
44

IMPLEMENTATION OF A PORTABLE DATABASE MANAGEMENT SYSTEM

Richard Omer

and

Michael J . Smith

Department of Computer and Information Sciences

University of Florida

Gainesville, Florida 32611

ABSTRACT

A solution to the problem of database software portability and interchange
has been achieved by the implementation of the Automated Information Management
(AIM) system. AIM, a CODASYL-type database management system, is written
entirely in a high-level industry-wide standard language. The technique of
implementation is carefully designed to eliminate any machine dependencies such
as word size or internal data representation. Thus, a program written using AIM
will run on any machine supporting a commonly available subset of ANSI 1974
COBOL.

The specifications of the Data Base Task Group, published in 1969 and 1971,
and the later enhancements by the Data Definition Language Committee, published
in 1973, have gained increasing acceptance by the data processing community.
Although various computer manufacturers have introduced database management
systems based on these proposals, each of these systems represent mutually non-
compatible versions Of the standard. The approach taken in the development of
AIM has overcome this problem and made CODASYL database facilities available to
a broader class of machines than ever before.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F503561.503572&domain=pdf&date_stamp=1976-04-22

45

:INTRODUCTION

Within the past decade, there has been a growing recognition of the complex-
ities surrounding the maintenance of large masses of data. This has lead to the
introduction of many software systems dedicated to the specific problems of
centralized control and access to computer information files. Unfortunately, these
systems are typically highly bound to the family of machines for which they were
written. Because of the perceived need for a machine-independent database manage-
ment system (DBMS), work on the AIM project was begun in the summer of 1974.
The result has been the successful implementation of a portable DBMS based on the
1969 report of the Data Base Task Group (CODASYL committee).

This paper outlines the functional capabilities of AIM, as well as the tech-
niques employed in its design. First, criteria are set down which lead to machine-
independence; next, the operational capabilities of AIM are briefly delineated;
a short discussion of data attributes and storage structuresfollows; concluding
remarks are presented in a summary at the end. The appendix contains a sample
AIM program.

IMPLEMENTATION CRITERIA

In order to meet the stated design goal of machine-independence, several
decisions were made concerning the means by which the AIM system would be imple-
mented. Primarily, an industry standard language, COBOL, was to be used exclusive-
ly in its reallzation. Though this choice may have an impact on the flexibility
of the system, we feel that any sacrifice in processing efficiency will be minimal
indeed. COBOL tends to excel in I/O intensive applications, an area which most
database problems fall into.

COBOL itself is not a single language; rather, each compiler has its own
unique set of enhancements, deficiencies, and eccentricities. Thus a subset of
COBOL had to be selected that would be broad enough to be useful yet narrow
enough to be common to most presently available compilers. We chose as our subset
that portion of the language common to both the IBM OS/560 Version 4 compiler and
the ANSI 1974 standard. For ease of implementation, we chose to use the Table
Handling feature (SEARCH verb), the String Manipulation feature (STRING and UNSTRING
verbs) and the Subroutine Linkage feature (CALL verb and LINKAGE SECTION). How-
ever, other less useful or less widely available features were avoided (such as
the Sort feature and Report Writer).

The COPY statement proved to be an invaluable tool in eliminating certain
areas of inherent incompatibility between different compilers. For example,
the IBM compiler anticipates the key of a random access file to be named in a "NOMI-
NAL KEY" clause, while the DECSYSTEM-10 compiler calls for the use of "ACTUAL KEY".
This difficulty is overcome by means of COBOL's Source Library facility. Text can
be inserted into a program at various points from a user created library of source
code. Thus, in those areas where residual conflicts exist, only the COPY library
needs to be changed, not the program itself. This also leads to the ability to
perform global reconfiguration of AIM, such as incorporating additional system
buffers or changing record sizes.

Specific attention was paid to the use of questionable data types such as
COMPUTATIONAL-5 and the use of the REDEFINES clause. ANSI COBOL language specifi-
cations are inclined to leave internal representations of data to the discretion of
the individual compiler writer. This does provide a wide range for variations. In

46

particular, an obvious pitfall would be to assume that a COMPUTATIONAL item with
a given PICTURE (say S99) would be represented as either a sixteen bit half-word
(as with IBM/370) or as a thirty-six bit full-word (as with DECSYSTHM-10).
Furthermore, it would be false to assume that all manufacturers represent a char-
acter internally in either eight bits (such as IBM/370) or in six bits (such as
DECSYSTHM-10).

