350

Check for
Updates

CIRCULAR AUTOMATA

Charles Zalontz, University of South Florida
ABSTRACT

We define a finlte-state machine called a circular automata (CA) which
processes informatlon in a queue; we show that any functlon computed (or any
language recognized) by such a machlne is computable (recognizable) by a
Turing machine and vice versa. Space and tlme bounds are given for the needed
simulatlions, Furthermore, the class of languages recognized by (non-) deter-
ministle linear bounded automata 1s equal to the class of languages recognlzed
by (non-) deterministic CA which don't expand the length of the contents of the
queue. Whether every languasge recognized by such a non-expanding CA 1is
recognized by a deterministic one is equivalent to the famous LBA problem.

CA can be viewed as generalizations of ordinary finite automata and as a
Shepherdson-Sturgis single reglister machlne programming language, An inter~
dating model of a non-expanding CA is that of a finite-state machine which
process tapes 1n the form of a loop. This appears ito be a very natural way to
process magnetic tape whlch clreles beck on itself,

INTRODLUCTION

A circular automata (CA) is a mechine with finite control which operates
on a queue (or tape or register) which 1s potentially infinite on the right.
In processing informatlon the leftmoat symbol in the queue is read. Depending
upon thls symbol and the current internal state of the machine, additional
symbols may then be added onto the right end of the gueue,.The leftmost symbol
then leaves the queue. Thus each move of the CA conslists of reading and ejecting
a symbol on the left and entering new information on the right. A non-expanding
elrcular automata is a CA in which exactly one new symbol is written in any
glven move.

Formally, a non-deterministic CA (NDCA) is a tuple M = (K,Z,M,q 'dg 4
where X,Z,M are finite alphabets, K 1s the set of (internal) states, IQ is the
set of tape symbols, Z& D is ithe set of input symbols, qq € K 1s the 1nit1a1
state, qr€ K is the final state, and & :Kx—@(Kx v is the transitlon function.
A circular automata is deterministic (written DCA) if for each qe K, a¢r,

§(q,8) 1s a singleton, In this case we may consider JiKx"— Kx¥*, Note that

if M is a deterministic non-expanding CA then we may consider J:KxM—KxI",

An instantaneous description (ID) of M is a sequence qw where g€ X and
wel™, 1D I directl produces ID J, denoted IkJ, 1f I is of the form gau and
J is of the form q'uy where q,q" EK; ael"; u,ve I"*, and (q',v)ed(q,a). I event-

ually produces J, I&—J if there are IO, Ii""’ I, with Iuloﬁ;lif-...I =J. An

input weZ ™ is accepted by M if qywitaru for some uel"* The language
; recognized by M is the set of all input words accepted by M. Although we won't
do it here, CA may also be used to compute functions.

A CA may be regarded as a machine which processes a one~way infinite tape
in the manner of an ordinary finlte automata, but with the added ability of
wrltlng symbols on the right end of the non-blank portion of lts tape. Using ..
this model of a CA, an ordlnary finlte automata is just a non-writing CA, A CA
can also be viewed as a Shepherdson-Sturgls single reglster machine with


http://crossmark.crossref.org/dialog/?doi=10.1145%2F503561.503635&domain=pdf&date_stamp=1976-04-22

351

instructions JMP a,N and DAA w where N is an instruction label, ael', and wel *,
Here JMP a,N means jump to instruction N Af the leftmost symbol of the reglster
is an "a", and DAA w means delete the leftmost symbol in the reglster and add w
onto the right end of the (non-blank portion of the) register,

CIRCULAR AUTOMATA AND TURING MACHINES

In thls section we show how to simulate the actions of a Turing machine
(TM) by a CA and vice versa. A (one-tape, one-way) non-deterministic TM (NDTM)
may be defined as a tuple M exactly as for CA except that d sKxI'uiBl—#® (KxIx{L,RY})
where B¢ Ls the blank and L and R stand for move left and move right. ID's
are of form ugv where u,ve '* and q€ K, IlzJ if ID I becomes ID J after one
move of M, IHKJ is defined as for CA. The language recognized by M 1s the set
of all those input we 5* which are accepted by M, 1.e. for which qgw W ugev
for some u,ve " . The notlons of deterministic TM (DTM) and function compu{able
by a TM are as usual,

The simulation of a CA by a TM 1s easy. For example, the operation
qau hiq'uv of a CA M can be accomplished by a TM T with au on its tape as follows.
T first erases the leftmost symbol ("a® in thls case) and then moves its read
head right untll the last non-blank squame is hit at which point v 1is added on
at the end. The read head then moves left back to the leftmost non-blank
square, In thls way we get

Theorem 1t Any function computed (or any language recognized) by a (N)DCA can
be computed (recognized) by a (N%DTM. Furthermore if the (N)DCA
has time complexity T(n)2n and space complexity S(n), then the
{N)DTM has time complexity 0(T2(n§§ and space complexity S(n).

