
Automatic Partitioning and Virtual Scheduling for Efficient
Parallel Execution

C.L. M c C r e a r y
Auburn University

D.H.Gi l l
The Mitre Corporation

1 . I n t r o d u c t i o n

The research of this report gives a method for
automatic determination and scheduling of parallel
modules from an existing sequential computation.

In compiling a sequential program for execution on
a multiprocessor system, there are four major problems
to be solved: [26]

1. Analyzing the data dependences and control
dependences in the program.

2. Identifying parallelism in the program.
3. Partitioning the program into grains of sequential

tasks.
4. Scheduling the tasks on processors.
The work of this paper addresses the last three

problems. The automatic dependence analysis, the phase
that detects where parallelism is constrained, has been
studied extensively, and there exist a number of tools
(e.g. PAT[3], PTOOL[2], Parafrase[21], Faust[19] and
PTRAN[1]) that create data flow and control flow graphs
from sequential code. A directed graph is typically used
to model the dependence relation. Usually, a node of the
graph G = (N,E) represents an operation such as a
statement or block of statements, and an edge (u,v)
represents the dependence of v on u, forcing the
execution of u before v. For both data and control
dependence, the key is to represent only essential
dependence constraints as edges. This paper assumes
that a dependence graph exists and discusses a method
for performing the last three tasks on the dependence
graph. The technique decomposes the data flow graph
into grains of the appropriate size for any underlying
homogeneous multiprocessor architecture, determines
which grains should be executed in parallel and which
must be executed sequentially, and schedules those
grains onto processors.

Permission to copy without fen all or p ~ of t l~ material is granted p ~ h d e d
that the copies ave not made ~ distributed for direct eonmae~ial advantage , the
ACM copyxisht notice and the title ~ the publication and its date appear, and
notice is given that ~py in 8 is by pcnniuion of the Asmeiatlon for Comfmtin $
Machinery. To copy othca'whte, or to republish, requlres • fen and/or specific
penn~slon.

2. The Conflict Between a High Degree of
Parallelism and Communication Over-
head

As higher degrees of parallelism are introduced
into a computation, the expectation is that the total
processing time will be decreased. Empirical tests
have shown that a threshold exists beyond which an
increase in the number of processors actually increases
the processing time required. There is some optimal
amount of work that must be done on a single
processor for a parallel system to operate most
efficiently.

The graph decomposition method explained in
this paper divides a data flow graph of the computation
into a hierarchy of potential grains, employs a general
metric to represent communication and execution
times, and using the metric, determines the grains that
will most efficiently execute the computation. The
grains are then scheduled by first defining threads of
grains to be executed on the same processor and
assigning the threads to processors.

Determining a grain decomposition that will yield
the fastest possible execution is an NP-hard problem
for which any tractable solution will yield only
approximate results. The heuristics of the graph
decomposition technique considers for grains
subgraphs called clans. The nodes outside the clan
view the sources of the clan as a single node and the
sinks as another single node. Communication can be
reduced by aggregating all clan nodes into a single
grain to be executed on one processor where the
communication to all clan sources is equivalent to
communication to one graph node and where
communication from clan sinks is equivalent to a
multicast from the clan.

Graph decomposition has several properties that
make it very useful in the parallelization of a
computation

© 1992 ACM 0-89791-506-2/92/0003/0029 $1.50

http://crossmark.crossref.org/dialog/?doi=10.1145%2F503720.503736&domain=pdf&date_stamp=1992-04-08

I. A clan is a collection of computational elements
with identical need to communicate with other
clans. This property demonstrates that grouping by
clans yields a substantial reduction in
communication overhead.

2. Clans are classified as linear or independent. The
linear clans of a data flow graph must execute
sequentially, while the independent clans may
execute in parallel.

3. The clan structure derived from a data flow graph
is unique, and forms a hierarchy that can be
regarded as a parse tree of the data flow graph, the
df-parse. Traversal of the dr-parse tree shows
different degrees of parallelization that can be
applied to a particular program.