OPERATIONAL CHARACTERISTICS

Use of the AIM DBMS is a three stage process. First, a description of the
data items to be stored in the database and the relationships between them is pre-
pared. This description is coded in terms of the AIM Data Definition Language
(DDL). The DDL source deck is input to the File Definition Processor program
(FDP) which in turn produces two output files. The schema file contains the intern-
al table to be used by AIM during the next two phases. The copy file is a valid
COBOL Data Division data structure that will be used by the application programmer
as a communications and parameter passing area with AIM.

The second s tage invo lves f o rma t t i ng of d i r e c t access s to rage space fo r the
AIM da t abase . This i s accomplished by means of the Database I n i t i a l i z a t i o n
program (DBINIT).

The t h i r d s tage e n t a i l s the use of the AIM r u n - t i m e s u b r o u t i n e s to perform
the v a r i o u s da tabase acces s f u n c t i o n s . Subrou t ines a re p rov ided to handle the
fo l l owing a c t i o n s :

* Initiate database processing (OPENDB)
* Cease database processing (CLOSEDB)
* Store a new record (STORE)
* Physically remove a record (REMOVE)
* Logically though not physically remove a record (DELETE)
* Modify the contents of an item within a record (MODIFY)
* Move a record into working storage (GET)
* Locate a record by record address (FINDD)
* Locate a record by means of a randomizing key (FINDG)
* Locate the next record within a chain of records (FINDl~)
* Locate the preceding record within a chain of records (FINDP)
* Locate the unique master record within a chain of records (FINDM)
* Locate the current record within a chain of records (FINDC)
* Cause system buffers to be written back to the database (FLUSH)
* Print the contents of the communications table (SNAP)

DATA ATTRIBUTES

The schema describes the database in terms of the names and characteristics
of the items, groups, and chains included in the database. An item is a data
element that is not structurally subdivided and that is associated with occurrences
of values. This term is similar to "elementary item" in COBOL, or "field" in a
punched card. An item always has the attributes of ;type and length. AIM permits
an item to be defined as either numeric or alpha-numeric. The length of a numeric
item must be less than eighteen digits, while the length of an alpha-numeric
item may be anything up to the maximum number of characters in a page.

A group is a collection of items identifiable as a unit. This tem is
similar to "record". Groups always have the attributes of reference-code

47

(logical address), synonym, and loca~ion mode. There are four possible location
modes that a group might have. PRIMARY groups are located by their unique AIM
assigned reference-codes (ref-code). INDIRECT groups are located through their
position on a predefined chain and in relation to the unique master group in that
chain. RANDOM and RANDOMX groups are identified through the value contained in
a named ra~ization key defined within the group. The distinction between the
two is that the former does not allow groups with duplicate key values to exist
in the database, while the latter does permit such duplicates. The synonym of
a group is merely a single character assigned by the user to act as an "abbrevia-
tion" for the group's name. Its primary use is to distinguish master from detail
during a find-next operation.

Chains are ordered s logical coll¢ctions of associated groups. Each chain
must be named and have one master group type and one or more detail group types
declared for it is the DDL. It ~s the function of the AIM system to maintain
c h a i n s i n t h e o r d e r s p e c i f i e d f o r them. There a r e f i v e p o s s i b l e c h a i n o r d e r i n g s ,
SORTED o r d e r i m p l i e s t h a t d e t a i l g roups a r e p l a c e d w i t h i n t h e c h a i n b a s e d upon
t e - ~ l u e i n a g i v e n s o r t key f i e l d w i t h i n t h a t g r o u p . An o r d e r o f FIRST means
t h a t each new d e t a i l g roup i s p l a c e d as t h e f i r s t g roup r e l a t i v e t o t e - ~ a s t e r
g roup w i t h i n t h e c h a i n . An o r d e r o f LAST c a u s e s AIM t o s t o r e a new group as t h e
l a s t g roup w i t h i n t h e c h a i n . I n s e r t i o n 0 r d e r s o f NEXT and PRIOR a r e u sed t o
s p e c i f y t h a t t h e new group i s t o be p l a c e d i n a p o s i t i o n e i t h e r i m m e d i a t e l y
f o l l o w i n g o r e l s e i m m e d i a t e l y p r e c e d i n g t h e g roup l a s t a c c e s s e d on t h a t c h a i n .

