to meet the stated design goal of machine-independence, several
decisions were made concerning the means by which the AIM system would be imple-
mented. Primarily, an industry standard language, COBOL, was to be used exclusive-
ly in its realization. Though this choice may have an impact on the flexibility
of the system, we feel that any sacrifice in processing efficiency will be minimal
indeed. COBOL tends to excel in I/O intensive applications, an area which most
database problems fall into.

COBOL itself is not a single language; rather, each compiler has its own
unique set of enhancements, deficiencies, and eccentricities., Thus a subset of
COBOL had to be selected that would be broad enough to be useful yet narrow
enough to be common to most presently available compilers, We chose as our subset
that portion of the language common to both the IBM 0S/360 Version 4 compiler and
the ANSI 1974 standard. For ease of implementation, we chose to use the Table
Handling feature (SEARCH verb), the String Menipulation feature (STRING and UNSTRING
verbs) and the Subroutine Linkage feature (CALL verb and LINKAGE SECTION). How-
ever, other less useful or less widely available features were avoided (such as
the Sort feature and Report Writer).

The COPY statement proved to be an invaluable tool in eliminating certain
areas of inherent incompatibility between different compilers. For example,
the IBM compiler anticipates the key of a random access file to be named in a "NOMI-
NAL KEY" clause, while the DECSYSTEM-10 compiler calls for the use of "ACTUAL KEY",
This difficulty is overcome by means of COBOL's Source Library facility. Text can
be inserted into a program at various points from a user created library of source
code. Thus, in those areas where residual conflicts exist, only the COPY library
needs to be changed, not the program itself. This also leads to the ability to
perform global reconfiguration of AIM, such as incorporating additional system
buffers or changing record sizes.

Specific attention was paid to the use of questionable data types such as
COMPUTATIONAL-3 and the use of the REDEFINES clause. ANSI COBOL language specifi-
cations are inclined to leave internal representations of data to the discretion of
the individual compiler writer. This does provide a wide range for variations. In

46

particular, an obvious pitfall would be to assume that a COMPUTATIONAL item with
a given PICTURE (say S599) would be represented as either a sixteen bit half -word
(as with IM/370) or as a thirty-six bit full-word (as with DECSYSTEM-10).
Furthermore, it would be false to assume that all manufacturers represent a char-
acter internally in either eight bits (such as IBM/370) or in six bits (such as
DECSYSTEM-10).

OPERATIONAL CHARACTERISTICS

Use of the AIM DBMS is a three stage process. First, a description of the
data items to be stored in the database and the relationships between them is pre-
pared. This description is coded in terms of the AIM Data Definition Language
(DDL). The DDL source deck is input to the File Definition Processor program
(FDP) which in turn produces two output files. The schema file contains the intern=-
al table to be used by AIM during the next two phases. The copy file is a valid
COBOL Data Division data structure that will be used by the application programmer

as a communications and parameter passing area with AIM.

The second stage involves formatting of direct access storage space for the
AIM database. This is accomplished by means of the Database Initialization
program (DBINIT).

The third stage entails the use of the AIM run-time subroutines to perform
the various database access functions. Subroutines are provided to handle the
following actions:

Initiate database processing (OPENDB)

Cease database processing (CLOSEDB)

Store a new record (STORE)

Physically remove a record (REMOVE)

Logically though not physically remove a record (DELETE)
Modify the contents of an item within a record (MODIFY)

Move a record into working storage (GET)

Locate a record by record address (FINDD)

Locate a record by means of a randomizing key (FINDG)

Locate the next record within a chain of records (FINDR)

Locate the preceding record within a chain of records (FINDP)
Locate the unique master record within a chain of records (FINDM)
Locate the current record within a chain of records (FINDC)
Cause system buffers to be written back to the database (FLUSH)
Print the contents of the communications table (SNAP)

£ % % % % F % F F * ¥ % * F *

DATA ATTRIBUTES

The schema describes the database in terms of the names and characteristics
of the items, groups, and chains included in the database. An item is a data
element that is not structurally subdivided and that is associated with occurrences
of values. This temm is similar to "elementary item" in COBOL, or "field" in a
punched card. An item always has the attributes of type and length. AIM permits
an item to be defined as either numeric or alpha-numeric, The length of a mumeric
item must be less than eighteen digits, while the length of an alpha-numeric
item may be anything up to the maximum number of characters in a page.