The converse of thls theorem is a little more difficult and requires the
simulation of left and right circular shift operations by CA. Note that if
(q',2)ed(q,a) for all a&f® in a CA M,then whenever M gets into state q it
performs a left circular shifit on the current contents of its queue and then
enters state q'. It is harder for a CA to perform a right circular shift. We
now give an algorithm which shows how to compute qwa b q'aw by a non-expanding
DCA M for any ael” and any we P* of length » 41, If M f5 10 state q then:

A, Place a marker "-" over the leftmost symbol in the queue and
then (circular) shift left.
B. Place marker "-" over the scanned symbol and shift left twilce,

C. (Test) If "-" 1s over the scanned symbol erase "-", keep
shifting left unti]l "-" is reached, erase "-",
shift left, go lnto state g', and RETURN.

Otherwise, keep shifting left until "-" is reached,
erase "-", shift left, GO TO B.

For example, suppose we wish to perform a right circular shift on input abcd
using the above algorithm. The following are the steps in the computation,
noting which instruction is being used:

A abcd B bcda cdab € dabe abed beda
B cdab dabec C abcd beda cdad dabe



352 -

For input of len%chEB the test instruction C 1s hit n-2 times and so
(n+1)(n=2)+1 = n2-n-1 steps are needed to perform the right circular shift using
the above algorithm, Note that for each aél' we need a new tape symbol &, a
doubling of the total number of tape symbols. If deslred we can get by with Just
one extra tape symbol "-", but at the cost of many etra states. Instead of -
placing a "-" above & symbol in " in the above algorithm Just replace the

symbol by the "-", Extra states are needed to keep track of the symbols re-
placed in this way., Another approach is simply to use the two symbols "a-"
ingstead of &, but this has the disadvantage of increasing the length of the
non-blank portion of the queus. Using the above hints we get the followlng
lemma '

Lemma 11 For every set of tape symbols I' one can construct a non-expanding
DCA M whleh can perform a right clrcular shift of one square on any
we ¥ in 0(n2) time. We may further require that the set of tape
aymbols of M contain Just one extra symbol. One can also construct a
non-expanding DCA M which can compute gawb \ﬁq'bcw.

Given a,b,cel” and wel™, an M as defined by the last 1line of the lemma may be
constructed as follows. If M is in state q and "a" 1s the leftmost symbol in
the queue, then M follows the above algorithm with step A replaced by

A'. Delete ™a" on the left and add "&" on the right,

We now show how to define a CA M which can simulate the actlions of a
glven TM T. If T is to process an input weE* then w is put in M's queue,
Before M does anything else 1t puts s marker "-" over the last symbol in w,
(For the present we may regard this marker as different from the one used in
proving lemma 1.) This nay be accomplished by having M perform a right circular
shift on w, obtalning aw' where w is w'a. Then M puts a "-" over the leftmost
symbol in its queue and performs a shift left, 1,e. it deletes ”a“ on the left
and adds & on the right, obtaining w'a. :

If at any point in its computations T has ID ugva then M will have ID
gvau. Thus the leftmost symbol in M's queue tells where T's read head 1is
located and the marker "-" tells where the right end of the non-blank portlon
of M's tape 1a, If T has ID uq, i.e. if T has moved right off the non-blank
portion of its tape, then M will have IU un. For convenlence we use U to
denote va if u s a string of form va. We now show how to define M so that if
I J then I'k—J' where I',J' are the simulations of the ID's I,J as defined
above. This 1s accomplished using six cages. Let "be the set of tape symbols of
T; let a,b,cel ; u ve[‘ with v not the empty string.

1, If ugav |5 ubq'v then define M so that ga¥u bgq'Vub, i.e. define the transition
function of M so that (a*,b)ed(q,a).

