
230

COBOL Simulation: Random Number Generation
for Binary and Decimal Computers

by

Francis J. Brewerton
Middle Tennessee State University

Elias R. Callahan
Middle Tennessee State University

R. Wayne Gober
Middle Tennessee State University

ABSTRACT

Although the Common Business Oriented Lsmguage was originally designed for use
in business data processing, the lsnguage is now being employed as a simulation
langusge under certain limiting conditions. Factors influencing the application of
the language to simulation studies include its popularity, its self-documenting
characteristic, its '"oelievability," and its efficiency in progrsmm~ng the
triangular distribution.

A necessary requisite in any simulation study is the progrsmm~ng of random
number generators to simulate the random occurrence of various events. Several
methods of generating random numbers are available, but the technique most frequently
used is the power residue method. Since most simulation studies are progr~m-d with
PORTRAN (a general Imlrpose language'), simulation l ~ s (SI.MBCRIPT, GPSS, GASP,
etc.), or machine languages, little attention has been devoted to p~ogr~mm~g the
power residue method of random number generation with CGBOL.

A procedure is presented which describes and discusses COBOL progrsmm~ng of
random number generation for the binary computer aud the decimal computer utilizing
the power residue method. Program excerpts are provided to illustrate the procedure,
and comparative differences in COBOL programming for the two computer types are noted.
Conditions most favorable to COBOL progr,mm~ng of simulation studies are also
discussed, as well as the conditions under which CGBOL programming is not recommended.

INTRODUCTION

As a programming language, COBOL (Common Business Oriented Language) has achieved
wide acceptance among practitioners, particularly business practitioners. This wide-
spread acceptability is based in large part on the general nature of the language and
the ease with which it can be mastered. As a simulation language, COBOL has received
considerably less attention than other lauguages which were designed especially for
simulation work. Nevertheless, the frequency with which COBOL is being used for
simulation work is increasing; the bases for its increased application to simulation
studies include its popularity, its ease of documentation, its believability, and the
use of the triangular distribution in management simulation studies.

COBOL' S GENE~A!, ATTRACTIGNS

Obviously, COBOL is one of the most popular languages. This popularity hinges
in large part on its ready absorption by students. Its largest single user is the

http://crossmark.crossref.org/dialog/?doi=10.1145%2F503561.503609&domain=pdf&date_stamp=1976-04-22

Q !

231

federal government, as COBOL is the official programming language used by federal
agencies. Another characteristic contributing to the popularity of COBOL is its self-
documenting aspect. Unlike FORTRAN, COBOL is almost perfectly self-documenting.
Programming statements expressed in the COBOL language are hi~ly explanatory and
seldom ambiguous, a feature derived from the fact that the language is essentially
conversational English.

Another attractive feature of COBOL is its "believability." The believability
seems to be associated with intuitive validation of program statements. Many users i
of COBOL do not possess scientific backgrounds and consequently tend to be unsure of~
their capabilities in progrsmming, modeling, and simulation. Consequently, it is at r

times difficult for an individual who does not have a scientific background to read
a statement in FORTRAN and determine its validity. By contrast, when progr8mmers
without scientific backgrounds read COBOL statements, they generally experience some
sense of comprehension and tend to be more confident their programs will work.

Probably the greatest impetus for applying COBOL to simulation studies has come,
from more widespread use of the triangular distribution in management simulations.
The triangular distribution seems to be of particular interest to managers because of
its capability to approximate other statistical distributions and because of its ease
of parameter estimation.* The foregoing discussion may seem to have little to do with
COBOL as a simulation language. However, the managerial popularity of the distribution,
its ease of documentation, and its believability combined with the fact that it can be
very easily programmed with COBOL provide a strong incentive for simulation applications
of the language. The triangular distribution seems to have all the elements which are
desirable for simulation work: it is flexible in shape, has easily estimated parameters,
can approximate continuous or discrete data, and can be COBOL progrsmmed without having
to resort to writing subroutines. If distributions other than the triangular are used,
this advantage is almost always lost. Furthermore, COBOL becomes very unattractive
from an efficiency standpoint when other distributional forms are utilized in the
simulation, as other general purpose languages such as FORTRAN are more efficient for
this purpose. Whatever attractiveness COBOL has as a simulation language is thus
conditional on the use of the triangular distribution to represent~ the ~mtributions
of the random variables contained in the simulation model.