4. If a cost metric that models a particular
architecture is imposed on the df-parse tree, a good
grain size can be determined for that architecture.
Once the grains have been determined, a natural
traversal of the df-parse tree yields an efficient
scheduling algorithm.

5. The graph decomposition technique can be applied
to a variety of systems from those involving very
high communication costs (for example,
distributed systems) to tightly coupled
multiprocessor systems. The cost metric reflects
both the communication and processing
characteristics of the target hardware and the
hierarchy of grains allows a system a choice from
which to fred the proper balance of aggregation to
parallelization.

6. The graph decomposition method is robust in that
it can be applied to any directed acyclic data flow
graph. Towsley [30] and Bokhari [6] develop
scheduling algorithms for trees and series-parallel
graphs. In addition to our effort, a few partitioning
and scheduling schemes such as LAST by Baxter
and Patel[4] and linear clustering by Kim and
Browne [20] use as a basis a general acyclic data
flow graph.

3. Parsing a Dataflow Graph

The grains derived for parallel computing will be
subgraphs of the dataflow known as clans. The dataflow
graph is a directed acyclic graph (DAG) whose edges
denote the essential dependence of the input
computation. A set of nodes X from DAG G is a clan iff
for all x, y in X and all z in G - X, (a) z is an ancestor of
x iff z is an ancestor of y and Co) z is a descendant of x
iff z is a descendant of y. Informally we can describe a

clan as a subset of nodes where any element outside the
clan has the same ancestral relationship to every node in
the clan. The importance of a clan as a grain is that all
sources and all sinks of the clan can be seen as identical
in their communication with the rest of the graph.

Clans can be classified as linear, independent, or
primitive[14]. Linear clans must be executed serially
whereas independent clans contain subelans (or
singleton nodes) that may be executed in parallel.
Primitives do not have such a clear execution order and
are processed further to be decomposed into linear and
independent components[25]. Resulting independent
clans are referred to as pseudo-independent clans. After
complete decomposition, all clans are labeled as linear,
independent, or pseudo-independent.

A parsing algorithm, O(n 3) in complexity and
reported elsewhere [23], creates a hierarchy of clans in
a parse tree, which we will refer to as the df-parse (data
flow parse) tree. Ehrenfeucht and Rosenberg [14,15,16]
prove that there exists a canonical parse leading to a
unique parse tree. The labeling of the nodes of the df-
parse tree as linear, identifies clans that must be
executed serially and the labeling as independent or
pseudo-independent identifies those that may be
executed in parallel. The df-parse tree is bipartite with
linear clans connected as parents or children to (pseudo-
) independent clans. For a connected graph, the root of
the df-parse tree is a linear node.

4. Cost Metrics and Grain Determination

Our treatment of the cost calculation is abstract
to allow the cost function to be tailored to reflect
differences in the target architecture. Our method
applies cost metrics in a flexible way. Node and edge
cost composition functions are evaluated on the parsed
data flow graph to determine the appropriate grains for
execution on an architecture whose performance is
modeled by the metric.

A cost model for partitioning that allows the
assignment of a grain to a processor to be independent
of the processor on which other grains have executed is
described in [25]. This allows scheduling to select from
among grains that have their data dependencies
satisfied, rather than requiting a particular assignment.
Communication costs are incurred between execution of
grains.

To determine which (pseudo-)independent clans
should be executed in parallel, inspect the parent (linear)

30 ACM 30th Annual Southeast Conference

node in the df-parse tree and examine the adjacent
children pairwise. By comparing the cost of aggregation
with the cost of parallelization, a decision on the method
of execution can be made. In the case where the
(pseudo-) independent clans contain 2 nodes, there are
four possibilities for adjacent children of a linear node 1:
(i) both the left and fight children can be executed in
parallel; (ii) the left child can be executed in parallel and
the fight child aggregated; (iii) the left child can be
aggregated and the fight child executed in parallel; or
(iv) both children can be aggregated. In Figure 1 let n i
give the node cost of node i; e i represents a
communication cost. Let f, g, and g' be node cost
combining functions for parallel execution of the child
nodes, aggregated execution of independent children,
and linearly aggregated execution (of aggregated
children), respectively. And let h, h', and h" be edge
combining functions. Then we can formulate the costs
of the four cases as shown in Figure 2 where boxes
represent clans whose nodes are executed concurrently
and ovals represent aggregation.