DATA STORAGE CHARACTERISTICS

The d a t a f i l e may be d i v i d e d i n t o one o r m o r e r e g i o n s , r e p r e s e n t i n g a con-
t i g u o u s a l l o c a t i o n o f d i r e c t a c c e s s s t o r a g e s p a c e . Each r e g i o n i s composed o f
one o r more ~ , r e p r e s e n t i n g t h e u n i t s o f p h y s i c a l d a t a b a s e a c c e s s . Pages
a re a l l o f a s i n g l e f i x e d l e n g t h . Each page may c o n t a i n ze ro t o n i n e t y - n i n e l i n e s ,
each r e p r e s e n t i n g a p a r t i c u l a r o c c u r r e n c e o f some g roup . As a g roup i s s t o r e ' - l - n -
t h e d a t a b a s e , i t i s a s s i g n e d a u n i q u e seven c h a r a c t e r i d e n t i f i c a t i o n c a l l e d i t s
r e f - c o d e Th i s code i s composed o f t h r e e p a r t s : an a l p h a b e t i c r e g i o n c o d e , a
f o u r d i g i t page number , and a two d i g i t l i n e number . Thus an AIM d a t a b a s e may com-
p r i s e up t o 250,000 p a g e s .

Each AIM page contains a fixed overhead of eighteen characters plus three
characters for each group stored within it. The first sixteen characters form
the page header and serve to identify the page number, the amount of free space
available, and a pointer to the first random group stored on that page. Groups
(if any) stored on the page follow the page header information. After all the
groups, a checksum is appended in order to insure the integrity of the data stored
there. The three character overhead associated with a group is made up of the
two digit line number of the group and the one character synonym of the group.
Additional overhead is consumed within a group for each chain passing through it.
Since every chain always has pointers in the forward direction, at least seven
characters will be set aside. If the chain also has the optional prior or head
pointers declared for it in the DDL, the overhead per chain may go as high as
fourteen or twenty-one characters.

As mentioned earlier, the portability criterion caused us to pay special
attention to the use of data types, especially in those cases where either an
explicit or implicit redefinition of one type over another might occur. This
consideration is most apparent in out choice ofdata structures for external
storage. Within a page of data as retrieved from disk, it must be possible to
extract any group stored within it. If a mixture of binary and alpha-numeric

48

in format ion were al lowed to coex i s t wi th in t h a t group, t h i s would r a i s e the
problem of machine dependent word s i ze , For some machines, a b ina ry i n t e g e r may
correspond to four c h a r a c t e r p o s i t i o n s ; in o the r machines, the correspondence i s
six c h a r a c t e r s . Furthermore, va r i ous computers w i l l expect d i f f e r i n g da ta
a l ignment c o n d i t i o n s to be met ,

Two s o l u t i o n s to t h i s problem are : (1) e x t e n s i v e p a r a m e t e r i z a t i o n of t he
program, to the po in t t h a t t he se dependencies can be a l t e r e d from one implementa-
t i o n to the next ; (2) adapt the convent ion t h a t a l l da ta s to red on a page must
be in c h a r a c t e r format , We took the second a l t e r n a t i v e as a s i m p l i e r , more
d i r e c t avenue fo r a p r a c t i c a l implementa t ion . This d e c i s i o n i s r e f l e c t e d in the
PICTURE of a r e f - c o d e (PIC X9(6)) . Though the d e s i r e d range of page and l i n e
numbers could have been r e p r e s e n t e d more compactly as a b ina ry i n t e g e r , we would
have been fo rced to adapt the former approach s ince r e f - c o d e s are used as
p o i n t e r s wi th in groups and t h i s would cause us to mix b inary and a lpha-numeric
data wi th in a page.

