
216 

DESIGN CONSIDERATIONS FOR A USER ORIENTED 
DISCRETE-EVENT SIMULATION LANGUAGE 

Mil Basom, Rafael A. Lizarazu, Robert Scott Pallack, Dimas K. Sanchez, 
Paul Schluter, M. L. Schneider, Computer Systems Program, Florida 
Atlantic University, Boca Raton, Florida 33431. 

ABSTRACT 

Discrete event simulation languages can be described in terms of 
simulation perspective and language structure. A useful language should 
allow an emphasis to be placed on transactions, queues, and item flow. 
The language structure should be self-documenting, readable, and descrip- 
tive rather than algorithmic in philosophy. SIMFO, a newly designed 
language, provides the necessary definition of a system using a COBOL- 
like structure, and complying to the above requirements. A system can 
be defined in terms of the Items, facilities, servers, queues, and item 
flow. Branching involves only an IF THEN construction. Aside 
from summary information, all analyses are performed off-llne. 

INTRODUCTION 

With the increasing use of discrete event simulation techniques by 
many users, some unfamiliar with programming techniques, a descriptive, 
easy to use language is needed. In examining other languages, two 
factors should be examined: the structure language and the simulation 
perspective. 

Shannon [i] considers four categories of discrete event simulation 
perspectives: activity (CSL, ESP, FORSIM IV, GSP, and MILITRAN), event 
(SIMSCRIPT, GASP, SIMCOM and SIMPAC), process (SIMULA, OPS, SOL), and 
transaction flow (GPSS and BOSS). Most of these languages emphasize 
events or the transaction. In some languages, however, queue control 
plays an important function. 

The other consideration is language structure. In most cases, 
the simulation language is pseudo-algorithmic. For example, SIMULA 
employs ALGOL structuring, SIMSCRIPT belongs to the FORTRAN set of 
languages, and GPSS, to the non-user, appears to be an assembler. 
These language structures, without additional documentation, convey 
little information about the model to the non-programmer. 

LANGUAGE PHILOSOPHY 

In order to produce a more usable simulation language, a new 
approach should be developed, employing a descriptive, rather than an 
algorithmic approach. This philosophy should furnish the non-sophis- 
ticated user with a simple-to-use, yet comprehensive discrete event 
simulation language. At the same time it should provide the experienced 
user with a powerful tool for solving complex problems. The two basic 
requirements should allow flexible simulation perspectives, and 
should be self-documenting and readable. 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F503561.503606&domain=pdf&date_stamp=1976-04-22


217 

Since different applications may require the emphasis to be 
I~laced upon the facilities, and others, on the queues, the language 
:~hould allow the user the ability to implement either approach. In 
~,~Jd]l, lon, multi-facility, parallel processing and sequential proces- 
~ing should be available with a minimum of effort. 

A visable indentation structure, such as in a properly written 
ALGOL program, is an important aid in program documentation. Although 
the philosophy of a user oriented simulation language should be des- 
criptive, rather than algorithmic, it is desirable to implement such 
a structure. This can be accomplished by requiring lower level state- 
ments to be indented in relation to the statements which they modify. 
To reduce coding errors, free format constructions for statements and 
tables shouldbe permitted whenever they do not conflict with indentation 
requirements. 

Readability of the program is improved when the user can assign 
meaningful identifiers to items, facilities, attributes, etc. These 
identifiers should consist of up to thirty characters (chosen from the 
set A-Z, 0-9, -). This length provides the best compromise between 
length and information content. 

In accordance with the philosophy: "what the user doesn't know, 
won't hurt him," there should be no reserved word which would preclude 
its use as an identifier. The translator, or compiler, should, however, 
issue a warning whenever a user employs a keyword in another context. 
This facility of the language structure can be extended, permitting the 
multiple use of identifiers in different contexts (item, attributes, 
facilities, etc.) without causing any internal ambiguity. However, an 
indication of the multiple use of identifiers should be given to the 
user. 