Formula Case

t-- r l
f(nl'n2) + h(el'e2'e3'e4) + f(n3'n4) fi~._l

f(nl,n2) + h'(el,e2,e3,e4) + g(n3,n4) DC,~,~

g(nl,n 2) + h"(el,e2,e3,e4) + f(n3,n 4) (~

g'(g(nlda2), f(n3,n4)) ~ - ~

Figure 2

The metric is applied to the df-parse Iree from
bottom up. The leaves receive their costs from the
program DAG. Internal node calculations occur at
linear nodes where the best configuration for adjacent
pairs of the independent children is determined. Each
decision corresponds to an edge in the parent (linear)
clan. Linear clans are not limited to the connection of
only two sets of independent clans, but can represent the
sequential dependencies of any number of clans as
illustrated by Figure 3. In this case, the aggregation
decisions on pairwise adjacent clans may lead to
conflicL If adjacent decisions agree on the common
(middle) clan, the adjacent configurations are referred to
as stable. They take the forms illustrated in Figure 4.

The unstable configurations disagree on the
aggregation of the shared node and must be resolved.

The heuristic chosen is a local smoothing technique.
Specifically, the aggregation decision for the shared
node is redetermined using its context on both sides.
Unstable pairs are resolved by selecting the best
aggregation alternative for the combined configuration.
Examples of unstable decisions and their corresponding
resolutions are illustrated in Figure 5. The conflict is
resolved by choosing the alternative with minimum
cost.

5. S c h e d u l i n g

The general scheduling problem is to assign grains
to processors in such a way as to minimize the parallel
execution time which includes both processor execution
time and communication delay. In the context of the
graph decomposition method, the schedule associates
grains developed by the partitioning scheme with
processors utilizing the highest degree of parallelism
suggested by the partition. Communication delays have
already been considered in the partitioning scheme, so a
simple mapping of the df-parse tree nodes onto
processors is all that is required.

The df-parse tree of the DAG provides a structure
from which a schedule can be developed. Efficient,
optimal scheduling algorithms have been developed for
algorithms represented by trees [5,6], but the problem of
scheduling the a-parse tree is different in nature. In the
previous scheduling algorithms, a tree represents the
precedence ordering of the tasks represented by the
nodes. The a-parse tree represents the hierarchy of
clans found in the graph. In the df-parse tree, only the
leaves represent the tasks to be scheduled and the
precedence ordering is the left to fight ordering of the
subtrees. The tree's linear nodes show the dependency
order of the data flow graph. For every linear node in the
a-parse tree, the subtrees formed by each child must be
executed in left to fight order. The independent nodes
which have been designated to execute in parallel
indicate the grains that are to be executed concurrently.

Prior to scheduling, we assume the graph-
decomposition technique has been applied and the
following conditions are met:

A. The df-parse tree has been calculated and the
appropriate grains have been defined in a previous grain
determination phase.

B. In the df-parse tree, the dependency order of the
children of linear nodes is preserved: i.e. if I is a left
sibling of b, then I must be executed before b.

ACM 30th Annual Southeast Conference 31

C. At each independent (pseudo-independen0
node, the decision to paraUelize or not has been made
and parallel grains have been determined.

D. As many processors are available as needed by
the algorithm.

E. The cost of communicating a message between
one pair of processors is the same as between any other
pair.
Assumption D is an area for future work and plans are
being made to incorporate the number of nodes in the
physical system with the cost metric. Assumption E is
quite realistic on many systems. Shared memory sys-
tems clearly have this property and distributed memory
systems with hypercube topologies often display this
characteristic [7].

