144

Check for
Updates

A LANGUAGE FOR BOOLEAN FUNCTION REPRESENTATION AND MANIPULATION

Iong Chen and B. D. Carroll
Electrical Engineering Department
Auburn University
Auburn, Alabama 36830

ABSTRACT

Boolean algebra is used extensively in the analysis and design of digital logic
circuits, in the generation of test patterns for logic circuits, and in numerous other
practical applications. Hand calculations involving Boolean equations become im-
practical when the equations involve a large number of variables or when the number
of equations is large. Computerized processing of Boolean equations can significantly
extend the range of problems that can be solved using Boolean algebra.

A Yanguage ABAL (Auburn Boolean Algebra Language) is described in this paper that
permits machine representation and manipulation of Boolean functions. Functions may
be specified in algebraic form or as lists of minterms or maxterms. Types of opera-
tions available in the language include functional form changes, simplification rules,
prime implicant or prime implicate generation, functional minimization, functional
combinations using Boolean operators, and truth table generation. ABAL is written in
BASIC-PLUS for execution on a DEC PDP 11/40 RSTS/E System.

INTRODUCTION

Boolean algebra is used extensively in the analysis and design of digital logic
circuits, in the generation of test patterns for logic circuits, and in numerous
other practical applications. Fundamental principles of Boolean algebra and logic
design are routinely taught to undergraduates in most modern electrical engineering
curricula. However, the range of problems to which Boolean algebra can be applied
by engineering students and engineering practitioners is severely limited when tradi-
tional manipulation and evaluation techniques are used. That is to say, hand calcu-
lations using Boolean algebra become impractical when a large number of variables or
a large number of equations are involved. The advent of large scale integration
(LSI) has made the problem more acute since logic circuits equivalent to several
thousand gates can now be manufactured on a single chip. Such logic circuits are

beyond the scope of Boolean algebra representation and analysis when only traditional
methods are employed.

Computerized processing of Boolean equations can significantly extend the range
of problems that can be solved using Boolean algebra. Many programs have been
written for min1m1z1ng Boolean functions, for ANDing or ORing functions, and for simu-
lating logic circuits.1’2°3 These programs are most frequently written in some high-
level language such as FORTRAN, APL, or BASIC. Assembly Tanguage subroutines are
sometimes used to perform the basic Boolean operations.

High-level languages such as FORTRAN, APL, or BASIC are not, however, well
suited for processing Boolean equations since Boolean operations are not available
in the languages. Also missing are the means for representing Boolean functions. A
language specifically designed to handle Boolean algebra and Boolean equations is

needed. Auburn Boolean Algebra Language (ABAL) is such a language and will be
described in this paper.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F503561.503593&domain=pdf&date_stamp=1976-04-22

145

APPLICATIONS OF ABAL

ABAL was originally envisioned as a means for providing machine manipulation
of Boolean equations as ‘required by the multiple-fault test pattern generation
procedure of Bossen and Hong.* However, numerous other uses of the language have
since been identified. For example, ABAL can be used to develop drills in the funda-
mentals of Boolean algebra for the beginning logic design course. Other applications
of ABAL include logic design problems such as the simplification of logic functions
to minimize the gate count and the verification of the function realized by a logic
circuit design. Finally, ABAL can be utilized in any problem where Boolean equations
are used to represent a physical or an abstract structure.

ILLUSTRATION OF ABAL

The 1isting of a typical ABAL program is given in Figure 1. Output produced by
the program is shown in Figure 2.

DESCRIPTION OF ABAL COMPILER

Figure 3 shows the subprogram structure of the ABAL compiler. The function of
each subprogram is given below.

BOOLE - Creates a file for ABAL source program

TXEDIT - Orders the statements of the source program

SCANER - Analyzes the syntax and builds the symbol table

SMATIC - Checks the semantic correctness and generates object code

COPILE - Interprets the object code

MINMAX - Generates minterm 1list, maxterm list, don't care list, or truth table
PI - Generates prime implicants, prime implicates, or minimal SOP or POS

SOPPOS - Generates SOP or POS expansion
COMP ~ Applies complement rule

UNIQUE - Applies uniqueness theorem
ABSORB - Applies absorption theorem
CONSEN - Applies concensus theorem

Testing of the ABAL compiler has been accomplished using the strategies listed
below. While this approach is an effective way of identifying errors, it does not
provide for a proof of correctness of the compiler.

1. Exercise every type of legal statement in the language
2. Exercise every subprogram in the compiler

3. Exercise every subroutine in each subprogram

4. Exercise every keyword in the language

CONCLUSION

ABAL provides an effective tool for performing calculations involving Boolean
algebra. However, several desirable features are missing from the current version
and are planned for future versions. These features include conditional and uncon-
ditional branching, subroutines, and diagnostic messages. It is also desirable to
increase the 1imits on the number of variables, the length of expressions, and the

146

Features of ABAL are described in the following section. Later sections contain
an example ABAL program and output and a discussion of ABAL applications. The ABAL
compiler is described in another section. Conclusions based on experience with ABAL
are presented in the final section.

DESCRIPTION OF ABAL

ABAL is an interpretive language that permits machine representation and manipu-
lation of Boolean functions. Functions may be specified in the language in either
algebraic form or as lists of minterms or maxterms. Don't care conditions may be
combined using Boolean operators, simplification rules can be applied to functions
in a selective manner, functional form changes may be specified, functions may be
minimized, prime implicants or prime implicates may be generated, and truth tables
may be produced by employing features of the language. The current version of ABAL
is written in BASIC-PLUS for running on a PDP 11/40 RSTS/E time sharing system.

The following statement types are availabie in ABAL.