Meaninful keywords should be chosen in order to maintain 
readability. Certain optional noise words, such as those in COBOL,are 
required in order to improve documentation while retaining the ability 
to produce a terse program. 

Even in self-documenting languages, comments are required. This 
feature can be provided by two delimiters: the first denoting the end 
of line, and the second the end of the statement. The syntactical scan 
for any line can be terminated by the first delimiter, thus allowing 
comments to be placed on each card. This implies that if the delimiter 
is placed in the first column, the entlre card contains comments 
information. 

To require the user to be concerned with continuation cards can 
lead to numerous errors. Thus, each statement should end with the 
second type of delimiter. This is in agreement with the indentation 
philosophy, which may require many cards when the indentation level is 
high. 



218 

External input is required whenever systematic modifications of 
the system are made. Thus, the ability to supply input parameters and 
their values in an important requirement. Data directed input provides 
the easiest, most fool-proof method for the proposed user. 

LANGUAGE STRUCTURE 

In order to implement the above philosophy, a new simulation 
language, SIMFO, has been designed. The simulation method has been 
described elsewhere [2]. The language structure is COBOL-like, 
containing paragraphs and sentences. 

Statements must appear in columns 10-72, with indentation levels 
every five spaces. Within each statement, a fixed starting position, 
aside from the required indentation, is not important. Identifiers 
conform to the above requirements. 

A simulation can be described in eight sections: 

DEFINE SYSTEM - All specifications regarding the general system 
characteristics are defined. For example starting time, 
checkpoints, and end of simulation criteria. 

DEFINE ITEM - The characteristics of each item are specified in 
this section, including arrival time distribution, and 
attributes. There is one subsection for each item type in 
the system. 

DEFINE FACILITY - Detailed information pertaining to the facilities 
used in the model must be specified. These would include 
server requirements, down time, and number of facilities. 

DEFINE SERVER- A facility may require manpower, outside equipment, 
or additional,reusable items for its operation. These pools 
are defined with their attributes in this optional section. 

DEFINE QUEUE - Although the system will define queues based upon 
the facility's attributes and entry requirements, the ability 
to specify queue structures is available. 

DEFINE TABLE - Each of the above sections may require information 
in a tabular form. These tables are placed in a separate 
section in order not to distract from the internal structure 
and readability of the other definition sections. 

DEFINE FUNCTIONS - This optional section allows the user to define 
any special functions employed; the rational is the same as 
for the tables. 

SYSTEM FLOW - Because a different use of the above defined items, 
facilities, servers, and queues are described in this section, 
a break in the above DEFINE . . . pattern is employed to 
emphasize this fact. 



219 

This section providea the user with the ability to direct 
the item flow pattern, and changing the pattern if desired. 

The DEFINE SYSTEM section has two parts, the start time, and 
simulation controls; and the checkpoint, restart, file and summary 
features. The system time span is controlled by the first two speci- 
fications even though a particular SIMFO program may have, sufficient 
information for a longer period. There are two ways a simulation can 
be completed: first, by the simulation time reaching the end time, and 
secondly, after a specified number of items have been generated. The 
second set of features are self explanatory; the checkpoint control can 
be described similarly to the end simulation. 

In order to describe a particular item, and its characteristics, 
the DEFINE ITEM section is used. This section contains a name 
(optional), arrival description and attributes of an item. The arrival 
description can be based upon one of the following criteria: l) a 
constant arrival rate, 2) by distributioDs that are defined a table or 
3) values defined by a function. Common distributional functions are 
provided, as well as the ability to define specific functions. 

A class is a type of activity, for example, a check-out-counter, 
employing one or more facilities; each of which has specific attributes. 
There may be more than one facility with the same attributes but dif- 
ferent identifiers. The DEFINE FACILITY will have: a name, the number 
of facilities, the time it is "down", Wlth values defined in the same 
way as for an item's arrival and the time an item remains in the faci- 
lity as a function of its attributes. 