The scheduling is done in two phases. In the lust
phase a virtual schedule is created where threads are
formed. A thread is a sequence of graph nodes (or
equivalently a sequence of df-parse-tree leaf nodes) to
be executed on a single processor. A start time and
completion time are associated with each thread. The
second phase associates processors with threads in a
greedy, load balancing fashion.

The grain determination phase classifies tree nodes
as linear, leaf, aggregated Caseudo-)independent and
parallel (pseudo-)independent, and the scheduler uses
the classification to create the threads. The virtual
scheduling algorithm recursively traverses the df-parse
tree in pre-order. The parallelization decisions made at
the linear nodes during the grain determination phase
show the processor and communication requirements.
When a decision to parallelize is made, threads are
created.

The communication requirements of the linear
nodes vary with the parallelization/aggregation
decisions. At each linear node we consider the
communication requirements of two adjacent children.
If the left child, L, has been parallelized, but the right, R,
has not, all processor results computing L must be
passed to the processor computing R. Similarly if L is
aggregated, but R is parallefized, L must be broadcast to
all processors executing R. If both L and R are
parallelized, all processors executing L must
communicate results to all processors executing R.

Given adjacent nodes L and R in a linear factor, if
L is pseudo-independent, each grain of L passes its
results to a subset of grains of R. In contrast, if L is
independent, there is a complete connection between L
and R and each grain of L must pass results to all grains
of R. In either a parallelized independent or a pseudo-

independent node, communication delay occurs. Both
of these cases will be treated as the independent ease. It
is the easiest case to schedule, the most conservative,
and may result in no communication cost addition for an
architecture and language that readily supports
broadcasting.

leaves represent the actual computations and are
the tree nodes that are scheduled for execution on the
processors.

6. Scheduling Algorithm

The virtual scheduling algorithm is implemented by
the recursive function Schedule which returns the
updated set of threads. The schedule function is initially
activated at the root of the dr-parse tree. As each node
of the dr-parse tree is visited, threads are updated in a
way dictated by the node labeling decisions made in the
grain determination phase.

If the node is a leaf, it is appended to the sequence
of nodes in the current thread and the thread end time is
increased to reflect the execution requirements of the
node.

If the node is labeled linear, the children from left
to right are scheduled and threads are updated to reflect
the communication requirements between two adjacent
children. In the algorithm, the function
Append_Broadcast determines the communication
requirements between a child, CL and its right sibling,
CR. Results must be sent from each thread in the subtree
with root CL to each thread in the subtree rooted at CR
and the end times of the threads must be updated to
reflect the communication delay.

If the node is labeled parallel, a "best" node is
selected for the current thread and new threads are
created for each other child. The recursion schedules
each child on its newly created thread.

If the node is labeled aggregate, its children are
recursively scheduled on the current thread. Unless
there is a child of the aggregate that is labeled parallel,
the current set of threads, CPS, returned by the schedule
function is not changed and no update of the set of
threads actually takes place.

A functional description of the algorithm:

Simple Data Types:
Clan
Tune
Metric

32 ACM 30th Annual Southeast Conference

Types:

Ordered Clan List = Null + (clan X Ordered_Clan_List)
Thread = Time X Time X Ordered_Clan_List

Thread_Set -- Null + (Thread X Thread. Set)

Functions:

Schedule = Clan XTimeX'IlareadXMetrie -> Time XThread._Set

Children = Clan -> Ordered Clan List

Append_Node = clanXThreadXTimeXMetric-> TimeX'rhread

Insea._Communication_Delay = Thread_Set X Thread_Set X
Time X Metric -> T h r e a d Set × Time

Create_Thread = Time X Time X Ordered Clan List -> Thread

Threads = Clan X Thread_Set -> Thread Set
Choose = Clan_Set X Thread -> Clan)<

Next = Ordered_Clan List -> Clan
First = Ordered_clan List -> Clan

Variables:

N : Clan

"IS : Time staa time

TE : Time end time

TC : Time; current time

P : Thread current thread

PS : ThreadSet subtree thread set

Ch : Ordered_Clan_List children in dr-parse tree

CB, CL, CR, C : Clan (best, left, right, arbitrary) child

NP : Thread new process thread

CPS, LCPS, RCPS : ThreadSet thread sets from subtrees
M : Metric

Schedule (N, "IS, P) = {
TE := 'IS;

