324

_ AN IBM 370 BC MODE SIMUIATOR FOR
> A FIRST COURSE IN OPERATING BYSTEMS .

Check for
Updates

John C. Peck, Clemson University

ABSTRACT

An IBM 370 basic control mode simulator was developed as an outgrowth of
student projects in an operating systems course over several semesters, The
programming was performed in Assembler language t6 enhance performance and allow
for online symbolic access to simulated hardware components,

The design of the simulator along with the organization of a typical instruce »
tion interpretation subroutine is described. A simple program execution using the
IBM TSO facility is included to illustrate the manner in which students interact
with the system. Finally the design for a typical operating system undertaken as a
team projeect is presented.

INTRODUCTLON

A first course in operating systems can be taught &t several different levels
ranging from s very theoretical to a very practical. The course at Clemson
University is somewhere between these two extremes, although perhaps closer to the
practical. Students enrolled in the course have successfully completed a course
in IBM 370 Assembler language and & course in Systems Programming with a strong
emphasis in data management and supervisor services,

Stratgles presented for the management of resources are reinforced through
the use of a "hands-on" approach in which students use an IBM 370 basic control
mode simulator (non-virtual storage) to implement and evaluate basic algorithms.

Reference material for the course consists of a primary text - Cperating
Systems by Madnick and Donovon, various IBM technical manuals, and numerous articles
taken from current literature. Normal enrollment is five senior students and five
first year graduate students.

HISTORY OF DEVELOPMENT

Courses in operating systems at Clemson University for many years used the
University mainframe computer during early morning hours to test simple interrupt
processing programs in a stand alone environment. In addition to extreme inconven-
ience for students other disadvantages weres '

s time consuming debugging due to necessity to load the standard
operating system and assembler between test runs

® poor utilization of resources during periods of dedicated usage

¢ only small groups of students could be served

During the fall semester of 1974 the number of students enrolled in the course
reached a level which made dedjcated hardware testing extremely difficult. As a
result the elass undertook the design of a machine simulator as a project so that
future classes might have better facilities for machine interface. Although little
code was produced during the semester, several approaches were investigated in
detail and general program organization standards were established.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F503561.503629&domain=pdf&date_stamp=1976-04-22

325
One of the more enterprising students of that semester consolidated the ideas
discussed during the design phase and undertook the implementation as a one hour
master's degree project, Although this work did not produce a fully useable
product, it did provide an excellent foundation for continued development of the
couaplete simulator,

The fall 1975 semester class divided the remaining work and completed the
coding and testing. Several simple cperating systems completed in prior semesters
using "real" hardware were successfully run on the simulated hardware as final
system tests.

SIMUIATOR DESIGN

An IBM 370 with 32K main storage, one card reader, one printer, and four tape
drives was simulated using instruction timings corresponding to execution on &
model 158. Only basic control mode was similated so that only resl storage
programning is possible. All programming for the simulator was done in Assembler

language so that symbolic execution using the IBM TSO TEST facility would be
possible ‘ .

Execution of the simulator beginsg with the setting of a device address for the
initial program load (IPL) through the reading of an address record from a special
IPL file, The IPL is then simulated by executing an "implied" start I/O (SIO)
instruction to the IPL address using a channel command word (CCW) which reads
twenty-four bytes of data into low memory and command chains to a CCW at location 8.
Following the I/0 operation the program status work (PSW) is loaded from .location O
and execution begins. The design of the simulator is modular as indicated below,

IFL

A AL o s . SIO L ZAP

PRINTER « »oa TAPE

326

A function selector module (FNCSEL) uses the PSW next instruction address to seleet
en instruction for execution: the opcode of this instruction is used to determine
the address of a subroutine which simulates the execution of the instruction. The
subroutine adjusts the PSW s0 that when control is returned to FNCSEL a pew ingtrude-
tion will be selected,

A typical subroutine for simulating an instruction is shown below.

