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VARIABILITY IN PREDATOR-PREY EXPERIMENTS: SIMULATION USING A STOCHASTIC MODEL 
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ABSTRACT 

Simulation of several actual predator-prey experiments was carried out, using 
a stochastic version of the Lotka-Volterra equations. Great variability was found 
from run to run, with occasional extinction of either predator or prey with the 
same parameters. It is suggested that single experimental runs are very unreliable 
for parameter estimation, multiple replicates of experiments being necessary. It 
was not found necessary to postulate such mechanisms as hiding places for most 
experimental results, the discrete stochastic equations being adequate for this 
purpose. 

INTRODUCTION 

The mechanism of interaction between predator and prey first received serious 
consideration in the works of Lotka (1925) and Volterra (1931). In separate works, 
each used a continuous deterministic model consisting of Idifferential equations 
describing the rates of change of predator and prey with respect to time. Solution 
of these equations indicates that both populations should osciilate--a condition 
perhaps to be expected from the interaction between predator and prey. At high prey 
densities the predators have plenty to eat and multiply rapidly, subsequently 
decreasing the prey density while their own density increases. Eventually a 
turning point is reached when the prey density becomes low enough to cause predators 
to starve. As a consequence of the lowered predator density, the prey begin to 
multiply more rapidly and the above sequence repeats itself. 

In spite of the apparent appropriateness of the above model, Gause (1934) and 
other researchers found that their experimental predator-prey populations usually 
failed to exhibit oscillatory behavior, with one or the other species becoming 
extinct. Many modifications and much intense mathematical investigation of the 
Lotka-Volterra equations ensued. Several variations of the original Lotka-Volterra 
equations are given by Rosenzwelg (1971). 

The Pearl-Verhulst logistic model =efleots the fact that an environmentwill 
support some maximum number of animals. This condition is generally applied to 
prey birth rate. Gause's experimental data on Paramecium Caudatum appears to 
support the Pearl-Verhulst version fairly accurately. 

Another condition which may modify the Volterra model is the decrease in the 
predator's voracity as the number of prey increases. Gause (1934) first modelled 
this phenomenon; Rosenzweig (1971) lists this and other similar models. 

Several models seek to reconcile the discrepancy between experimental behavior 
and Volterra's equation by introducing more animals of the almost extinct species, 
thereby producing the desired oscillation. Immigration is one such mechanism and 
has been studied experimentally by Gause (1934) and modelled by Bartlett (1960). 
Hu~faker (1970) reports experiments, dealing with dispersion, which allow the 
depleted prey a chance to multiply elsewhere and then migrate into the depleted 
area. Similarly, Gause's (1934) use of hiding places for the prey effectively 
prevents the prey population from crashing. 

An approach used by Bartlett (1960) involves bringing the experimental data 
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Into compliance wlth deterministic theory by the introduction a~ tlme lags, 
representing gestation tlme of prey and predator. The first attempt to formulate 
the, stochastic version of the deterministic model was made by Feller (1939), who 
considered the problem intractible. Chlang (1954) formulated the difference 
equations and obtained the system of differential equations for the Joint probabi- 
lity function, but was unable to obtain the solution for the partial differential 
equation for the probability generating function. 

With the advent of computers, Bartlett (1960) and Leslie and Gower (1960) 
approached the Volterra equations via simulation, and appear to have attacked 
the root of the discrepancy between animal behavior and the Lotka-Volterra model-- 
that failure to oscillate is predominantly a result of the stochastic nature of the 

• real llfe situation. The element of chance can divert the interaction of predator 
and prey sufficiently far from its deterministic path to cause extinction of either 
species. For "laboratory-slze" populations, experience wlth 81mulation soon leads 
one to realize that sustained oscillation appears to be virtually impossible if the 
initial numbers of predator and prey are not near the equ~librlum state described 
by Volterra in hls analysis of the deterministic model. 

Thls paper seeks to make comparisons between simulation results based on a 
discrete stochastic version of Volterra's differential equations and some of the 
data obtained from literature. Since great variability is found upon repetition 
of a simulation, using the same parameters, an attempt has been made to quantltate 
this inherent variability by reporting means, varlancesand ranges of the number 
of predators and prey present at each tlme point. 

METHODS 

The simulation programwas written in FORTRAN and run on the IBM 370 computer. 
The basic formulas underlying the simulation are a modlflcatlon of Volterra's 
differential equations. To formulate the difference equations we wlll define the 
operator R as follows: M R X Is the number of random numbers (uniformly distributed 
between 0 and i) out of a total of X random numbers which are less than M. Then: 

prey(t + At) -prey(t) = (CAt) R prey(t) - (~D pred(t)At) R prey (t) 

pred(t + At) - pred(t) =-(BAt) R pred(t) + A(prey eaten)At R pred(t) where: 
pred(t) 

A = efficiency of predator 
B = death rate of predator 
C = birth rate of prey 
D = encounter rate between predator and prey 

prey eaten = (D pred(t)At) R prey(t) 
t = tlme 

At = tlme interval in which one event occurs 
CAt & probability of prey birth in At per prey 

D pred~t)At ~ probability of pred-prey encounter resulting 
in prey being eaten, in At, per prey 

BAt ~ probability of pred death, In At, per pred 
A(prey eaten)At ~ probability of pred birth in At, per pred 

pred(t) 
these approximations being valid if t is sufficientlY small, so that the probabili- 
ties <<i. 