2. If uga }zubq' then define M so that qautf q'Bub as follows, If M is in
state q and the leftmost symbol 1in 1ts queueras B then delete the B on the 1eft
and add bB on the right. M now circular shifts right and goes into state g'.
Alternatively, M deletes & on the left and adds BB on the right; M then keeps
shifting left until the b is scanned; M then deletes the b on the left and adds
b on the right and goes into state q'

3. If uq t5 ubg’ then we may deflne M so that qﬁtlﬁaqfﬁub in a manner similar to
case 2 above.



353

L, If ucqavlz ug'cbv then define M so that gavuc H&q'cbﬁu using the last part
of lemma 1. _

5. If ucqa bz ug'chb then define M so that quc by q'cbu using lemma 1 again.

6. Suppose T has ID qu, 1.e., T is in state q scanning the leftmost symbol on 1its
tape the non-blank portion of which is u., The corresponding ID of M 1s then qil.
Thus the rightmost symbol in M's queue has the "-" over 1t., This is the only
situation in which this can occur, If T 1s 1n this situatlon and is called upon
to shift left off the tape then processing by T will halt and the input will be
rejected. Thus whenever T 1s called upon to move left (as in cases 4 and 5), M
must first check to see if T is shifting off its tape., It does this by shifting
the contents of 1ts queue right; if the marker "-" is over the scanned symbol
then the input 1s rejected (by cycling in some dead-end state for example), but
if not then the queue is shifted left again back to 1ts original positlon.

The above simulation by M requires many additlonal tape symbols besides
those in I?, But just as was the case in lemma 1 it 1s possible to alter the
above so that only one extra tape symbol ls needed, We have thus proved the i
following theorem, ‘ ‘ !

{
Theorem 2: Any function computed (or any language recognized) by a TM T can be
computed (recognized) by a CA., This holds for both deterministic and
non~deterministic machines, In fact we may suppose that the transition
function 4 of M is such that if (q',u)e d(q,a) then u has lengthx'2.
Furthermore if T has time complexitg T(n)» n and space complexity
S{n) then M has time complexity 0(TJ(n)) and space complexity S(n).

Thus the class of languages recognized by CA 1s just the class of all
r.e, languages and the class of functions computable by CA is just the class of
recurslve functions, Slnce computations by NDTM can be simulated by DTM we get

Corollary 1: Any function computed (or any language recognized) by a NDCA can be
computed (or recognized) by a DCA.

NON-EXPANDING CIRCULAR AUTOMATA AND LINEAR BOUNDED AUTOMATA

Note that in the case where the TM is a linear bounded automata (LBA),
the CA used in the above simulatlion is restricted to cases 1,4,and 5 (a case
like #6 1is actually needed on both the right and left extremitles of the tape)
and so it never increases the length of the contents of the queue. We therefore
get the followlng corollary to theorems 1 and 2.

Corollary 21 The class of languages recognlzed by a (N)DLBA 1is equal to the
class of languages recognized by a non-expanding (N)DCA.

If we take the queue of a CA and bend it into an annulus we get the idea
for a particularly interesting model of a non-expanding CA. In this way a non-
expanding CA becomes a flnite-state machlne with a fixed read head which
processes lnput tapes which are in the form of a loop. In processing such a
loop a symbol is scanned, depending on this symbol and the current state of the
machlne the scanned symbol may be changed and the machine goes lnto a new
state. The tape 1s then shifted one square . counter-clockwise. A
loop wlth designated start square ls accepted 1f the processing begins in that



354

square with the finite control in the initlal state and eventually the finite
control enters the final state. Of course it is easy to see that if an input
of length n is accepted by a non-expanding CA with k states and m tape symbols,
then 1t is accepted ing kn” amount of time. Clearly we get an equivalent
formulation if the processling always proceeded clockwise,

The above model 1s a very reasonable way of computing on a loop. By
Corollary 2 the above 1s also a model of an LBA. The famous unsolved problem
about LBA now takes the followingz form

Problem 1: Is the class of languages recognized by a non-expanding NDCA (or
non-deterministic machine as given above) equal to the class of
languages recognized by non-expanding DCA (or deterministic machine
as in the above)?

Using the above corollary we alsc have the following characterization
of LBA in terms of Shepherdson-Sturgls single reglster machines,

Corollary 3: The class of languages recogniged by a non-expanding NDCA (or
NDLBA ,i.e. the context-free languages) is equal to the class of
languages accepted by a Shepherdson-Sturgls single reglster machine
with 1nstructions JMP a,N and DAAawhere a is a single tape symbol,

REFERENCES

1. J.BE. Hoperoft and J.D. Ullman, Formal Languages and Thelr Relation to
-Automata, Addlson-Wesley, Reading Mass, 1969,

2. A,V. Aho, J.E, Hopcroft, and J.D. Ullman, The Design and Analysis of
Computer Algorithms, Addlson-Wesley, Reading, Mass, 1974.

3. J.G. Shepherdson and H.E. Sturgis, Computabllity of Recursive Functlons,