cve RXINIT 8 ' PERFORY LINKAGE SETUP

RXSET ISOLATE QPERANDS — PUT IN R & R4
PIHAD & SEY INSIR LN5 CQOE IN PSW
© ELELx 9003 INCREMENT CLOCK FOR INSTR TIRIRG
ADRES PARALIST.RETURN CHECK FOR ADDAESS EXCEPTION
DATA PARALIST,RETURN CHECK FOR DATA EXCEPTION
savesCHECK FOR OUT=0F«RANGE)
cP O€Bs15),0AX oD BIG?
bH 1 £1]
cp 0¢B,23).9IN ‘ TOD SMALL?
BNL GDOD
({11 FEXINT GOD?-10-NETURN QENCRATE PROG INTAPT CODE 9
LI X .
So0b cvB RE,0(RI) CHANGE OATA FRON SINULATED KEMORY
5T AB.D(RG) PUT BACK INTO SIPULATED REBISIER
RYFUEN SYCP REITURN TO FUNCSEL
NAK 6L PLEC21LTABISADT®
"IN pcC PLEY-ZT14T¢B3648°
LTORG ' -
15x%370 DSECT FOR SIMULATED MACHINE

END

A set of macro definitions is used to check for program exceptions so that implemen—
tation of most instructions is a simple matter of coding & series of macros and
finally coding an instruction to produce the same effect as the simulated instruction.

When each IO routine is executed a simulated clock associated with each deviee
is set to a value which exceeds the simulated time-of-day (TOD) clock by an amcunt
equal to the time required to complete the I/0. When control is returned to the .
FNCSEL, each clock is checked to determine if the TOD clock exceeds any device clock
end an interrupt should be aimulated. An inactive (available) device iz indicated
by 8 high value setting of its clock.

The card reader and printer are simulated with sequential files while the tapea
are simulated with direct access files and EXCP coding. Tape marks are similsated by
using key fields on a direct access record. Reverse reading is performed by retaine-
ing count field information, executing a 'search ID equal' followed by a 'read data’
channel program, and moving the data to the simulated wmemory address using the -
residual byte count in the channel status word.

SAMPLE CONVERSATIONAL SESSION

The simulator will operate in either bateh or online wmode; however, execution
with IBM's TSO TEST facility ls much superior to a batch since the student can
react to wmachine and program conditions in a manner very similar to operation of
the real machine, Synbolic debugging is possible with TEST so that access to
various simulated hardware components can be made by name rather than address The
complete simulated machine is symbolically defined by:

A typical session

PROGRAM

FACRD
151379
F3N37 DSECT
| 335 35 ALE
ORG PSW
CHYASKS D3 xL1
PADKEY 03 a1
INTCODE DS X2
PIGHASK DS XLt
INSTADRR 0§ XLy
TLILK b 13 XLE
RCLOCK -1 XLS
TICLICK DS XLE
T2IL3¢k DS XL8
F3CLOCK DS xL8
r4rLocx oS L8
PCLOZK DS ALB
GPR 3 16XLL
ORE GPR
GPaD oS XL&
GPR1 s XL&
aPR2 o3 E{N
GP23 0 XLE
GPR& 05 L4
GPRS DS XL&
- GPRd DS xLé
(31 ¥4 oS xLé
Gors s XLé
GPr? bs {1}
GPRID -3 2 AL &
GPR11 - DS ALé
GPR1Z DS xLé
GPril bs x4
PR14& -1 | {3
GPR15 o8 XLS
FPR 0% xL32
MPRITKEY DS xL16
RENORY o3 XL32767
DRE& MEAMO2Y
LPLPSU bs XLs
IPLCCWY DS X8
1PLECW2 DS xL8
E2I3P5E DS xs
SY{oR5d DS xLd
PGMOIPSY DS Xx.s
MCHROPSM QS xLe
IOGPSM DS X8
€54 . bs xLd
Cav 134 x4
) 11 xLh
INTERTHR DS ALL . ¥
s xL4
EXTHPSY DS "XL8
SVINP5d DS xL8
PuMxaEd DS xLa
HIHXNPSW DS {8
LONPS Y 33 xL8
MEND

uging TS0 is shown below.