CONCLUDING OBSERVATIONS

Three f a c t o r s have played an important r o l e a id ing in the deVelopment e f f o r t
behind AIM: m o d u l a r i t y of des ign , s t r uc tu r ed progrmming t e chn iques , and the
l i b e r a l use of comments and i n t e r n a l e r r o r messages. Needless to say, any l a rge
software system (AIM c o n s i s t s of over n ine thousand l i n e s) , r e q u i r e s c e r t a i n
d i s c i p l i n e s to be fo l lowed . The s e c t i o n i n g of t h e problem i n t o manageable, w e l l -
de f ined modules, t y p i c a l l y l e s s than e i g h t hundred l i n e s , was q u i t e h e l p f u l
dur ing a l l phases of the p r o j e c t . I n t e r n a l e r r o r messages have a l so proven to be
a wise p r a c t i c e , as t hey s i m p l i f y the debugging phase and he lp insu re program
c o r r e c t n e s s . Last , but not l e a s t , a " s t r u c t u r e d " programming t echn ique was used
t h a t made coding e a s i e r to fo l l ow and which encouraged each module to be broken
down in to f u r t h e r sub-modules. Though COBOL does not support the kind of language
c o n s t r u c t s t h a t make e n t i r e l y "GO TO" f r e e programming p o s s i b l e , t he convent ion
of us ing GO TO s ta tements in on ly one r e s t r i c t e d con tex t (GO TO the EXIT of a
P~.RPOP~ted paragraph) was judged to be a v e r y e f f e c t i v e s t r u c t u r i n g t e chn ique .

AIM has now been o p e r a t i o n a l fo r t h r e e months and in t h a t t ime has been used
as the bas i s of s eve ra l o n - l i n e r e t r i e v a l systems. During t h a t t ime c o n s i d e r a b l e
i n t e r e s t in the p r o j e c t has been genera ted both wi th in the U n i v e r s i t y of F l o r i d a
and e lsewhere . Among some of the i n t r i g u i n g a p p l i c a t i o n s proposed has been i t s
use in d i s t r i b u t e d da tabase a r c h i t e c t u r e s spanning computers of d i f f e r i n g manufac-
t u r e . AIM i s now serv ing as the p ro to type fo r f u t u r e database development
p r o j e c t s here a t the U n i v e r s i t y of F l o r i d a .

Appendix: Sample DDL and COBOL program

49

P ~ E 0001 FILE DEFIMITIOM PROCESSOR

0001 DDL LIST MO$CMEMR
0n02 PILE HRME=DDLEXPL PRGE~=400 CHRR~=15001
0 0 0 3
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
OOl?
0018
0019
0020
0021
002~
0023
0024

DRTE 03t11 ' /76

PRSSWORDBMOJOKE IMV=85
C.,ROUP MRME=FIELD ~YM=X TYPE=PRIMRRY

CHAIN MRMEmWRITER~=MASTER~PRIOR ORDERBSORTED
CHRIM MRMEmSUBJECT$,MRSTER ORDER=MEXT

GROUP HRMEmWRITER SYMmY TYPE=RRMDOMXoRUTMM(;~ME
ITEM MRME=RUTHHRME" TYPE=R~O
ITEM MRME=ADDRSS TYPE=AI30
ITEM MRMEB~E TYPE=H=2

CHAIN HRMEmWRITERSpDETRIL $KEY=RUTNMRME~R!
DUP=LRST

CHRIM MRME=PRPER$=MRSTER ORDER=LRST
GROUP MRME=SUBJECT ~YM=Z TYPE=~AMDOM,$UBJRRER

ITEM MAME=MUMPRPR TYPE=M~4
ITEM MRME=¢UBJARER TYPE=R125

CHRIM MRME=$UBJECTSPDETRIL
CHRIM MAME=LIMKCMHpMRSTER ORDER=MEXT

GROUP MRME=PRPER SYM=W TYPE=IMDIRECTPPRPERS
ITEM MRME=TITLE TYPE=At40
ITEM MRME=JOURMRL TYPE=RP40
ITEM MRME=PUB-DATE TYPE=Mr6

CHAIM MRMEBPRPER~,DETRIL
CHAIM MRMEaLIMKCHM~DETRIL~HEBD

0025 EMD
TEXT PRDCE$$IMG COMPLETE - - 000 ERRORS DETECTED - -

PA~E 0002 FILE DEFIMITIOM PROCESSOR DRTE 03 /11 /76

FILE MAME: DDLEXPL SIZE IH PRGE~I 400 CHRRRCTER~/PI~GE: 1500
IMVEHTORY LEVELs 85 PASSWORDS MOJOKE
GROUP TRBLEI

I HRME I SYH I TYPE I SIZE I LOC I KEY I CHRIM5 I
.

