
350

CIRCULAR AUTOMATA

Charles Zalontz, University of South Florid~

ABSTRACT

We define a flnite-state machine called a circular automata (CA) which
processes information in a queue! we show that any function computed (or any
language recognized) by such a machine is computable (recognizable) by a
Turlng machine and vice versa. Space and time bounds are given for the needed
simulations. Furthermore, the class of languages recognized by (non-) deter-
ministic linear bounded automata is equal to the class of languages recognized
by (non-) deterministic CA which don't expand the length of the contents of the
queue. Whether every language recognized by such a non-expanding CA is
recognized by a deterministic one is equivalent to the famous LBA problem.

CA can be viewed as generalizations of ordinary finite automata and as a
Shepherdson-Sturgis single register machine programming language. An Inter-
esting model of a non-expandlng CA is that of a finite-state machine which
process tapes in the form of a loop. This appears to be a very natural way to
process magnetic tape which circles back on itself.

INTRODUCTION

A circular automata (CA) is a machine with finite control which operates
on a queue (or ta~ ~gi~er) which is potentially infinite on the right.
In processing information the leftmost symbol in the queue is read. Depending
upon this symbol and the current internal state of the machine, additional
symbols may then be added onto the right end of the queue.~The leftmost symbol
then leaves the queue. Thus each move of the CA consists of reading and ejecting
a symbol on the left and entering new information on the right. A non-expandin~
circular automata is a CA in which exactly one new symbol is written in any
given move.

Formally, a non-determlnlstlc CA (NDCA) is a tuple M - (K,~,~,qo, qf,~)
where K,Z,P are finite alphabets,~K is the Set of (internal) states, r is the
set of tape symbols, 2~ r is the set of input symbols, qQE K is the initial
state, qf~ K is the final state, and ~:K×r-~(Kx ~) Is-the transition function.
A circular automata ~s ~te~istic (written DCA) if for ea~ q~, ~ ,
~(q,a) is a singleton. In this case we may consider JsKxP-~Kxr*. Note that
if M is a deterministic non-expanding CA then we may consider jsKxr-~K~ ~.

An instantaneous description (ID) of M is a sequence qw where qE K and
w~ ~*. ID I directly produces ID J, denoted I~J, if I is of the form qau and
J is of the form q'uv where q,q'EK! a£~! u,vGr*! and (q',v)EJ(q,a). I event-

11 ' I=l 0 11 ually produces J, I J, if there are I0, ,..., I n with ~ ~...In=J. An

input w~* is accepted by M if q0w~qfu for some u~*. The language
recognized by M is the set of all lhput ~ords accepted by M. Although we won't
do it here, CA may also be used to compute functions,

A CA may be regarded as a machine which processes a one-way infinite tape
in the manner of an ordinary finite automata, but with the added ability of
writing symbols on the right end of the non-blank portion of its tape. Using
this model of a CA, an ordinary finite automata is just a non-wrltlng CA. A CA
can also be viewed as a Shepherdson-Sturgis single register machine with

http://crossmark.crossref.org/dialog/?doi=10.1145%2F503561.503635&domain=pdf&date_stamp=1976-04-22

351

instructions JMP a,N and DAA w where N is an instruction label, asr, and w~*.
Here JMP a,N means Jump to instruction N if the leftmost symbol of the register
is an "a", and DAA w means delete the leftmost symbol In the register and add w
onto the right end of the (non-blank portion of the) register.

CIRCULAR AUTOMATA AND TURING MACHINES

In this section we show how to simulate the actions of a Turing machine
(TM) by a CA and vice versa. A (one-tape, one-way) non-determinlstic TM (NDTM)
may be defined as a tuple M exactly as for CA except that ~zKxPv|B~-~8(Kxrx~L,R~)
where B4~ is the blank and L and R stand for move left and move right. ID's
are of form uqv where u,ve F* and q~ K. I~J if ID I becomes ID J after one
move of M. I~J is defined as for CA. The language recognized by M Is the set
of all those Input we ~* which are accepted by M, l.e. for which q^w~uq=v u
for some u,v& r • The notions of deterministic TM (DTM) and function compu~ble
by a TM are as usual.