RANDOM NUMBER GENERATION

•]

With the conditions under which COBOL becomes attractive as a simulation lmugu~
thus established, the discussion may now shift to the COBOL progrsmmiug of random |"
number generation. In any simulation in which stochastic processes are involved, the
employment of a sequence of random or near-random numbers will be required to help
simulate the random occurrence of various events in the simulation. By definition, a
random number can occur only as a result of a random process. But truly random
processes are difficult to identify, and consequently, truly random numbers are more
difficult to produce than mar~y individuals realize. Fortunately, the question of
randomness is not as critical as it might appear, and near-random numbers can be used
quite effectively with little loss of accuracy in simulation study results. Several
schemes have been devis'ed for mechanically, electronically, or otherwise artificially
generating pseudo-random numbers. All of these schemes rely on recursive mathematical

*For a more complete discussion of the triangular distribution see '9~anagement
Science Applications of the Triangular Distribution: Some Pros and Cons," in'1975
Midwest AIDS ~oceedin~s, April 1975, Indianapolis, Indiana, pp. h28-~31.

232

relationships that produce sequences of numbers which demonstrate a pattern tlmt is
generally so obscure, so subtle, and so seldom recurring, that it cannot be readily
detected. These numbers, although not truly random, may be used for simulating random
events without injecting inordinately large amounts of error. For the remainder of
this paper, the unqualified use of the term "random number" will refer to a uniformly
d i s t r i b u t e d random number drawn from a pseudo-random number g e n e r a t o r .

Many methods have been devised for random number generation, but the center
square (midsquare) method and the Fibonacci Series method seem to be the most
historically significant. The center square method squares a 2n digit number and
• selects the middle 2n digits from the 4n digit product for the next number in the
sequence. Several variations of this method have been devised, but the method has
lost popularity because of the relatively short periods between cycles and its slow-
ness. The Fibonacci Series method selects two beginning numbers u 0 end u I , and
computes

Un+ 1 E u n + Un_ 1 (rood m). (13.

Values of m which have proven to be satisfactory include m = 2 b and m = 10 d. The
method is simple and fast but produces sequences of numbers which demonstrate
significant nonrandomness. The Fibonaoci Series method has been recognized as
essentially a power residue method with an insufficiently large multiplier.

Presently, virtually all computer library random number generators employ some
variation of the power residue (congruence) method. The three most commonly used
variations are the multiplicative, mixed, and additive methods; of these, the
multiplicative method seems to be most popular. The multiplicative congruence
procedure employs two constants a and m, both of which are nonnegative integers;
these constants are used to derive the (i + 1)th number in the sequence. The

l i + 1)th number is obtained by (1) multiplying the ith number by the constant, a, 2) dividing this product by the modulus, m, and (3) equating the residue or
remainder as the (i +'l)th value in the sequence. This procedure is described
notationally as

 i+1 =- (rood m). (23

Obviously, the choice of a, R 0, and m influences the integrity of the random
numbers generated. An appropriate choice of the modulus depends upon the computer
number system being used. Probably the most natural choice of values for m is one
that equals the capacity of the computer word.

BINARY COMPUTERS AND DECIMAL COMPUTERS

For a binary computer, an appropriate choice of the modulus is 2 b, with b
defined as the number of bits ~n the computer word. For a decimal computer an
appropriate choice for m is 10, with d defined as the number of digits in the
computer word. The maximum period or sequence of random numbers is realizable
only if R 0 and a are chosen in a particular fashion. Again, the most appropriate
choice is a function of the type of computer being utilized. For the binary
computer, a should be selected so that

a-- 83 +_ 3, (33

233

in which T may be any positive integer and R n is selected as a positive odd integer.
For the decimal computer, a should be selected so that

a = 200T Z B, (h)

i n which T maybe any pos i t i ve in teger and B i s assigned the value of 3, 11, 13, 19,
21, 27, 29, 37, 53, 59, 61, 67, 69, 77, 83, or 91. The seed value for R o in the
decimal case may be any odd Positive integer which is not perfectly divisible by 2 or 5.

COMPUTATIONAL PROCEDURE

When generating random numbers using COBOL, the progr~,,er has the option of
generating random numbers using a binary computer or a decimal computer, an option
which does not exist when FORTRAN is used. Regardless of the programmer's choice of
coding option, the computational process (for either type of coding) can be summarized
by the following procedural steps:

(I) Select any integer which contains less thau nine digits and
designate it as the beginning value or seed, R O.

(2) Multiply R 0 by an integer , a, which contains at least five digits.

(3) Multiply the product obtained in step 2 by a number which is
equal to 1/m.

(h) Assign the decimal portion of the result obtained in step 3 as
a random number on the unit interval.

(5) Use the random number (less decimal point) obtained in step h to
re-seed R 0 in step 2.

The desired accumulation of random numbers is obtained by re~eating steps 2
through 5 in the procedure above to obtain the necessary number oT replications.