PROGRAM
08 0520 START DALR 2,0
802 41102046 LA 3.cow
BO6 50300048 ST 3,X'48°
8CA F342203D203A Loow UNPK NUM(5) ,PNUM(3
B10 95F02021 or nunfa{i'rg?‘ !
814 9CI0000R st0 x'00E°
B1§ 37702012 8Nz -4
B1C 32002064 WALT LPSW WATTPSW
70 £10:0044 10447 ,%0 044
24 i72o2a1a o nagm rXi0d
£33 £A2020312042 AP proM({3),0NE(D)
322 752120332043 CP PNCH{3) JTER(2)
835 i7572003 BN LOOP
833 32D00206E LPSW STOPPSW
81C 55C00C PNEM nc pLi'o
33F 3540204020 LM e oLs' ¢

327

328

34 1c

845 0l0cC

847 C3IDCEAD3ITICIDSTALD
010¢084750000003
853 01C0000050000D03
860 0130083r0C000005
868 rro2000000000000
870 0002FFEF00000000

$78 Fra0o000000000820

ONZ Do
TEXN DC
TITLE o
CcCw cCW
cew
ceH

WALTPSW e
5T0PPSW e
QRG

p'1*

PL2'19"

C'COURNTERE °
1,7TTLE,X'BD*,B
1,0,X'549%,3
1,80M,0,5
X{FEO2000000000000"
N*O002FTPFONOO0OODY
x'78
X'Fronoonnosc00320

EXECUTION SESSION (operator entry shown by +)

+ gxec ibml70 list

ALLOC PI(TERM1) DA(*)

ALLOC FI(TERM2) Dal*)
ALLOC FI(CARDIN} DA(®)

ALLOC PI{TAPZE1) DA(*)
ALLOC PI{2RIN™) DA(Y)

ALLOC FX(I)STEP' DA(*)
ALLOC PICISTEDOY DA(*)

SESD 'CPSCA2Y.PCMLIB.LOAD(XBM3TO) ¢

Q MVZMORY

+5Q0=%! 05204130204E50300048F342203D203A36F020 419C00000E47702012°

+B1Cex! 82020656910400444 TEOZ0LAF
4839=X° 8290206200000C404
+338=X*01200000900000030

+73«%°' FF0 0000000000820
PS!-I‘-X'!-‘!‘000.00000000800‘

TEST

“+ list +800 i 1(80)

« 4800 BALR 2,0
+302 LA 3,78{0,2)

" +8086 5T 31,72(0,0)
+80A UNPK 61(5,2),58(3,2
+810 o1 €5(2) ,x'po*
+B14 sra 14(0)
+818 BC 7.18{3,2)
+81¢ LPSW 102{2)
+320 N 58{0) ,x'04*
+824 BC 14,26(0,2)
+828 AP 58(3,2) ,66(1,2)
+928 cp 58(3,2),67(2,2)
+834 BC 13,8(0,3)
+338 LPSW 110(2)

TEST

-+ g0

INTER IPL ADDRESS OR HY POR NO IFL

DO YOU WiIsSE 10 ISTEP?

(/™)

A20203A204 2F921203A204347D02008" .
0404040lCDlDCC3D6134DSE}C5D97A400100054780000003.
100083!’00000005??02000ODDOODODODDDZWOODDDOO

FFOOQDODOODCQGSO0
FFOO000G3C000802
FFO00000BC000B06
FFO000008000080A

FFDOQO00CO000810

3 (break key)
TEST

istep=c'N"

TEST

s0

COUNTER«® ao000
COUNTER: 00001
' COUNTER: 00002
COUNTER: 00D03
COUNTER: 00004
COUNTERY 00005
COUNTZR: 090GE
COUNTER: 00007
COUNTER: aQoos
COUNTERs 00009
COLMITLR: 00010
ENTERED PERMANENT WALIT S%ATE
ENTER 'Y' FOR PROGRAM RESTARY
QO02FPFFO0000000

y

TEST

+Q=x" ££0000000000080a"
TEST -

50

Y

COUNTER: 00011 .

ENTERED DERMANENT WAIT STATE
ENTER 'Y' POR PROGRAM RESTART
0022PPFF00000000

N

NORMAL SYSTEM TERMINATION

;ggGRAH UNDER TEST HAS TERMINATED NORMALLY+
T

aad

READY

329

330

344 1C ONE

L] L]
B4s 0la¢ TEN gcc :Lg‘lﬁ'
847 CIDGEADSSICADITALD TITLE De C'COUNTER: *
250 0100084750000008 COW CCW 1,TITLE,X 80%,8
823 0100000050000003 cow 1,0,X'93%,3
880 0120083700600005 c&F 1,NUM,0,5
gg: FFO2000000000000 WAITPSW DC , X' Fro20000006000000°
0002FFTFO00Q4000 STOPYSW B X10002r,7r700090000"
"G X%'78
078 FPI0000000000320 DC X'FT03009008000420"
£