The random-number-generating subroutine employs the Taussky-Todd multipllcatlve 
congruence method and generates unlformly-distrlbuted floating point pseudo-random 
numbers between 0 and i. 
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The probabilities above are kept smaller than .05 by a subroutine which 
repetitively halves the time interval. Thus the probability of two events occuring 
in one time interval is less than .0025 and we may neglect this possibility. To 
provide for computing efficiency, another subroutine doubles At if the probabilities 
all become smaller than .02. Doubling the time interval when possible saves a 
considerable amount of looping. 

Equation (2) was revised for greater realism and to increase efficiency by 
using the following"lumped" version: 

pred(t + At) - pred(t) = (A (prey eaten) - B At) R pred(t) 
pred(t) 

Although this form displayed less variability than the previous, its qualitative 
behavior remained the same. Biologically, prey eaten goes into maintenance of the 
predators, largely resulting in a decreased predator death rate, lending biological 
Justifleation for lumping predator birth and death probabilities. 

The most recent version modifies the encounter probability as a function of 
prey density: 

Prey(t+At)-Prey(t)=(C ~-prey(t~At) R prey(t) - [i D ] pred(t)At R p r e y ( t ) L  PYMAX J +prey(t) 

D - L E 
The expression [ + pr_e~attempts to deal with the fact that predator voracity 

decreases as the prey density increases. This function was chosen mainly for the 
following desirable properties: 

i. It is a monotone decreasing function of prey(t) having range (0,D) for 
prey(t)~O. 

2. The constant E has the effect of modifying the speed with which the 
function decreases with increasing prey. E may be interpreted by letting 
prey(t) = E and observing that the function value is D/2; i.e., E is the 
number of prey present when the predator's voracity is half that ofstarva- 
tlon. 

Parameter Estimation 

Accurate parameter estimation is extremely difficult. The following (fairly 
crude) methods were used as a starting point and parameters were then adjusted by 
observing results of the simulation. 

The birth rate of the prey is the starting point. Most researchers start 
cultivating the prey a few time intervals before the predator is introduced and 
one can attempt to determine the birth rate from this time period using the formula 

_ prey(t) . d preYdt = C prey whose solution is C = It in prey (to) 

The values for C found by taking different t's may vary considerably, but one can 
approximate upper and lower boundaries, which are helpful. 

If the data of the experiment show one or more cycles, B may be estimated by 
2w . Rearranging, using the formula for the period of the deterministic form, T = "B~6 

we may then calculate B = 4~2" 

T2C 

To set parameters A and D, one may use the maximum prey and predator values, 
with the corresponding first time derivatives being ~zero, in the following manner: 
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d prey . (c - D pred) prey = 0, or D = 
dt PRED 

and 

d pred . (AD prey - B) pred = 0, or A = B 

dt D PREY 

where PRED = number of predators at prey maximum and PREY = number of prey at 
predator maximum. 

PYMAX is sometimes experimentally determined, or can sometimes be estimated 
by observing the greatest number of prey when few predators are p~esent. E may be 
estimated roughly by observing the change in predators relative to the number of prey. 

RESULTS 

Simulation of experiments from the literature is limited by experimental 
conditions such as too many animals for economical computing; reporting of animal 
density rather than total number of animals; and limitations created by biological 
complexity of the animals selected, as in the case of egg laying insects which 
introduce time lags. 

The first simulation results are from data taken from Gause's experiments 
using Paramecium Caudatum as prey and Didinium Nasutum as predator. He mentions 
that growth rates under different conditions are not comparable since growth rates 
of predator and prey vary not only with the number of bacteria serving as nutrient 
for the prey, but also with pH and the medium used. Computer runs support the fact 
that growth rates are subject to change from one experiment to the next, as is seen 
in the following two experiments from Gause. 

Experiment i: Data of Gause (1934) p. 118. (See page 71 
Prey birth rate was calculated from ds~a on prey growth in the absence of 

predators to be approximately 1.7. Scrutiny of the data indicates that the encounter 
rate must be much less for 118 prey than it is £6r 30, since the predators increase 
more for prey = 30 than for prey = 118. Hence, 125 seems a reasonable value for 
the half kill rate. Gause indicates that 375 is the maximum number of prey to be 
supported by the environment. 