A group is a collection of items identifiable as a unit. This term is
similar to '"record". Groups always have the attributes of reference-code

47

(logical address), synonym, and locafion mode. There are four possible lIocation
modes that a group might have. PRIMARY groups are located by their umique AIM
assigned reference-codes (ref-code). INDIRECT groups are located through their
position on a predefined chain and in relation to the unique master group in that
chain. RANDOM and RANDOMX groups are identified through the value contained in

a named randomization key defined within the group. The distinction between the
two is that the former does not allow groups with duplicate key values to exist
in the database, while the latter does permit such duplicates. The synonym of

a group is merely a single character assigned by the user to act as an "abbrevia-
tion" for the group's name. Its primary use is to distinguish master from detail
during a find-next operation.

Chains are ordered, logical collections of associated groups. Each chain
must be named and have one master group type and one or more detail group types
declared for it is the DDL.” 1t is the function of the AIM system to maintain
chains in the order specified for them. There are five possible chain orderings.
SORTED order 1mp11es that detail groups are placed within the chain based upon

the value in a given sort key field within that group. An order of FIRST means
that each new detail group is placed as the first group relative to the master
group within the chain. An order of LAST causes AIM to store a new group as the
last group within the chain. Insertion orders of NEXT and PRIOR are used to
specify that the new group is to be placed in a position either immediately
following or else immediately preceding the group last accessed on that chain,

DATA STORAGE CHARACTERISTICS

The data file may be divided into one or more regions, representing a con-
tiguous allocation of direct access storage space., Each region is composed of

one or more pages, representing the units of physical database access. Pages

are all of a single fixed length. Each page mey contain zero to ninety-nine lines,
each representing a particular occurrence of some group. As a group is stored in
the database, it is assigned a unique seven character identification called its
ref-code. This code is composed of three parts: an alphabetic region code, a
four digit page number, and a two dig1t line number. Thus an AIM database may com-
prise up to 260,000 pages,

Each AIM page contains a fixed overhead of eighteen characters plus three
characters for each group stored within it. The first sixteen characters form
the page header and serve to identify the page number, the amount of free space
available, and a pointer to the first random group stored on that page. Groups
(if any) stored on the page follow the page header information. After all the
groups, a checksum is appended in order to insure the integrity of the data stored
there. The three character overhead associated with a group is made up of the
two digit line number of the group and the one character synonym of the group.
Additional overhead is consumed within a group for each chain passing through it.
Since every chain always has pointers in the forward direction, at least seven
characters will be set aside. If the chain also has the optional prior or head
pointers declared for it in the DDI, the overhead per chain may go as high as
fourteen or twenty-one characters.

As mentioned earlier, the portability criterion caused us to pay special
attention to the use of data types, especially in those cases where either an
explicit or implicit redefinition of one type over another might occur. This
consideration is most apparent in out choice of data structures for external
storage. Within a page of data as retrieved from disk, it must be possible to
extract any group stored within it. If a mixture of binary and alpha-numeric

48

information were allowed to coexist within that group, this would raise the
problem of machine dependent word size, For some machines, a binary integer may
correspond to four character positions; in other machines, the correspondence is
six characters. Purthemmore, various computers will expect differing data
alignment conditions to be met.

Two solutions to this problem are: (1) extensive parameterization of the
program, to the point that these dependencies can be altered from one implementa-
tion to the next; (2) adapt the convention that all data stored on a page must
be in character format, We took the second alternative as a simplier, more
direct avenue for a practical implementation. This decision is reflected in the
PICTURE of a ref-code (PIC X9(6)). Though the desired range of page and line
mmbers could have been represented more compactly as a binary integer, we would
have been forced to adapt the former approach since ref-codes are used as
peinters within groups and this would cause us to mix binary and alpha-mumeric
data within a page.