DEF ~ Used for function definitions

WRITE - Used for output specification

Assignment - Used for specifying functional combinations or for specifying
constants

END - Used for terminating a program

- LW P —

Operators provided in ABAL are given below.

1. AND(*)
2. OR(+)
3. EXCLUSIVE-OR(@)
4. NOT(')

In addition, the following generators are provided in ABAL for applying frequently

needed Boolean algebra theorems and procedures to previously specified functions.

SOP - Generates the sum-of-products expansion of a function.
POS - Generates the product-of-sums expansion of a function.
MSP - Generates a minimal sum-of-products form of a function.

MPS - Generates a minimal product-of-sums form of a function.
PICAN - Generates the prime implicants of a function.

PICAT - Generates the prime implicates of a function.

MIN - Generates the minterms of a function.

MAX - Generates the maxterms of a function.

TRUTH - Generates the truth table of a function.

10. COM - Removes the product terms of the form yx' from a function.
11. UNI - Removes duplicate terms from a function.

12. ABS - Applies the absorption theorem to a function.

13. CON - Applies the consensus theorem to a function.

WO~~~ WMy —
- L3 L] L] - - - 1] »

ABAL source program may contain as many as 300 statements. However, the sum of
the number of DEF statements and the number of assignment statements cannot exceed
50. Also, the number of variables in a source program cannot exceed 24. Boolean
expressions cannot exceed 256 characters in length. These limitations are imposed
by the current implementation of ABAL and not by the language itself.

number of statements.

147

Future work on ABAL will also be concerned with the imple-

mentation language and with the feasibility of direct execution in hardware of ABAL.

REFERENCES

1. S. G. Shiva and H. T. Nagle, Jr., "Computer Aided Design of Digital Networks,"
Electronic Design, Vol. 22, 1974.

2. S. A. Szygenda and E. W. Thompson, "Digital Logic Simualtion in a Time-Based,
Table-Driven Environment - Parts 1 and 2," Computer, Vol. 8, No. 3, March 1975,

pp. 24-36, 38-49.

3. B. D. Carroll, "A Simulator for Undergraduate Logic Courses," Computers in
Education Division of ASEE Transactions, Vol. VII, No. §, May 1975, pp. 57-72.

4. D. C. Bossen and S. J. Hong, "Cause-Effect Analysis for Multiple Fault Detection
in Combinational Networks," IEEE-TC, Vol. C-20, No. 11, Nov. 1971, pp. 1252-1257.

10
20
30
A0
50
GG
20
30
20
100
LLD
132G
133G
140
1350
LG0O
120
133G

DEF BFAC Yo Ir=(CXOY) XY)4V 02

WRITE SOF BFA{N Y22

WRITE PO& BFS

WRITE COMPLEMINTER RBFA

WEITE aREDRFTIONGS GFA

WRITE COMBENBULSGE BFA

WRTTE MINTEG GFA

WERITE MAXTH REA

T BFROX e Y s Z0aMINCOs LeS v Ao PIHTHINT (e 0
BFCOX Yy D3 DFAIX e Yy ZI4BF RN Y v 2

WRTTE TRUTH BFOK Y2

WRITE MINTG BED

WRTTE MAXTO LFC

WRITE PICAN BFC

WRITE FICAT BRFD

WRITE M&P B
WRITE MEZ RFC
END

Figure 1

148

SUM OF PRODUCT FORM GF SF&

I s i Sl Y [ol N b RO T P A A
¢ FOYWE R OXCTRXEY P VR Y K TRV TRY

k'S

PRODOGEYT OF M FoRe OF BFs IR

'
VAY D R KOV o VR W XK TEVAY A K WV

LA S AN S A €

BOOLEAN FUNCTION BFa AFTER APFLY ING
COMPLEMENT THEOREM 1o

YIRSV YRE 4 YEX

BOOLEAN FUNCTION BFa AaFTER aFPLY DNG
ARSORFTION THEOREM IS
YORE v YRS O+ YERY o YEYS

BOOLESAMN FUNCTION BF& AUTER AFPLYTNG
CONSENSUES THEGRENM IH
YORY S bYW O YR 4 Y ORVARXS

FHE MTN
¢

Zn i

A

A
<

vy
&

1
”y

¥

Figure 2

TERMS OF THE LOOUEAN FUNDTION

HE MAXTERME OF THE ROM.EAN FUNCTIOM

BE A

By

1
4

>

e

>

-t

i

s
]

T AT T A

149

THE TRUTH TARLE OF ROOLEAN FUNCTION RBFC OIS 3
O 0 D '
0 ¢ 1
16 I R
LCIR A §

0 0

o 1

1

1

THE MINTERMS OF THE ROODLEAN FUNCTION ERFC ARES

THH DONT CARES OF BODLEAN FUNCTION RFC ARE 3

THE MAXTERMES OF THE ROOLEAN FUNCTION RFC ARE 2

THE DONT CARES OF BOOLEAN FUNCTION BFC ARE .

FRIME IMFLICANTS OF BFE dg
CO v %D il
Q0 v I X’
¢ 2y 700 Y

FRIME IMPLICATES OF B ARE
2o 2 XAT 4T :

¢ W ox B3 Xovvrds

~
3

MEINIMAL SUM OF FRODUCT OF L FiRE

MENIMOL PROLLDCT OF S 07 GG R

KOAYHET

Figure 2 (Con't)

150

BOOLE
A 4
TXEDIT
SCANER
¥
SMATIC
¥
COPILE
Y
¥ ¥
MINMAX SOPPOS
. ¥
y Y Y ¥y ¥
PI coMp UNIQUE ABSORB CONSEN
Y Y ¥ ¥
Y
WRITE

Figure 3

