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CIRCULAR AUTOMATA 

Charles Zalontz, University of South Florid~ 

ABSTRACT 

We define a flnite-state machine called a circular automata (CA) which 
processes information in a queue! we show that any function computed (or any 
language recognized) by such a machine is computable (recognizable) by a 
Turlng machine and vice versa. Space and time bounds are given for the needed 
simulations. Furthermore, the class of languages recognized by (non-) deter- 
ministic linear bounded automata is equal to the class of languages recognized 
by (non-) deterministic CA which don't expand the length of the contents of the 
queue. Whether every language recognized by such a non-expanding CA is 
recognized by a deterministic one is equivalent to the famous LBA problem. 

CA can be viewed as generalizations of ordinary finite automata and as a 
Shepherdson-Sturgis single register machine programming language. An Inter- 
esting model of a non-expandlng CA is that of a finite-state machine which 
process tapes in the form of a loop. This appears to be a very natural way to 
process magnetic tape which circles back on itself. 

INTRODUCTION 

A circular automata (CA) is a machine with finite control which operates 
on a queue (or ta~ ~gi~er) which is potentially infinite on the right. 
In processing information the leftmost symbol in the queue is read. Depending 
upon this symbol and the current internal state of the machine, additional 
symbols may then be added onto the right end of the queue.~The leftmost symbol 
then leaves the queue. Thus each move of the CA consists of reading and ejecting 
a symbol on the left and entering new information on the right. A non-expandin~ 
circular automata is a CA in which exactly one new symbol is written in any 
given move. 

Formally, a non-determlnlstlc CA (NDCA) is a tuple M - (K,~,~,qo, qf,~ ) 
where K,Z,P are finite alphabets,~K is the Set of (internal) states, r is the 
set of tape symbols, 2~ r is the set of input symbols, qQE K is the initial 
state, qf~ K is the final state, and ~:K×r-~(Kx ~) Is-the transition function. 
A circular automata ~s ~te~istic (written DCA) if for ea~ q~, ~ ,  
~(q,a) is a singleton. In this case we may consider JsKxP-~Kxr*. Note that 
if M is a deterministic non-expanding CA then we may consider jsKxr-~K~ ~. 

An instantaneous description (ID) of M is a sequence qw where qE K and 
w~ ~*. ID I directly produces ID J, denoted I~J, if I is of the form qau and 
J is of the form q'uv where q,q'EK! a£~! u,vGr*! and (q',v)EJ(q,a). I event- 

11 ' I=l 0 11 ually produces J, I J, if there are I0, ,..., I n with ~ ~...In=J. An 

input w~* is accepted by M if q0w~qfu for some u~*. The language 
recognized by M is the set of all lhput ~ords accepted by M. Although we won't 
do it here, CA may also be used to compute functions, 

A CA may be regarded as a machine which processes a one-way infinite tape 
in the manner of an ordinary finite automata, but with the added ability of 
writing symbols on the right end of the non-blank portion of its tape. Using 
this model of a CA, an ordinary finite automata is just a non-wrltlng CA. A CA 
can also be viewed as a Shepherdson-Sturgis single register machine with 
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instructions JMP a,N and DAA w where N is an instruction label, asr, and w~*. 
Here JMP a,N means Jump to instruction N if the leftmost symbol of the register 
is an "a", and DAA w means delete the leftmost symbol In the register and add w 
onto the right end of the (non-blank portion of the) register. 

CIRCULAR AUTOMATA AND TURING MACHINES 

In this section we show how to simulate the actions of a Turing machine 
(TM) by a CA and vice versa. A (one-tape, one-way) non-determinlstic TM (NDTM) 
may be defined as a tuple M exactly as for CA except that ~zKxPv|B~-~8(Kxrx~L,R~) 
where B4~ is the blank and L and R stand for move left and move right. ID's 
are of form uqv where u,ve F* and q~ K. I~J if ID I becomes ID J after one 
move of M. I~J is defined as for CA. The language recognized by M Is the set 
of all those Input we ~* which are accepted by M, l.e. for which q^w~uq=v u 
for some u,v& r • The notions of deterministic TM (DTM) and function compu~ble 
by a TM are as usual. 