I I I I I I
FIELD I X I PR 31 I 70 I I WRITERS I

I I I I I ~UBJECTS I
I I I I I I

WRITER I Y I RX 90 I 14Z I RUTHMAME I WRITERS I
I I I I I PRPERS 1
I I I I I I

SUBJECT I Z I RM 53 I 241 I SUBJARER I SUBJECTS I
I I I I I LIMKCHM I
I I I I I I

PRPER I W I IM 117 I 312 I PRPER~ I PAPER~ I
I I I I I LIMKCHM I
I I I I I I

..

PRGE 0003 FILE DEFIMITIOH PROCESSOR DATE 0 3 / 1 1 / 7 6

CHAIH TRBLEI

.
I HAME I ORDER I PRIOR I HER9 I MA~TER I DETAIL I LOC I KEY I
.

I I I I I I I
WRITERS I SORT-2 YES I MO I FIELD I WRITER I 77 I AUTHHRME I

I I I I I I I
SUBJECTS I MEXT MO I MO I FIELD I SUBJECT I 112 I I

I I I I I I I
PRPER~ I LAST MO I MO I WRITER I PAPER I 206 I I

I I I I I I I
LIHKCMM I MEXT MO I YES I SUBJECT I PAPER I 2?7 I I

I I I I I I I
.

PAGE 0004 F ILE DEFIMITIOM PROCESSOR

,ITEM TABLE!

.
I HRME I LOC I TYPE I LEMGTH I
.

I I I
AUTHMRME I 154 RN I 20 I

I I I
RDDR~ I 174 RH I 30 I

I I I
RGE I 204 MU I 2 I

I I I
HUMPAPR I 248 HU I 4 I

I I I
CUBJR~FA I 252 AM I 25 I

I I I
TITLE I 319 RM I 40 I

I I I
JOURMAL I 359 RH I 40 I

I I I
PUB-DRTE I 399 MU I 6 I

I I I
.

DATE 03/11176

50

PR 5734-CB~ V4 RELEASE 1.2 310CT73

1
00001 IDEMTIFICRTIOM DIVI~DM.
0 0 0 0 2 PROGRRM-ID. EXPLPGM.
00003 EMVIRDHMFMT DIV IS IOH.
00004 DRTR DIVISIOM.
0000~ WORWIMG-STORAGE SECTIOM.
0000~ 17 6RDUP-MAME PICTURE X{8).
n0007 77 CHRIM-MRME PICTURE X¢G).
O000A Ol COM-TRB COPY DDLEXPL.
00009 C 01 COM-TRB.
O00tn C 05 CCB.
00011C 09 REF-CDDE
00012 C 09 GRP-SYH
00013 C 09 ERR-CODE
00014 C n9 ER~-SYfl
00015 C 09 ERR-REF
00016 C 09 PASSWORD
00017 C 05 PAGEHDR.
00018 C O~ CURR-OF-PRGE
00019 C 09 CALCHRIH.
000~0 C: 13 CHM-MSTR
00021 C 13 CHM-PRIR
00022 C 13 CHM-CURR
00023 C 1:3 CHM-ME×T
000~4 C 13 CHM-GRP
000~5 C 05 FIELD.
000~6 C 09 CURR-OF-X
00027 C 09 WRITERS.
00028 C 13 CHH-MSTR
00089 C: 13 CHM-PRIR
nO030 C 13 CHH-CIJR~
0 0 0 3 1 C 13 CHM-MEXT
000~2 C 13 CHM-GRP
00033 C 09 :~UB.IECTS.
00034 C 18 CHH-MSTR
00035 C 13 CHM-PRIR
000~6 C 13 CHM-CLIR~
00037 C 13 CHH-MEXT
00038 C 13 CHN-GRP
000:39 C 05 WRITER.
AOn4n C 09 CURR-OF-Y
A~41C 09 AUTMHRME
0004~ C 09 RDDR$S
0 0 0 4 3 C 09 AGE
00044 C 09 PAPERS.
00n45 C 13 CHN-MSTR
00046 C 13 CHM-PRIR
00047 C I~ CHM-CU~R
00049 C 13 CHM-MEXT
00049 C 13 CHH-GRP
00050 C 05 ~IIBJECT.
0 0 0 5 1 C 09 CURR-DF-Z
0005~ C n9 MUMPRPR
00053 C n'~ 3UB JAPER
00054 C 09 L IMKC:HM.
00055 C IB CHH-M~TR
00056 C I~ CHM-PRIR
00057 i~ 13 CHH-CU~R
00058 C 13 CHM-HEXT
honda C 13 CHM-GRP
00060 C 05 PAPER.
00061C 09 CURR-OF-W
0006~ C: ha TITLE
0006:~ C 09 .IOURHAI_
00064 C n9 PUB-DATE
0 0 0 6 5 .PROCEDURE DIVISIOM.
00066
noo~7
nno68
o0n~9
0007n
00071
0007~
0~073
00074
00075
00076
£=0077
00078
00079
00080
0on81
00082
~A083
n0084
Aoo85
000A6
nnng7
00088
00089
00090
nnnDl
0 0 0 9 ~
0009~
00094
00095
00096

