
144

A LANGUAGE FOR BOOLEAN FUNCTION REPRESENTATION AND MANIPULATION

long Chen and B. D. Carroll
Electrical Engineering Department

Auburn University
Auburn, Alabama 36830

ABSTRACT

Boolean algebra is used extensively in the analysis and design of digital logic
circuits, in the generation of test patterns for logic circuits, and in numerous other
practical applications. Hand calculations involving Boolean equations become im-
practical when the equations involve a large number of variables or when the number
of equations is large. Computerized processing of Boolean equations can significantly
extend the range of problems that can be solved using Boolean algebra.

A language ABAL (A_uburn _Boolean _Algebra Language) is described in this paper that
permits machine representation and manipulation of Boolean functions. Functions may
be specified in algebraic form or as l ists of minterms or maxterms. Types of opera-
tions available in the language include functional form changes, simplification rules,
prime implicant or prime implicate generation, functional minimization, functional
combinations using Boolean operators, and truth table generation. ABAL is written in
BASIC-PLUS for execution on a DEC PDP ll/40 RSTS/E System.

INTRODUCTION

Boolean algebra is used extensively in the analysis and design of digital logic
circuits, in the generation of test patterns for logic circuits, and in numerous
other practical applications. Fundamental principles of Boolean algebra and logic
design are routinely taught to undergraduates in most modern electrical engineering
curricula. However, the range of problems to which Boolean algebra can be applied
by engineering students and engineering practitioners is severely limited when tradi-
tional manipulation and evaluation techniques are used. That is to say, hand calcu-
lations using Boolean algebra become impractical when a large number of variables or
a large number of equations are involved. The advent of large scale integration
(LSl) has made the problem more acute since logic circuits equivalent to several
thousand gates can now be manufactured on a single chip. Such logic circuits are
beyond the scope of Boolean algebra representation and analysis when only traditional
methods are employed.

Computerized processing of Boolean equations can significantly extend the range
of problems that can be solved using Boolean algebra. Many programs have been
written for minimizing Boolean functions, for ANDing or ORing functions, and for simu-
lating logic circuits. 1'2'3 These programs are most frequently written in some high-
level language such as FORTRAN, APL, or BASIC. Assembly language subroutines are
sometimes used to perform the basic Boolean operations.

High-level languages such as FORTRAN, APL, or BASIC are not, however, well
suited for p~cessing Boolean equations since Boolean operations are not available
in the languages. Also missing are the means for representing Boolean functions.
language specifically designed to handle Boolean algebra and Boolean equations is
needed. Auburn Boolean Algebra Language (ABAL) is such a language and will be
described in this paper.

A

http://crossmark.crossref.org/dialog/?doi=10.1145%2F503561.503593&domain=pdf&date_stamp=1976-04-22

145

APPLICATIONS OF ABAL

ABAL was or ig inal ly envisioned as a means for providing machine manipulation
o f Boolean equations as.required by the mult iple-fault test pattern generation
procedure of Bossen and Hong. 4 However, numerous other uses of the language have
since been identif ied. For example, ABAL can be used to develop d r i l l s in the funda-
mentals of Boolean algebra for the beginning logic design course. Other applications
of ABAL include logic design problems such as the simplif ication of logic functions
to minimize the gate count and the verif ication of the function realized by a logic
c i rcui t design. Finally, ABAL can be ut i l ized in any problem where Boolean equations
are used to represent a physical or an abstract structure.

ILLUSTRATION OF ABAL

The l is t ing of a typical ABAL program is given in Figure I.
the program is shown in Figure 2.

Output produced by

DESCRIPTION OF ABAL COMPILER

Figure 3 shows the subprogram structure of the ABAL compiler. The function of
each subprogram is given below.

BOOLE - Creates a f i l e for ABAL source program
TXEDIT - Orders the statements of the source program
SCANER Analyzes the syntax and builds the symbol table
SMATIC - Checks the semantic correctness and generates object code
COPILE - Interprets the object code
MINMAX - Generates minterm l i s t , maxterm l i s t , don't care l i s t , or truth table
PI - Generates prime implicants, prime implicates, or minimal SOP or POS

SOPPOS - Generates SOP or POS expansion
COMP - Applies complement rule
UNIQUE - Applies uniqueness theorem
ABSORB - Applies absorption theorem
CONSEN - Applies concensus theorem

Testing of the ABAL compiler has been accomplished using the strategies l isted
below. While this approach is an effective way of identifying errors, i t does not
provide for a proof of correctness of the compiler.