The best simulation obtained resulted from a prey birth rate of 1.5. Intro- 
duction of the predator could influence prey birth rate by changing the age distri- 
bution of the prey population. Results are shown in Figure i. Simulation data 
are means of 5 runs. Data for predators lags the simulation; this is probably the 
effect of time delays in predator death. 

Experimen t 2: Data of Gause (1934) p. 119. (See page 7) 
This simulation was attempted with the parameters of the preceding experiment, 

but gave no success; in fact the predators crashed first in the simulation, but 
the prey crashed first in the experiment. With revised parameters, better results 
were obtained. The prey growth rate was held at the "experiment i" value. The 
effect of a time lag on predator death was simulated by setting the predator death 
rate to zero over the short time period of this experiment. The encounter rate 
and efficiency were roughly tripled. Results of the simulation are shown in Figure 
2; the data are well fitted. However, considerable run to run variability was 
observed. 

Experiment 3: Data of Gause (1934), p; ;126. (See page 81 
In this experiment, Gause obtained 2 oscillations, and introduced a very small 

number of prey and predators~ (i each) at several points, thus simulating the effect 
of immigration. Since such a tiny number of animals was introduced~a simulation was 
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attempted without introducing animals, to see if oscillations could be observed 
in the absence of immigration. Computer runs which approximated the first experi- 
mentally observed predator and prey peaks almost always crashed without exhibiting 
the second oscillation. One simulation out of ten yielded two oscillations, and 
is shown in Figure 2. 

Experlment 4: Data of Huffaker (1958). (See page 8~ 
To obtain a simulation on an experiment exhibiting some oscillatory behavior, 

Huffaker's data on orange mites were used. In dealing with various d~spersions of 
predator and prey, he essentially is adjusting encounter rate, and his final 
experiment gave 3 oscillations over a period of 207 days, where upon the predator 
died. Judging from computer runs, Huffaker was relatively lucky to obtain these 
results - one simulation in ten using the parameters given resulted in 3 oscilla- 
tions as pictured in Figure 4. 

DISCU6SION 

In the absence of a likelihood function, flttlng a stochastic model to 
experimental data is a difficult and parlous process. In this case, the severe 
nonlinearity of the model greatly restricts its potential qualitative behavior, 
and qualitative or semi-quantitative fitting may yield information as to the 
m o d e l ' s  validity (or  lack of it). 

The results given here might well be improved upon, since in effect we are 
working with an elght-parameter stochastic surface to find a best simulation. Of 
these eight parameters, two are known: the original number of predators and prey. 
Three more may be estimated from the data; at least, we may put boundaries on their 
values. These are the maximum number of animals supported by the environment, the 
number of prey present when the predator's voracity is half that of starvation, and 
prey birth rate. This problem could be solved bY aD optimization routine, but the 
amount of =~mputer time required is prohibitive at present. 

The Lotka-Volterra equations, then, remain an extremely sturdy model for 
predator-prey interaction if they are modified to a stochastic form. A little 
experience with the results of simulation leads to the general conclusion that the 
closer the parameters are to the steady state point of the deterministic form 
(d prey d pred = 0), the longer oscillation will be sustained. Most of the 

dt d t  
research attempting to produce oscillation with experimental populations amounts 
to changing parameters to a more favorable position. Changes in nutrient represent 
changes in predator death and prey birth; changes in viseoglty represent changes in 
encounter rate and different animals have different rates. 

In a sense, it will be much harder to obnain oscillation In a lab than in 
nature, since the lab experiment usually represent:s a limited population, which is 
fairly likely to crash, while nature represents a composite of many such 
experiments, which is far less likely to crash. 

The basic qualitative behavior of most experiments may be obtained using a 
discrete stochastic form of the Lotka-Volterra equations; one does not need 
limitation of the number of animals in the environment, hiding places, or adjusting 
of the predator's voracity to have simulated populations crash. 

A quantitative a p p r o x i m a t i o n  of  l a b o r a t o r y  b e h a v i o r ,  however ,  does  r e q u i r e  
t h e  above a d j u s t m e n t s ,  and p o s s i b l y  more depend ing  on the  e x p e r i m e n t .  More 
e x p e r i m e n t a l  d a t a  on p r e d a t o r  v o r a c i t y  would p r o b a b l y  y i e l d  a more a p p r o p r i a t e  
f u n c t i o n  f o r  a d j u s t i n g  t h i s  v a r i a b l e  w i t h  r e s p e c t  t o  p r e y  d e n s i t y .  Time l a g s  
i n v o l v e d  in  b i r t h  and s t a r v a t i o n  shou ld  be c o n s i d e r e d ,  and ,  as  u n d e r s t a n d i n g  of 
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simulation behavior increases, more adjustments yet may be necessary to yield 
simulations worthy of statistical comparison with the experimental data. The 
amount of stochastic fluctuation among simulation runs strongly indicates that 
several replicate experimental runs should be made in laboratory investigations 
of predator-prey interactions. 
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