APPLICATION AND DISCUSSION

The COBOL syntax for generating random numbers via the binary computer method and
the decimal computer method is illustrated in Figure I and Figure 2 respectively. The
addition of computational usage elements into the COBOL syntax shown in these figures
increases the efficiency of the routines, but is not included here because of system
differences in usage computational representation. The user is encouraged to add these
elements (using the appropriate representation) so that programming efficiency is
maximized.

The decimal, computer method shown in Figure 2 has certain features which recommend
it over the binary method. To begin with, the programming of the routine to generate
the numbers is straightforward; however, this is not unique to the decimal method. A
more important feature of the decimal method is that the programmer need have little
concern regarding the number of bits in the word size of the machine; this is not true
of the binary computer method. Furthermore, when using the binary computer method in
COBOL, difficulties may occur in making the proper selection of picture size, usages,
and initial values. These same difficulties do not exist when employing the decimal
method, as picture size is automatically determined by the number of digits in the
random number; in short, many of the potential problem sources in the binary method
are removed or their impacts are minimized when the decimal method is used.

234

Figure 1
Bim~ry Computer Syntax

WORKING-S TORAGE SECTION,
77 IX PIC 9 (6) VALUE 3 5 7 9 7 , ,
77 IY PIC 9 (6) ,

" 77 RANDX PIC V 9 (6) , .
77 TW0-35-1 PIC 9(1.2) VALUE 34357938367.

PROCEDURE D I V I S I O N ,
. lgE.;OPEN,

2ff~'GENERATE,
COMPUTE IY = IX * J3125-
IF IY IS NEGATIVE ADD TW0"35"1 TO IY,

~COMPU~RANDX = I Y / ' 1 ' 1 f 0 ~ 1 , .

MOVE IY TO IX=

Figure 2
Decimal Computer Syntax

WORHING-STORAGE SECT ION,
77 RANDOM PIC 9 (6) ,
77 IX-SEED PIC 9 (6) VALUE 3 5 7 9 7 ,

PROCEDURE DIV ' I$ ION,
lg~-OPEN,

2~-GENERATE,
COMPUTE RANDOM = IX-SEED * 1~@3=

. . . . COMPUTE IX-SEED = RANDOM"F T ~ g Q ~ ' ,
COMPUTE IX-SEED = RANDOM .- (IX 'SEED * 1 H . ~) ,

235

The relationship between the picture size and d deserves additional explamation.
Since d is the number of digits in the compute~ word, it can also be related to the
s~ze of the random number. For example, if 6-diglt random numbers are desired, then
d ,nu.st 'be set equ~l to six. The initial seed value, R 0, may be any integer of
length d and not perfectly divisible by 2 or 5. The v~lue of the oonstant to be used
asa~9multiplier, a, can be d~termined by selecting a value for a which is close to
10 ~ ~, and choosing the integer which is closest to this value; this approach is
described in step 2 of the generation procedures discussed in an earlier section of
this paper, in Figure 2, a 6-digit random number is desired. The initial value used
for a is 1003; this value Was obtained using equation 4, with the value of B fixed
at 3. Successive iterations of the process willthus produce a sequence of random ~
numbers without a noticeable pattern.

CONCLUSIONS

The preceeding discussion leads to the conclusion that decimal coding is easier,
quicker, and more flexible than binary codingwhen programming simulation studies in
COBOL. These distinct advantages should not be disregsmded by the progrsmmer, at
least not indiscriminately. To be sure, circumstances may arise which dictate the
use of the binary syntax, and the programmer must take these circumstances into
consideration.

The procedures developed in this paper apply only when (I) the simulation study
is being programmed in COBOL, (2) the triangular distribution is beingused to
represent the distribution of the random variables, and (3) other generally favorable
conditions prevail. Obviously, the number of programmers operating within this
special set of conditions will be small at any particular point in time. Nevertheless,
the material presented here should be of some significance to those progrsmmers to
whom the conditions do apply, and is being offered in the interest of maximizing the
efficiency of their, progrsmm~ng effort.

~ REFERENCES

I. Brewerton, F. J., Callahan, E. R., and Gober, R. W., "Conditions, Criteria, and
Caveats for Computer Simulation with COBOL," 1975 Winter Computer Simulation
Proceedin~s , December, 1975, Sacramento, California.

2. IBM Corporation, "Random Number Generation and Testing," Reference Manual
C20-8011, White Plains, New York, 1959.

3. Naylor, T. H. eta l, Computor Simulation Techniaues, John Wiley and Sons,
New York, 1966.

h. Philippakis, Andreas S. and Kazmier, Leonard J., Information System s Through
cOBOL, McGraw-Hill Book Co., New York, 197h.

5. Shannon, Robert E., Systems Simulation: The Art an_d Science, Prentice-Hall,
Inc., Englewood Cliffs, New Jersey, 1975.