IBM OS RMERICRM MATIOMRL STRMDRR9 COBOL

PIC I~ X9<6).
PIC IS X.
PIC IS $999.
PIC IS X.
PIC IS X9(6).
PIC IS X~8).

PIC IS X9~6).

PIC IS X9<6~.
PIC I$ X9(6).
PIC IS X9<6) o
PIC IS X9(6).
PIC IS X9(6>.

PlC I~ X9(6).

PIC I~ X9(6>.
PIC I~ X9(6~.
PIC IS X9<6~.
PIC I~ X9(6).
RIC IS ×9<6~.

PIC I~ ,'.~9(6).
PIC IS X9(6).
PIC IS ~c9<6).
PIC I~ X9(6~.
RIC IS X9(6>.

PIC I~ X9(6).
PIC IS Y.~20:..
PIC IS X()O:,.
PIC I$ $ 9 (~ .

PIC I~ 'Xq(6)..
PIC I~ X9(6~.
PIC I~ X9(6).
PIC I.K X9(6~.
PIE: I~ ,',K9~6).

PIC IS X9(6).
PIC IS $9(4:,.
PIC IS X(125~.

PIC IS X9(6).
PIC IS X9~6).
PIC IS X9<6).
PIC IS ×9(6~.
PIC IS X9(6~.

PIC IS X9,:6).
PIC IS X(40).
PIC IS X(40).
PIC IS $9(6~.

MOVE "NO JOKE" TO FASt,lORD.
=:ALL "OPEMDB" USING COM-TAB.
ACCEPT AUTHNRME.

• LOCATE THE RECORD DESCRIBING RUTHOR AND HIS PAPERS
MOVE "WRITER" TO GROUP-MRME,
CRLL "FIMDG" USING CDM-TRB GROUP-NAME.

• MOW RETRIEVE ALL PARERS WRITTEM BY GIVEN RUTHQR.
MOVE SPACE TO GRP-SYN.
PERFORM MEXT-PRPER THRU HEXT-PRPER-X

UMTIL GRP-SYM m " y " .
CRLL "CLOSEDB" USING COM-TRB.
STOP RUM.

NEXT-PAPER.
DO A FIND-NEXT TO LOCATE MEXT PAPER OH Pi~PERS CHRIM

MOVE "PRPER~" TO CHAIM-MRME.
CRLL "FIMDM" U~IMG COM-TRB CHRIM-MRME.

• CHECK 6RP-SYM, "Y" MERMS MO MORE PAPERS REMRIH
IF 6RP-SYM = "Y"

GO TO NEXT-PRPER-X.
• MOVE THE RECORD IMTO WORKIMG-~TDRAGE.

MOVE "PAPER" TO 6ROUP-HAME.
CALL "GET" I.ISIMG COM-TRB GROUP-MRME.

• RL~O GET THE SUBJECT GROUP ASSOCIATED WITH THIS PAPER
MOVE "LIHKCHH" TO CHRIM-MAME.
CRLL "FIMDM" U~IMG COM-TRB CHRIH-MAME.
MOVE "SUBJECT" TO GROUP-MRME.
CALL "GET" USIMG COM-TRB GROUP-NAME.

• PIMRLLY, DISPLAY THE RESULTS FOR CURREHT PAPER.
DISPLAY T ITLE SUBJARER JOURNAL PUB-DATE.

HEXT-PRPER-X.
EXIT.