I. Exercise every type of legal statement in the language
2. Exercise every subprogram in the compiler
3. Exercise every subroutine in each subprogram
4. Exercise every keyword in the language

CONCLUSION

ABAL provides an effective tool for performing calculations involving Boolean
algebra. However, several desirable features are mi,ssing from the current version
and are planned for future versions. These features include conditional and uncon-
ditional branching, subroutines, and diagnostic messages. I t is also desirable to
increase the l imits on the number of variables, the length of expressions, and the

146

Features of ABAL are described in the following section. Later sections contain
an example ABAL program and output and a discussion of ABAL applications. The ABAL
compiler is described in another section. Conclusions based on experience with ABAL
are presented in the f inal section.

DESCRIPTION OF ABAL

ABAL is an interpretive language that permits machine representation and manipu-
lation of Boolean functions. Functions may be specified in the language in either
algebraic form or as l is ts of minterms or maxterms. Don't care conditions may be
combined using Boolean operators, simplif ication rules can be applied to functions
in a selective manner, functional form changes may be specified, functions may be
minimized, prime implicants or prime implicates may be generated, and truth tables
may be produced by employing features of the language. The current version of ABAL
is written in BASIC-PLUS for running on a PDP ll/4O RSTS/E time sharing system.

The following statement types are available in ABAL.

I . DEF - Used for function definit ions
2. WRITE - Used for output specification
3. Assignment - Used for specifying functional combinations or for specifying

constants
4. END - Used for terminating a program

Operators provided in ABAL are given below.

I . AND(*)
2. OR(+)
3. EXCLUSIVE-OR(@)
4. NOT(')

In addition, the following generators are provided in ABAL for applying frequently
needed Boolean algebra theorems and procedures to previously specified functions.

I . SOP - Generates the sum-of-products expansion of a function.
2. POS - Generates the product-of-sums expansion of a function.
3. MSP - Generates a minimal sum-of-products form of a function.
4. MPS - Generates a minimal product-of-sums form of a function.
5. PICAN - Generates the prime implicants of a function.
6. PICAT - Generates the prime implicates of a function.
7 . MIN - Generates the minterms of a function;
8. MAX - Generates the maxterms of a function.
9. TRUTH - Generates the truth table of a function.

lO. COM - Removes the product terms of the form xx ° from a function.
I f . UNI - Removes duplicate terms from a function.
12. ABS - Applies the absorption theorem to a function.
13. CON - Applies the consensus theorem to a function.

ABAL source program may contain as many as 300 statements. However, the sum of
the number of DEF statements and the number of assignment statements cannot exceed
50. Also, the number of variables in a source program cannot exceed 24. Boolean
expressions cannot exceed 256 characters in length. These l imitations are imposed
by the current implementation of ABAL and not by the language i t se l f .

147

number of statements. Future work on ABAL will also be concerned with the imple-
mentation language and with the feasibility of direct execution in hardware of ABAL.

REFERENCES

I. S. G. Shiva and H. T. Nagle, Jr. , "Computer Aided Design of Digital Networks,"
Electronic Design, Vo1. 22, 1974.

. S. A. Szygenda and E. W. Thompson, "Digital Logic Simualtion in a Time-Based,
Table-Driven Environment - Parts l and 2," Computer, Vol. 8, No. 3, March 1975,
pp. 24-36, 38-49.

3. B. D. Carro l l , "A Simulator for Undergraduate Logic Courses," Computer.s in
Education Diy.isip.nof ASEE.Transactions, Vol. VI I , No. 5, May 1975, pp. 57-72.

4. D. C. Bossen and S. J. Hong, "Cause-Effect Analysis for Multiple Fault Detection
in Combinational Networks," IEEE-TC, Vol. C-20, No. I I , Nov. 1971, pp. 1252-1257.