CONCLUDING OBSERVATIONS

Three factors have played an important role aiding in the development effort
behind AIM: modularity of design, structured programming techniques, and the
liberal use of comments and internal error messages. Needless to say, any large
software system (AIM consists of over nine thousand lines), requires certain
disciplines to be followed. The sectioning of the problem into manageable, well-
defined modules, typically less than eight hundred lines, was quite helpful
during all phases of the project. Internal error messages have also proven to be
a wise practice, as they simplify the debugging phase and help insure program
correctness. Last, but not least, a "structured" programming technique was used
that made coding easier to follow and which encouraged each module to be broken
down into further sub-modules. Though COBOL does not support the kind of language
constructs that make entirely "GO TO" free programming possible, the convention
of using GO TO statements in only one restricted context (GO TO the EXIT of a
PERFORMed paragraph) was judged to be a very effective structuring technique.

AIM has now been operational for three months and in that time has been used
as the basis of several on-line retrieval systems. During that time considerable
interest in the project has been generated both within the University of Florida
and elsewhere. Among some of the intriguing applications proposed has been its
use in distributed database architectures spanning computers of differing manufac-
ture. AIM is now serving as the prototype for future database development
projects here at the University of Florida.

.

Appendix: Sample DDL and COBOL program

FILE DEFINITION PROCESSOR DRTE 031176

PRAGE 00D1
0001 DDLU L1sY HOSCHEMA
ono2 FILE NAME=DDLEXPL PAGES=400 CHARS=1300)
0og3 PAS SWORD=MNO.JOKE INy=BY
Nooe GROUP HRAME=F 1ELD ¥ Mmx TYPEwPR] MARY
0003 CHATN NAME=MRITERS s MASTER PRIOA ORDER=SORTED
0008 CHAIN HAME=SUBJECTS«MASTER ORDER=MHEXT
0097 GROUP NAME*WRITER SYHeYy TYPEWRAMDOMA s RUTHHAME
o008 ITEM MRME /iU THNAME TYPE=f, 20
0009 ITEM™ NAME=ADDRSS TYPE=R, 30
0010 ITEM HANE =AGE TYPEsN, 2 .
aoty CHARIN NAMEwMRITERS DETRIL SKEY=RUTHNRME » RS
agiz2 DUP=LAST
0012 CHRIN NAME=PAPERS s HASTER ORDER=LAST
on14 GROUP NAME=SUBJECT SYheZ TYPEwSANDOM: SUBJRRER
0013 LTEM HAME =NUMPAPR TYPE=N, 4
0nlé [TEM HNPAME=SUBJRRERA TYPE=A) 23
o017 CHARIM HAME=SUBJECTS» DETRIL
ome CHAIN HAME =L IMKCHN) MASTER . ORDER=HEXT
an1s GROUP NAME=PRPER SYH=u TYFE=INDIRECT PRPERS
2o ITEm NAME=TITLE TYPE=R, 40
fo21 ITEM NAME=JOURMNAL TYPE=R, 40
oo2e ITEM NRME=PUB-DATE TYPE=Ns &
0023 CHRIN NAME=PAPERS) DETAIL
noz4 CHAIN NAMEs{ INKCHN, DETRIL» HERD
00N2% END
TEXT PROCESSING COMPLETE ~- 000 ERRORS DETECTED -~
PRGE 0002 FILE DEFIMITION FROCESSOR . DRTE 03711776

FILE NAME! DDLEXPL SIZE IN PRGESH 400 CHARACTERS/PREES: 1300
INVENTDRY LEVELD BS PRSSWORDE NOJOKE
GROUP TABLEY

I NAME 1 8y I TYPE I SI2E 1 LOC KEY 1 CHAINS I
[1 i I 1 1 1 I
1 FIELD 1 ¥ I PR 1T 31 1 70 1 1 WRITERS 1
1 1 I 1 1 1 1 SUBJECTS 1
I 1 1 1 I 1 1 1
I WRITER 1 ¥ I RY T 90 1 147 | AUTHHAME | WRITERS 1
I 1 I 1 1 1 1 PAPERS 1
| . 1 1 1 1 I 1 I
I SUBJECT 1 Z I RN 1 %53 1 241 1 SUBJRREA 1 SUBJECTS I
I 1 I 1 1 L I LINKCHN 1
14 1 I 1 1 1 1 1
I PAPER I Ww I IN T 117 1 312 1 PARAPERS 1 PRPERS 1
1 1 1 I 1 1 I LINKCHN 1
1 I I I 1 1 1 1
PAGE 0003 FILE DEFINITION PROCESSOR DATE 0271176

