
133

AN EFFICIENT AND PORTABLE STRING PROCESSOR

by James R. Pinkert, The University of Tennessee

ABSTRACT

In this paper the author discusses a string processing system designed to
alleviate education and implementation problems normally associated with such
systems~ I t is written as a set of FORTRAN subroutines using SAC-1 [1]. Hence,
this system can be implemented almost anywhere, is easy to learn, and can be used
in computer science classes with limited prerequisites.

INTRODUCTION

String processing is an important aspect of computer programming. Consider,
for example, macro preprocessors, assemblers, compilers, and natural language
analyzers.

Unfortunately, there can be a problem in attempting more widespread appli-
cation of string processing techniques. Some installations do not have a string
language, such as SNOBOL. Others have one, but encounter limitations in allocating
the time and personnel necessary to teach users the language. (In addition, users
are often reluctant to devote such time.) Finally, from an educational viewpoint,
the internal workings of these string languages are d i f f i cu l t to investigate in
lower-level classes.

In this paper, the author discusses a string processing language designed
to alleviate such problems. I t is implemented as a set of FORTRAN subroutines
employing SAC-I. The SAC-1 l i s t processing module is an eff icient, but simple,
single link reference count system written in ASA standard FORTRAN. Hence, the
string processing module can be implemented at almost every installation, is easy
to learn, and can be discussed in classes with only a minimal background.

STRING PP~)CESSOR ROUTINES

SinCe many of the applications of string processing involve operations on
strings read in rather than generated internally, the description of the module
begins with the routine to read a character string from some input device.

L=STREAD(UNIT) String Read
Unit is the input de-vice fr-om-which 72 characters are read. List L
is a f i r s t order l i s t of 72 cells, each of which corresponds to one of
the input characters.

Many times i t is desirable to have trai l ing blanks removed automatically
from the input records. This is an option which may be activated by invoking the
following routine.

TRIMON Turn String Trimming Option On
Tra---raTTTng blanks for inpui~' strings are eTTminated from the input record
once the trimming flag is set.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F503561.503591&domain=pdf&date_stamp=1976-04-22

134

Seldom would the user want every input string trimmed of i ts t ra i l ing blanks.
To turn the trimming option off, the user simply invokes the following routine.

TRIMOF Turn Trimming Option Off
The check for t rai l ing blanks on input strings is skipped when the
trimming option flag is turned off.

The following routine outputs arbitrary length strings in records of 72
characters, padding the last record with blanks.

STWRIT(UNIT,L) String Write
Records of 72 (73 w~h carriage control for unit 6) characters from
arbitrary length l i s t L are written to device UNIT.

Many string processing applications generate results which a user would l ike
to save for future use. A user could write a string in 72 character blocks. How-
ever, efficiency dictates the use of the two following routines for use with input
or output using mass storage devices.

L=STPACK(M) String Pack
The string M is used to generate a packed l i s t L.
ters packed per word is implementation dependent.

The number of charac-

The preceding routine could also be employed to reduce the amount of space
necessary to represent a string and to reduce the time to compare strings. The
user should be careful, however, with string alignment within cells when using the
search routines.

Naturally, a routine is provided for unpacking previously packed strings.

L=STUNPK(M) String Unpack
Input is the pac~-ed l i s t M. Output is a new, unpacked l i s t L.

Often i t is desirable to trim blanks from selected strings. Routine STTRIM
provides this function

L=STTRIM(L) String Trimming of Trailing Blanks
Input is the f i r s t order l i s t L. Output is the original l i s t with all
trai I i ng blanks removed.

The following routine provides the function of searching one string to deter-
mine i f a second string is completely contained within the f i r s t string. The im-
plemented algorithm takes time proportional to the product of the lengths of the
two strings for the search. While algorithms exist for string matching which
operate in time proportional to the sum of the lengths of two strings, i t was be-
lieved that the overhead of such algorithms implemented in this system would
have negated any possible savings in computing time.

N=STSERC(A,B) String Search
Inputs are f i r s t or---Jer li~s-7~ and B. Output is the relative location
in A where B is found to begin. String B must be completely contained
inA.

135

Quite often i t is necessary to determine only i f two strings match symbol for
symbol. Integer function STCOMP analyzes two strings and returns a one i f the two
strings match and a zero i f they differ.

N=STCOMP (A,B) String Co--are
Input are two s t r ips A and B. Output is one i f string A is equal to
string B, and a zero otherwise.

Seldom are all the symbols of a string analyzed at any given point in time.
The following routine provides the service of copying selected cells of a string
so that a string may be analyzed in parts.

L=STGETS(A,N,M) String Get a Substring
Inputs are the str ingA, reTa~ive-cell location N ~ O, and number of
cells, M~ O. Output L is a l i s t of M cells copied from A beginning
with the Nth cell of A.