10
20
1".': 0
40
50

60
70
80

90
I 00
110

120
1 3 0
:I. 4 0
1 '50
1 6 0
1 7 0
1 8 0

13 E". F:" B F"A (X, Y, Z) = ((X (? Y) " * Y) + (Y ' (.;.~ Z)
WR]ITE SOF:' BF:'A(X.~Y,Z)
WRZTE F"SS BF:'A
W R I T E C 0 M F:' L. E H E N'T" S F > P F:'A
W t::.: I T" E A B S 0 R F:' T I 0 N !:; F:' B F:' A
W R I "1"' E C 0 N S E hI,S U S S F:' B F:" A
W R I T E MZNTG I:F:A
Id R I T IZ 11 ,.],.', T (:. B F A
I)EF:" I"::F: B (X , Y ~ Z) ::::M I N (0 , 1 , 3 , .4, /) f I L)N T (.,-.'., 6)
B F:" C (X , Y ~ Z) ::.: B F:" A (X , Y .~ Z) +)3 F:'B (X ~ Y , Z)
WRI 'T[: TF:,UTH BI::C (Y :, Y , Z)
I,,JI:;;I'TE i l l N TG I):FC
W I::: I T E t'l A X F G B J:: C
W R I "T E F:' Z C A N i'.": F:" C
W F;: I T E F:' 1" C A T 1:1': F C
W R I T E MSI':' BF:C
WRZ'TIE tlF:'!i; BF:'C
E N D

Figure 1

148

SLI~'I OF I:'I:~O.OUCT F ORi"I OF BF:'A IS ;:
Y'*Z' I'- Y*Z }" X'*X*Y I Y*X + X'*Y'*Y '{" Y*Y

PRODUCT CF SUN I::ORH OF BF:A I~;
Y+Y'.÷.Z * X'.I.X.~Y'+Z * Y'+X+Z * X'+Y-~Y".~Z * Y.~Z' * X'+X+Y+Z' * Y'.;.X+Y-~,Z ,;

X " + Y ") Z ' * Y' ~'Y'÷Z'

BOOLEAN FUNCTION BFA AFY'ER APPLYING
COMPLEMENT TI.IEOREM I~:;

Y'*Z' ~ Y*Z -4 Y*X

BOOLEAN FUNCTION BFA AFTER APPLYING
ABSORPTION THEOREM IS
Y'*Z' + Y*Z + Y*X + Y,Y"

BOSLEAN FUIqCTIOI',I BFA AFTER APPLYING
CONSENSU!3 THEOREM IS
Y'*Z" ..~ Y*Z ~. Y*X ..!. Y'*Y*X'

TI.IE MI.,~,/TERMS (3F '[lie BOOLEAN FUNCTION

0
7;
4
6
7

BFA ARE C

'THE MAX'TERMS OF THE BOOLEAN FUNCTION

1
2
',5

BFA ARE

Figure 2

1 4 9

THE: TRUTH TABLE OF BOOLEAN FUNCTION BFC IS
0 0 0 1
0 0 1 1
0 1 0 D
0 1 1 1
1 0 0 1
1 0 1 0
:l, :l. o :L
1 1 1 1

THE MINTERMS OF THE BOOLEAN FUNCTION BFC ARE*
0
1
3
4
6
7

THE BONT CARES OF BOOLEAN FUNCTION BFC ARE
2

THE MAXTERMS OF THE BOOLEAN FUNCTION BFC ARE

THE DONT CARES OF BOOLEAN FUNCTION BFC ARE
2

PRIME IMPL. ICANTS OF
(0,6) Z'
(0,3) X"
(2,7) Y

BFC ARE

PRIME IMPLICATES OF
(2 ~ 2) X'{.Y'+Z
(5 , 5) X'+Y.÷.Z'

BFC ARE

MINIMAL SUM OF PRODUCT OF

X' + Z" + Y

MINIMAL PROI)UCT OF SUM OF

X'+Y+Z'

BFC

BFC

ARE

ARE

Ftgure 2 (Con't)

150

I MINMAX

...... PI COMP

I BOOLE]

~ TxEoIT I

I SCANER 1

I SMATIC I

I coPI~E I

I SO,PPOS
,f

11 u~ioo~ II
i,

I

ABSORB
÷

+

[WRITE I

f
'1 I CONSEN

't,

Figure 3