The simulation of a CA by a TM is easy. For example, the operation
qau~nq'uv of a CA M can be accomplished by a TM T with au on its tape as follows.
T first erases the leftmost symbol ("a, in thls case) and then moves Its read
head right until the last non-blank square is hit at which point v is added on
at the end. The read head then moves left back to the leftmost non-blank
square. In thls way we get

Theorem I, Any function computed (or any language recognized) by a (N)DCA can
be computed (recognized) by a (N)DTM. Furthermore If the (N)DCA
has time complexity T(n)~ n and space complexity S(n), then the
(N)DTM has time complexity O(T2(n)) and space complexity S(n).

The converse of this theorem is a little more difficult and requires the
simulation of left and right circular shift operations by CA. Note that if
(q',a)E ~(q,a) for all a~ in a CA M,then whenever M gets into state q it
performs a left circular shift on the current contents of its queue and then
enters state q'. It is harder for a CA to perform a right circular shift. We
now give an algorithm which shows how to compute qwa~q'aw by a non-expanding
DCA M for any aar and any w~W* of length ~i. If M ~s in state q thens

A. Place a marker "-" over the leftmost symbol in the queue and
then (circular) shift left.

B. Place marker "-" over the scanned symbol and shift left twice.

C. (Test) If "-" Is over the scanned symbol erase "-", keep
shifting left until "-" Is reached, erase " "
shift left, go into state q', and RETURN.

Otherwise, keep shifting left until "-" is reached,
erase "-'', shift left, GO TO B.

For example, suppose we wish to perform a right circular shift on input abcd
using the above algorithm. The following are the steps In the computation,
noting which instruction is being used:

A abcd B bcda cdaB C da~c a~cd ~cda

B cd~b ~b~ C ~bSd ~ ~dab ~bc

352 -

For input of length ~3 the test instruction C is hit n-2 times and so
(n+l)(n-2)+i - n~-n-i steps are needed to performthe right circular shift using
the above algorithm. Note that for each aE ~ we need a new tape symbol ~, a
doubling of the total number of tape symbols. If desired we can get by with Just
one extra tape symbol "-", but aS the cost of many etra states. Instead of
placing a "-" above a symbol in ~ in the above algorithm Just replace the
symbol by the "-". Extra states are needed to keep track of the symbols re-
placed in this way. Another approach is simply to use the two symbols "a-"
instead of ~, but this has the disadvantage of increasing the length of the
non-blank portion of the queue, Using the above hints we get the following
lemma

Lemma II For every set of tape symbols U one can construct a non-expanding
DCA M which can perform a right circular shift of one square on any
w¢~* in 0(n2) time. We may further require that the set of tape
symbols of M contain Just one extra symbol. One can also construct a
non-expanding DCA M which can compute qawb~q'bcw.

Given a,b,c~r and wE~*, an M as defined by the last line of the lemma may be
constructed as follows. If M is in state q and "a" is the leftmost symbol in
the queue, then M follows the above algorithm with step A replaced by

A'. Delete "a" on the left and add "~" on the right.

We now show how to define a CA M which can simulate the actions of a
given TM T. If T is to process an input wEZ* then w is put in M's queue.
Before M does anything else it puts a marker "-" over the last symbol in w.
(For the present we may regard this marker as different from the one used in
proving lemma i.) This may be accomplished by having M perform a right circular
shift on w, obtaining aw' where w is w'a. Then M puts a "-" over the leftmost
symbol in its queue and performs a shift left, i.e. it deletes "a" on the left
and adds ~ on the right, obtaining w'~.

If at any point in its computations T has ID uqva then M will have ID
qv~u. Thus the leftmost symbol in M's queue tells where T's read head is
located and the marker "-" tells where the right end of the non-blank portion
of M's tape is. If T has ID uq, i.e. if T has moved right off the non-blank
portion of its tape, then M will have IO q~u. For convenience we use ~ to
denote v~ if u is a string of form va. We now show how to define M so that if
I~J then I ~J' where ,J are the simulations of the ID's I,J as defined
above. This is accomplished using six cases. Let Vbe the set of tape symbols of
T| let a,b,c~p | u,v£P* with v not the empty string.