EXECUTION SESSION (operator entry shown by -+)

-+ exoc 1bm3¥0 st

ALLOC FX{TERM1) DA(%)
ALLOC FI{7TERM2) DA(")
ALLOC FL(CARDIN) DA(¥)
ALLOC PI{TAPZ1) DA(®)
ALLOC FI{PRIN™) DA(Y)
"ALLOC FI{I)sSrE®' DA(*)
ALLOC FI{ISTEPO) DA(*)
TEST 'CPSC423, PCMLIB,LOAD (XBMI70) *
‘Q MEMORY
+800wX*05204130204250300048F342203ID2G3IA06F020419C00000E47702012"
: +B8lCwX'B2020669104004447E0201AFA2020302042P921203A204347D02008"
+818w=X"8200206804000C40404040401LCOLOCCIDERADSE IC5D97A420100084780000008"
+358=X"01000000900000030100083F700000005FF020000000000000032FFPEFO0Q0000A"
+#78=X ' PrF00000000000820"
PRU=XFFO0000000000800!
TEST

+ - list +800 1 1(60)

4800 BALR 2,0
+302 LA 3,78(0,2}
+806 ST 3,72(0,0)
+30A UNPK 61(5,2),58(3,2
+3l0 O B5(2),x'Fo’
+814 sr1a 14(0)
+818 BC 7,18{0,2)
+81C LESW 102(2)
+820 T 68(0},X'04°
+32&8 BC 14,26(0,2)
+628 AP 58(3,2),66(1,2)
+92E P 58{3,2),67(2,2)
+834 BC 13,8{(0,2)
+338 LPSW 210(2)

TEST

> qo

SHTER IPL ADDRESS OR 'N' FOR NO IPL

DO YOU WisH TO ISTEP? Y/}

FFQ0000000000800
FFOO0D0Q40000802
rro0d000080000808
rro000008000080A

EFOOUOOOCOOOOBIO

- (break key)

istsp=g'N*

Tes?

(=1~

COUNTER ¢ 00000
COUNTER: 0q00L
COUNTER1 00602
COUNTER: aq003
COUNTER: 00004
COUNTERY Q0005
COUNTER: 00008
COUNTER: 00007
COUNTER: gooos
COUNTER: 00005
COUNTER: QD010
ENTERED PERMA!NENT WAIT STATE
ENTER 'Y' FOR PROGRAM RESTART
0002FFFF00000000

4

TEST

+0=x® ££000000000008Ca"
TEST

g0

Y

COUNTER: 00011
ENTERED PERMANENT WAILT STATE

ENTER 'Y' FOR PROGRAM RESTART
0002FFFFOQ000000

N
NORMAL SYSTEM TERMINATION

EROGRAM UNDER TEST HAS TERMINATED NORMALLY+
TES?

end

READY

331

332
The lest wait state message is printed when either

1) a PSW is loaded with the WAIT bit set and no interrupts are allowed
or
2) a PSW is loaded with the WAIT bit set and no interrupts are outafanding.
A 'Y' response will load the PSW from location O and continue execution,
SAMPLE OPERATING SYSTEM

A small operating system is designed and implemented each semester on the
simulator. A typical design usually includes & bootstrap, loader, supervisor,
device handlers, and a problem program. The problem program operates In protected
memory and requests services from the supervisor through supervisor c¢all interrupts.
The supervisor processes all lnterrupts end coordinates processing among ell other
modules, The device handlers are responsible for queuing requests for I/0 services
if devices are busy and astarting new I/0 operations as devices become available.

The problem program 1a usually a simple application such a8 a tape print utility
using double buffering and channel programing.

CONCLUSTION

Algorithms fundamental to the design of operating systems are an important part
of every course concerned with operating systems. A simlator for machine hardware
provides an excellent tool for reinforcing classroom concepts as students implement
and evaluate many of the algorithms deseribed in textbooks. 1In addition, a study
of the simulator design leads to & much better understanding of the functional
characteristics of the hardware and its influence on operating systems design,