CHAIN TABLE:

I
1

I
I
1
1
1
1
I
1

I NAME 1 OFDER I PRIOR I MEAD I MASTER [DETAIL | LOC I KEY
1 1 1 1 1 L 1 1

I WRITERS 1 SDRT-2 1 YET I MO I FIELD I URITER 1 77 1 AUTHNAME
1 1 1 t 1 I 1 1

I SUBJECTS 1 MEXT 1 dO I MO 1 FIELD I SUBJECT 1 112 1

1 1 1 1 1 I I 1
IPAPERS 1 LAST 1 NO I ND I WRITER 1 PAPER I 206 1

I 1 1 1 1 1 I 1

1 LIMKCHN 1 MEXT 1 NO I YES 1 SUBJECT I PRPER 1 877 1

1 I 1 1 1 I 1 i

PHGE D004 FILE DEFINITION PROCESSOR DATE 03-131-76
.1TEM TABLE!

I NAME 1 LOC I TYPE I LEMNGTH I

1 1 1.1 1

I AUTHNAME 1 154 T AN I 20 I

1 1 1 1 1

1 ADDRSS 1 174 1 AN I 30 I

1 1 I 1 1

1 AGE I 204 1 HU I 2 1

I 1 1 1 1

I NUMPAPR 1 243 I HU I 4 1

1 1 1 1 1

I SUB.JRRFA 1 o%52 1 M I 25 I

1 1 1 1 I

1 TITLE 1 319 I AN I 40 I

1 1 I 1 - 1

1 JOURPNAL 1 359 I AN I 40 I

1 1 1 1 1

1 PUB-DATE T 399 [MU I £ 1

1 1 L H 1

49

PP %734-CB2 V4 RELEASE 1.& 310CT?2 IBM OS AMERICAN NATIONAL <YANDARD COROL
i

00001 IDENTIFICATION DIVIS1OM.

noang PROGRAM-ID0. EXPLPGM.

00003 ENVIROMMENT DIVISION.

oonna DRTA DIVISION.

paans WORK ING=-STORAGE SECTION.

0000A 77 GRUUP-NAME PICTURE ¥ (@),

nnooy 77 CHAIN-NAME FICTURE X (E) .

00008 01 COM=TAR COPY DDLEXPL.

onad C 01 COM-TRE.

0vooLn ¢ 05 CCB.

0Nty © 9 REF-CODE PIC 1S X9<&),
0omzE © 03 GRP-SYN PIC IS X.
aoni3 C 0% ERR-CUDE PIC IS £33%,
non14 © M ERR-IYN PIC IS H,
D001% © 03 ERR-REF FIC IS %96 .
00016 © 09 PASSWORD PIC IS X8,
DOO17 0% PAGEHDR.

00018 © 09 CURR-OF-PRGE PIC IS X9¢A).
00013 C© 09 CALCHAIN,

00020 © 13 CHN-M3TR PIC IS ¥9<6>.
nao2y © i3 CHN-PRIR PIC IS H9(&).
opnez © 13 CHN-CURK PIC IS HO9cEd.
00023 C 13 CHN-NEXT PIC IS X9(&).
00024 © 13 CHN-GRP PIC IS X3(&r,
20025 C 0% FIELD.

anp2se C 0% CURR-OF-X PID 15 X3¢y,
nonaz o 0% WRITERS.

anoes C© 13 GHN=-MITP PIC IS X8,
LECES 13 CHN-PRIF PIC I3 X2dsr.
noonao C 13 CHN-CURP PIC IS X906,
0n03a1 ¢ 13 CHN=-NEXT PIC IS X9(&>.
apoa2 € 13 CHH-GRP PIC 13 X3¢y,
oN03az C 0% SUBJECTS.