The simulation of a CA by a TM is easy. For example, the operation 
qau~nq'uv of a CA M can be accomplished by a TM T with au on its tape as follows. 
T first erases the leftmost symbol ("a, in thls case) and then moves Its read 
head right until the last non-blank square is hit at which point v is added on 
at the end. The read head then moves left back to the leftmost non-blank 
square. In thls way we get 

Theorem I, Any function computed (or any language recognized) by a (N)DCA can 
be computed (recognized) by a (N)DTM. Furthermore If the (N)DCA 
has time complexity T(n)~ n and space complexity S(n), then the 
(N)DTM has time complexity O(T2(n)) and space complexity S(n). 

The converse of this theorem is a little more difficult and requires the 
simulation of left and right circular shift operations by CA. Note that if 
(q',a)E ~(q,a) for all a~ in a CA M,then whenever M gets into state q it 
performs a left circular shift on the current contents of its queue and then 
enters state q'. It is harder for a CA to perform a right circular shift. We 
now give an algorithm which shows how to compute qwa~q'aw by a non-expanding 
DCA M for any aar and any w~W* of length ~i. If M ~s in state q thens 

A. Place a marker "-" over the leftmost symbol in the queue and 
then (circular) shift left. 

B. Place marker "-" over the scanned symbol and shift left twice. 

C. (Test) If "-" Is over the scanned symbol erase "-", keep 
shifting left until "-" Is reached, erase " " 
shift left, go into state q', and RETURN. 

Otherwise, keep shifting left until "-" is reached, 
erase "-'', shift left, GO TO B. 

For example, suppose we wish to perform a right circular shift on input abcd 
using the above algorithm. The following are the steps In the computation, 
noting which instruction is being used: 

A abcd B bcda cdaB C da~c a~cd ~cda 

B cd~b ~b~ C ~bSd ~ ~dab ~bc 
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For input of length ~3 the test instruction C is hit n-2 times and so 
(n+l)(n-2)+i - n~-n-i steps are needed to performthe right circular shift using 
the above algorithm. Note that for each aE ~ we need a new tape symbol ~, a 
doubling of the total number of tape symbols. If desired we can get by with Just 
one extra tape symbol "-", but aS the cost of many etra states. Instead of 
placing a "-" above a symbol in ~ in the above algorithm Just replace the 
symbol by the "-". Extra states are needed to keep track of the symbols re- 
placed in this way. Another approach is simply to use the two symbols "a-" 
instead of ~, but this has the disadvantage of increasing the length of the 
non-blank portion of the queue, Using the above hints we get the following 
lemma 

Lemma II For every set of tape symbols U one can construct a non-expanding 
DCA M which can perform a right circular shift of one square on any 
w¢~* in 0(n2) time. We may further require that the set of tape 
symbols of M contain Just one extra symbol. One can also construct a 
non-expanding DCA M which can compute qawb~q'bcw. 

Given a,b,c~r and wE~*, an M as defined by the last line of the lemma may be 
constructed as follows. If M is in state q and "a" is the leftmost symbol in 
the queue, then M follows the above algorithm with step A replaced by 

A'. Delete "a" on the left and add "~" on the right. 

We now show how to define a CA M which can simulate the actions of a 
given TM T. If T is to process an input wEZ* then w is put in M's queue. 
Before M does anything else it puts a marker "-" over the last symbol in w. 
(For the present we may regard this marker as different from the one used in 
proving lemma i.) This may be accomplished by having M perform a right circular 
shift on w, obtaining aw' where w is w'a. Then M puts a "-" over the leftmost 
symbol in its queue and performs a shift left, i.e. it deletes "a" on the left 
and adds ~ on the right, obtaining w'~. 

If at any point in its computations T has ID uqva then M will have ID 
qv~u. Thus the leftmost symbol in M's queue tells where T's read head is 
located and the marker "-" tells where the right end of the non-blank portion 
of M's tape is. If T has ID uq, i.e. if T has moved right off the non-blank 
portion of its tape, then M will have IO q~u. For convenience we use ~ to 
denote v~ if u is a string of form va. We now show how to define M so that if 
I~J then I ~J' where ,J are the simulations of the ID's I,J as defined 
above. This is accomplished using six cases. Let Vbe the set of tape symbols of 
T| let a,b,c~p | u,v£P* with v not the empty string. 