The number, and attributes of servers are defined in the DEFINE 
SERVER section. Server information includes the number of servers, as 
Well as general information controling their availability and attributes. 

If the user wishes to specify a special queue, or wants additional 
control over the queues, then the DEFINE QUEUES section is employed. 
Control parameters include l) the name of facilities for each queue, 
2) one queue for each facility, 3) all facilities use one queue, 
4) normal default queues, 5) do not allow a facility to use this queue, 
6) define queue entry conditions without requiring a facility. Priority 
of items in each queue can be specified in this section. 

The second set of optional sections are the DEFINE TABLE and 
DEFINE FUNCTION. Tables are entered by defining the Information order, 
and entering the values as sets of n-tuples. Functions can be defined 
using a number of available system keywords, as well as tables. Their 
structure is FORTRAN-like; external functions are also allowed. 

The flow of i,tems through the system is facilitated by a series of 
statements that control their movement through time, during the 
simulation process. To accomplish this objective the user moves items 
from class to class and within each class, specifies a specific 
facilities. 



220 

The SYSTEM FLOW selection depends upon three factors: I) the 
entry conditions of the item, represented by the constraints specified 
as characteristics of that class; 2) the item atributes specifications, 
which determine the queue and facility to be used; 3) the exit conditions 
which specify deviations from the normal flow. 

Parallel system flow is controlled by a block structure, bracketed 
with a begin and end. This provides a readable structure for such 
processing. 

Priorities of queues and facilities can also be defined. Thus, 
full priority specifications can be defined, both within the queue and 
between queues. 

In the automatic mode, facilities with the same attributes use a 
common queue. However, if the DEFINE QUEUE is employed, it would 
override this feature. Thus, the emphasis can be changed from events 
to queues. 

* A MODEL OF A BANK WITH SIX TELLERS 
* ONE TELLER IS FOR DEPOSIT ONLY 

DEFINE SYSTEM. 
START TIME=I. 
END SIMULATION WHEN CUSTOMER=INPUT(NCUSTOMER). 

* INPUT SIMULATION TERMINATION INFORMATION 
CHECKPOINT= i0 TIME UNITS. 

DEFINE ITEM. 
ITEM CUSTOMER. 

ARRIVE EVERY 2 TIME UNITS, RANGED P01SSON. 
ATTRIBUTE TRANS-TYPE, VALUES 

DEPOSIT 25 *PERCENT 
CHECK 75.*PERCENT THESE THREE LINES ARE 

* ONE STATEMENT, BUT IS MORE 
* READABLE 

DEFINE FACILITIES. 
FACILITIES FULL-SERVICE(5), DEPOSIT-ONLY. 

TRANSACTION TIME FOR CUSTOMER. 
FOR CHECK I0 NORMAL 2. 
FOR DEPOSIT 5 NORMAL I. 

* SERVER, TABLE QUEUE, AND FUNCTION DEFINE SECTIONS ARE 
* NOT NEEDED - THEY ARE SET BY THE SYSTEM 

SYSTEM FLOW. 
CLASS TELLER. 

ENTER FACILITY FULL-SERVICE.* NO CONDITIONS 
ENTER FACILITY DEPOSIT-ONLY FOR DEPOSIT. 

END SIMFO. 



221 

CONCLUSION 

SIMFO is a newly designed discrete event Simulation language 
which has a high degree of flexibility. Since the language is 
intended for the non-sophlsticated user, it is highly descriptive. 
The structure is COBOL-llke with an indentation format. With full 
freedom in the choice of keywords and identifiers, the resulting 
program self-documentlng and easily understood. A wide range of 
simulation viewpoints makes this language applicable for a large 
number of systems. 

REFERENCES 

. R. E. Shannon, Systems Simulation, the Art and Sc'ience, 
pp 120-121, Prentice-Hall Inc., 1975. 

. M. L. Schneider, An Information System Based, Structured, 
Discrete Event Simulation Language, ACM Computer Science 
Conference, Anaheim, Feb. 1976. 

.~° 