00034 13 CHH-RSTR PIC 15 Mok,
nonzs © 13 CHH-PRIR PIC 8§ ®Iwr,
annie o 13 CHN-LURR PIC IS #3¢6),
00027 © 13 CHN-NEXT PIC IS X9¢6).
noa3a © 13 CHH-GRP PIC IS Xacér,
Quo3s © o5 WRITER.

non4n ¢ 03 CURR=OF-Y FIC 1S R9E) .
nnaat C 03 ALITHNAME FIC 1S #e2Mm.
noa4z o 09 ADDRES PIC I3 X300,
00043 0 09 AGE PIC IS S92,
nnnes 09 PRAPERS.

nan4s . 13 CHN-MSTR PIC IS WAtk ..
nNo4s © 13 CHN-PRIR PIC IS X9¢&).
00047 13 CHN=-CURR PIC 18 #9ch .
Gan4a 13 CHN-MEXT PIC I% XSié),
00NA3 12 CHN-GRP PIC IS X9(6Y.
DONSN © 0% ZUBJECT,

annst C 0% CURR-0F-2 PIC IS HBier.
0nosz © N% NUMPRAPR PIC 15 594y,
000%3 ¢ 3 TLIBIAPER PIC IS %25,
n00S4 g8 LINKCHN.

0009s C 13 CHH-MITR PIC IS X9(&:.
anose 13 CHH-FRIR PIC 15 H30(sH,
anos? 13 CHH-CURR PIC IS X9+¢6),
nanosa ¢ 12 CHH=NEXT PIC IS R®9&).
aRnse 13 CHN-GRP PIC IS ®9¢6,
annen o 05 FAPER,

ounel © 0% CURR-OF -bl PIC 1S %8,
NO0ES T N TITLE PIC IS %401,
annea B9 IOURNRAL PIC 1T Hedd).
nooks C " PUB-TATE PIC IS I9¢6),
nanss .PROCEDURE DIVISION.

LONES MOVE “NOJOKE” TO PASSWORD.

nooe? CALL "OPEMDE" USING COM-TAB.

nnossa ACCEPT AUTHHAME.

nn&s s LOCATE THE FECORD DESCRIBING AUTHOR AND WIS FRFERS
ngoazEn HOYE "WRITER™ TO GRPOUP-NAME,

oAzl CALL "FINDG" USING COM-TAB GROUP-HAME.
nooF2 e NOW RETRIEVE ALL FAPERS WRITTEHM BY GIVEN AUTHOR.
nnaz3 MOVE SPACE TO GRP-SYH.

nON74 PERFUORM HEXT=-PAPER THRU HEXT~PAPER-X
DORTS LINTIL GRP=SYM = "y,

DanNve CRLL "CLOSEDR" USING COM-TRE.

nnory 3TDP RUM.

0078 NEXT-FRPER.

iire] e DO A FIND-NEXT TO LOCATE MEXT PAPER ON PAPERS CHAIM
00080 MOVE "PRPERT™ TO CHAIN-NAME,)
nongt CALL "FINDH' WUSING COM-TAB CHAIM-NAME.
oang2 o CHECK GRP=I¥Ne "Y* MEANS NO MORE PRAFERS FEMAIN
moaa IF GRE-SYN = "%

N GO TO NEXT-PRPER-X,

nanes « MOVE THE RECORD INTO WORKING-STORAGE.

LI TS FOVE "PAPER" TO GROUP-NAME.

nanay CALL "GET" UIING CUM-TAB GROUP-MAME,
0noesE ¢ ALS0 RET THE SUBJECT GROUF ASSOCIATED WITH THIS PAFER
DUEE] MOVE "LINKCHN" TO CHRIN-HAME.

T ED] CALL "FINDIM" USING COM=~TRE CHAIN-MAME.
LET! MOVE "SUBJECT" TO GROUP-NAME.

WTEL CALL "GET" USING COM-TAB GROUP-NAME.
nooe2 e FTMALLY. DISPLAY THE RESULTS FOR CURRENT PHRPER.
na0%4 DISPLAY TITLE SUBJARER JOURNAL PUB-DATE.
006093 NEXT~PAPER-X,

LLLELY EXIT.