1. If uqav~ubq'v then define M so that qa~u~q'~ub, i.e, define the transition
function of M so that (q',b)~ ~(q,a).

2. If uqa~ubq' then define M so that qau~q'~ub as follows. If M is in
state q and the leftmost symbol in its queue is ~ then delete the ~ on the left
and add b~ on the right. M now circular shifts right and goes into state q'.
Alternatively, M delete6 ~ on the left and adds ~ on the right| M then keeps
shifting left until the $ is scanned| M then deletes the ~ on the left and adds
b on the right and goes into state q'

3. If uq ~ ubq' then we may define M so that qBu ~ q'Bub in a manner similar to
case 2 above.

353

4. If ucqav~Tuq'cbv then define Z so that qaguc %q'cb~u using the last part
of lemma i.

5. If ucqa~ uq'cb then define M so that q~uc~q'cSu using lemma i again.

6. Suppose T has ID qu, i.e. T is in state q scanning the leftmost symbol on its
tape the non-blank portion of which is u. The corresponding ID of M is then qS.
Thus the rightmost symbol in M's queue has the "-" over it. This is the only
situation in which this can occur. If T is in this situation and is called upon
to shift left off the tape then processing by T will halt and the input will be
rejected. Thus whenever T is called upon to move left (as in cases 4 and 5), M
must first check to see if T is shifting off its tape. It does this by shifting
the contents of its queue right| if the marker "-" is over the scanned symbol
then the input is rejected (by cycling in some dead-end state for example), but
if not then the queue is shifted left again back to its original position.

The above simulation by M requires many additional tape symbols besides
those in r. But just as was the case in lemma i it is possible to alter the
above so that only one extra tape symbol is needed. We have thus proved the /
following theorem.

/
I

Theorem 2: Any function computed (or any language recognized) by a TM T can be ~
i

computed (recognized) by a CA. This holds for both deterministic and
non-deterministlc machines. In fact we may suppose that the transition
function ~ of M is such that if (q',u)~ ~(q,a) then u has length~ 2.
Furthermore if T has time complexity T(n)~ n and space complexity
S(n) then M has time complexity 0(T3(n)) and space complexity S(n).

Thus the class of languages recognized by CA is just the class of all
r.e. languages and the class of functions computable by CA is just the class of
recursive functions. Since computations by NDTM can be simulated by DTM we get

Corollary Iz Any function computed (or any language recognized) by a NDCA can be
computed (or recognized) by a DCA.

NON-EXPANDING CIRCULAR AUTOMATA AND LINEAR BOUNDED AUTOMATA

Note that in the case where the TN is a linear bounded automata (LBA),
the CA used in the above simulation is restricted to cases i,4,and 5 (a case
like #6 is actually needed on both the right and left extremities of the tape)
and so it never increases the length of the contents of the queue. We therefore
get the following corollary to theorems i and 2.

Corollary 2s The class of languages recognized by a (N)DLBA is equal to the
class of languages recognized by a non-expanding (N)DCA.

If we take the queue of a CA and bend it into an annulus we get the idea
for a particularly interesting model of a non-expanding CA. In this way a non-
expanding CA becomes a finite-state machine with a fixed read head which
processes input tapes which are in the form of a loop. In processing such a
loop a symbol is scanned, depending on this symbol and the current state of the
machine the scanned symbol may be changed and the machine goes into a new
state. The tape is then shifted one square coun%er-clockwise. A
loop with designated start square is accepted if the processing begins in that

354

square with the finite control in the initial state and eventually the finite
control enters the final state. Of course it is easy to see that if an input
of length n is accepted by a non-expanding CA with k states and m tape symbols,
then it is accepted in~ km n amount of time. Clearly we get an equivalent
formulation if the processing always proceeded clockwise.

The above model is a very reasonable way of computing on a loop. By
Corollary 2 the above is also a model of an LBA. The famous unsolved problem
about LBA now takes the following form

Problem I: Is the class of languages recognized by a non-expandlng NDCA (or
non-determlnistic machine as given above) equal to the class of
languages recognized by non-expanding DCA (or deterministic machine
as in the al~ve)?

Using the above corollary we also have the following characterization
of LBA in terms of Shepherdson-Sturgls single register machines.

Cgro!laz~j 3: The class of languages recognizedby a ~on-expanding NDCA (or
NDLBA,i.e. the context-free languages) is equal to the class of
languages accepted by a Shepherdson-Sturgls single register machine
with instructions JMP a,N and DAAawhere a is a single tape symbol,

REFERENCES

i. J.E. Hopcroft and J.D. Ullman, Formal Languages and Their Relation to
Automata, Addison-Wesley, Reading Mass, 1969.

2. A.V. Aho, J.E. Hopcroft, and J.D. Ullman, The Design and Analysis of
Computer Algorithms, Addlson-Wesley, Reading, Mass, 1974.

3. J.C. Shepherdson and H.E. Sturgls, ComputabiliSy of Recursive Functions,
J.ACM 10:2, 1963, Pp. 217-255.