The abil i ty to put sections of strings together as desired is provided by
the following routine.

L=STREPL(A,B,N) String Replacement
Inputs are strings A and B, and displacement N. String B is inserted
in string A after the Nth cell of A. Strings A and B are nulled. Out-
put is the combination of l ists A and B.

The string processing module provides several routines which enable a user
to assign one string as the value of a second string. These routines are imple-
mented on the basis of an indirection l is t . The pointers to both the string and
its associated value are kept in a l i s t maintained by the system. The indirection
l i s t pointer, STNAME, is located in the labelled COMMON block, STRING. Graphically,
the indirection l i s t structure is as shown in Figure 1.

I tl i I 11' 'I -- 'i ~ i I 1 I i ['~-- . . 1 I I I I 1 -

' ' 1 I I !
" | ' ' | ' ' I ' ' ' ' I

I ! I I

Name I Val ue I Name n Val ue n

Figure I: Indirection List

Thus, the length of STNAME is 2n for n string entries and associated values.

The string name (string entry) and its associated value are entered into the
indirection l i s t by calling the following routine.

SSTPBS(SNAME,STRNG) Store a String Pointed To By a String
Input are two l is ts , SNAME and S~-RNG. The input ITst, ~-TRNG, is to be
entered as the value of the string SNAME.

136

To recall the value of a string which is entered in the system indirection
l i s t , a call to RSTPBS with the string name whose value is desired is all that is
necessary.

L=RSTPBS(SNAME) Recal l the String Pointed To B_y a String
Input is the string S-NAME. I f SN--AME is entered in the indirection l i s t ,
the pointer to i ts corresponding string value is returned. I f SNAME is
not entered, a "-1" is returned.

The preceding two routines require the routine to be described next. Routine
STILOC returns the location in the indirection l i s t of the pointer to the string
value associated with a specified name. I f there is no entry correponding to the
name sent to STILOC, then a value of "-1" is returned.

Routine STILOC can be quite beneficial to the user who has reason to reference
the indirection l i s t frequently. By providing a pointer into the indirection l i s t ,
and two routines to work with this pointer, the costly search time necessary when
using the previous two routines can be avoided.

L=STILOC(SNAME) String Indirection Location
Input is the string n-ame, SRAME. Output--fs the indirection l i s t cell
location which contains the pointer to the value associated with SNAME.

I f the user employs routine STILOC to get the location of the pointer to the
value of a string name entered into the indirection l i s t , then the following two
routines may be used to alter or recall the value without the searching required
by routines SSTPBS and RSTPBS.

L:RSTPBP(PTR) Recall a String Pointed To By a Pointer
Input is the pointer into tl~-e indirection l i s t . Ou-tput is the corres-
ponding l i s t value.

Although the above routines do not need to search the indirection l i s t , there
may be times when the routines SSTPBS and RSTPBS must be used. I t is wise, then,
to keep the size of the indirection l i s t to a minimum. The following routine en-
ables the user to delete entries from the indirection l i s t when they are not longer
needed.

STIDLT(SNAME) String Indirection Entry Delete
Input is the string name. The string and i ts associated value are de-
leted from the indirection l i s t .

Another useful routine for analyzing strings is a routine to remove cells
from one l i s t and to put them into a new l i s t . This is particularly useful in
analyzing patterns in strings. Once a pattern is detected, that pattern can be
removed and the string analyzed for further occurrences of the same pattern or some
other pattern.

M=STRIP (L ,N ,K) Strip Cells From a List
Inputs are string L and relative cell positions N > 0 and K > N.
put is the l i s t of cells N through K removed from L.

Out-

137

Rather than searching one string for complete containment of another string,
the following routine searches for the f i r s t occurrence of any one of a set of
symbols in another string.

N=STMTCH(LST,PTRN) String Match
Input are two strings ~ and'-P~. Output is the relative location in
LST of any cell value of PTRN which matches a cell value of LST.

A routine to take two input strings and merge them into one string is STMRGE.
The ,two input l ists are nulled.

L:STMRGE(A,B) String Merge
Inputs are two strings A-an--d-B. Output is a single merged string.

CONCLUSION

The string processing system discussed in this paper can be brought up very
quickly at almost any installation having a standard FORTRAN compiler. I t is easy
to use, and has been successfully taught in data structure, symbolic algebra, and
compiler courses. Although suitable for novices and beginning classes, i t is power-
ful enough to do very sophisticated tasks in higher level classes and general user
applications.

REFERENCES

1. G. E. Collins, The SAC-I List Processing System, U. of Wisconsin Computing
Center Tech. Report, July, 1967.