1. If uqav~ubq'v then define M so that qa~u~q'~ub, i.e, define the transition 
function of M so that (q',b)~ ~(q,a). 

2. If uqa~ubq' then define M so that qau~q'~ub as follows. If M is in 
state q and the leftmost symbol in its queue is ~ then delete the ~ on the left 
and add b~ on the right. M now circular shifts right and goes into state q'. 
Alternatively, M delete6 ~ on the left and adds ~ on the right| M then keeps 
shifting left until the $ is scanned| M then deletes the ~ on the left and adds 
b on the right and goes into state q' 

3. If uq ~ ubq' then we may define M so that qBu ~ q'Bub in a manner similar to 
case 2 above. 
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4. If ucqav~Tuq'cbv then define Z so that qaguc %q'cb~u using the last part 
of lemma i. 

5. If ucqa~ uq'cb then define M so that q~uc~q'cSu using lemma i again. 

6. Suppose T has ID qu, i.e. T is in state q scanning the leftmost symbol on its 
tape the non-blank portion of which is u. The corresponding ID of M is then qS. 
Thus the rightmost symbol in M's queue has the "-" over it. This is the only 
situation in which this can occur. If T is in this situation and is called upon 
to shift left off the tape then processing by T will halt and the input will be 
rejected. Thus whenever T is called upon to move left (as in cases 4 and 5), M 
must first check to see if T is shifting off its tape. It does this by shifting 
the contents of its queue right| if the marker "-" is over the scanned symbol 
then the input is rejected (by cycling in some dead-end state for example), but 
if not then the queue is shifted left again back to its original position. 

The above simulation by M requires many additional tape symbols besides 
those in r. But just as was the case in lemma i it is possible to alter the 
above so that only one extra tape symbol is needed. We have thus proved the / 
following theorem. 

/ 
I 

Theorem 2: Any function computed (or any language recognized) by a TM T can be ~ 
i 

computed (recognized) by a CA. This holds for both deterministic and 
non-deterministlc machines. In fact we may suppose that the transition 
function ~ of M is such that if (q',u)~ ~(q,a) then u has length~ 2. 
Furthermore if T has time complexity T(n)~ n and space complexity 
S(n) then M has time complexity 0(T3(n)) and space complexity S(n). 

Thus the class of languages recognized by CA is just the class of all 
r.e. languages and the class of functions computable by CA is just the class of 
recursive functions. Since computations by NDTM can be simulated by DTM we get 

Corollary Iz Any function computed (or any language recognized) by a NDCA can be 
computed (or recognized) by a DCA. 

NON-EXPANDING CIRCULAR AUTOMATA AND LINEAR BOUNDED AUTOMATA 

Note that in the case where the TN is a linear bounded automata (LBA), 
the CA used in the above simulation is restricted to cases i,4,and 5 (a case 
like #6 is actually needed on both the right and left extremities of the tape) 
and so it never increases the length of the contents of the queue. We therefore 
get the following corollary to theorems i and 2. 

Corollary 2s The class of languages recognized by a (N)DLBA is equal to the 
class of languages recognized by a non-expanding (N)DCA. 

If we take the queue of a CA and bend it into an annulus we get the idea 
for a particularly interesting model of a non-expanding CA. In this way a non- 
expanding CA becomes a finite-state machine with a fixed read head which 
processes input tapes which are in the form of a loop. In processing such a 
loop a symbol is scanned, depending on this symbol and the current state of the 
machine the scanned symbol may be changed and the machine goes into a new 
state. The tape is then shifted one square coun%er-clockwise. A 
loop with designated start square is accepted if the processing begins in that 
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square with the finite control in the initial state and eventually the finite 
control enters the final state. Of course it is easy to see that if an input 
of length n is accepted by a non-expanding CA with k states and m tape symbols, 
then it is accepted in~ km n amount of time. Clearly we get an equivalent 
formulation if the processing always proceeded clockwise. 

The above model is a very reasonable way of computing on a loop. By 
Corollary 2 the above is also a model of an LBA. The famous unsolved problem 
about LBA now takes the following form 

Problem I: Is the class of languages recognized by a non-expandlng NDCA (or 
non-determlnistic machine as given above) equal to the class of 
languages recognized by non-expanding DCA (or deterministic machine 
as in the al~ve)? 

Using the above corollary we also have the following characterization 
of LBA in terms of Shepherdson-Sturgls single register machines. 

Cgro!laz~j 3: The class of languages recognizedby a ~on-expanding NDCA (or 
NDLBA,i.e. the context-free languages) is equal to the class of 
languages accepted by a Shepherdson-Sturgls single register machine 
with instructions JMP a,N and DAAawhere a is a single tape symbol, 
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