P S : = { I ;
Ch := Children(N);

if Leaf(N) then

(TE, P) := Append_Node (N, P, TE, M);

elsif Linear(N) then

CR := First(Ch);
repeat

(TE,RCPS) := Schedule (CR, TE, P, M);
(RCPS, TC) :=

-- broadcast from LCPS is inserted at the head of

each thread of RCPS -- (side effect)

-- Maximum end time is returned
Inset. Conamunication_Delay (Threads (CL, LCPS),

Threads (CR, RCPS),

M);
WE := max (TE, TC);

CL :=CR;

LCPS := RCPS;

CR := Next(Ch);
until End Of_List(Ch);

PS := PS + RCPS;

elsif Pandld(N) then

CB := Choose (Ch, P, Metric); -- select best continuation

-- for current thread;

(TE,CPS) := Schedule (C, "rE, P);

PS := PS + CPS;

forall C in Ch - { CB } loop

NP := Create_Thread CI'S, TS, [l);
PS := PS + {NP};

(TC,CPS) := Schedule (C, "IS, NP);

TE := max (TC, TE);
PS := PS + CPS;

end loop;

elsif Aggregated(N) then

forall C in Ch loop

(TE,CPS) := Schedule (C, TE, P);
PS := PS + CPS;

end loop;

end if;

I.
Attention must be paid to threads from parallel

nodes with aggregated ancestors. Determining the
communication requirements of the parallel node with
other nodes in the aggregate requires additional
accounting. The communication information needs to
be propagated upward for potential connection. One
implementation approach would be to provide functions
which distinguish, after any call to Schedule, which
threads of the set returned still have unresolved input or
output, and which were resolved by internal
communication at a lower level of the hierarchy.

The call to Sequence from a linear node causes
threads from the adjacent siblings, L and R, to be
combined where that is advantageous. If both are
singleton sets, the threads are always concatenated, and
the cost of the resulting thread is the sum of the costs of
the individual threads. The cost metric can be exploited
to permit additional concatenations of communicating
threads (providing suspend and resume are permitted in
the computational model for the target architecture).

For example, total elapsed time can be reduced if
time to execute the longest thread is reduced. A strategy
(similar to the critical path heuristic) would be to
examine the longest threads, 1 and r, in each of two
adjacent thread set s L, and R and combine them into a
single thread.

Aggregation occurs at an independent clan. The call
to Aggregate means that the set of unresolved
independent threads from the independent descendant
clans will be executed sequentially. If there are threads
from clans lower in the hierarchy that have been

ACM 30th Annual Southeast Conference 33

determined to execute in parallel, their internal
sequential communications are already resolved (as
described above). Remaining are threads that receive
input data from the common parents and provide their
output data to the common children of the current
independent clan. A single thread is constructed by
receiving the input values (once), concatenating the set
of independent threads, and combining and
broadcasting the resulting output values.

7. Summary

The goal of the work presented in this paper is to
automate the structuring of parallel computations to the
extent possible. The described techniques can be
applied to the problem of automatically determin'lng the
parallel grain size and thread structure of an algorithm.
The graph decomposition method uses the techniques in
a parallel programming scenario in which an algorithm
is developed by following the sequence of steps
illustrated in Figure 6. The algorithm is coded, then
transformed in step 1 into a graph that captures data and
essential control dependencies. In step 2, the
hierarchical structure in this graph is discovered by
parsing the graph using the clan parsing algorithm. The
graph construction and parsing steps are static and
independent of a target architecture. In step 3 the
algorithm is partitioned by identifying which potentially
parallel regions of the computation should be executed
in parallel and which should be aggregated (i.e.,
executed serially). The metric which models the target
architecture is instrumental in determining the size of
the grains defined by this partition. In step 4, the task or
thread structure of the graph is extracted by a process
called virtual scheduling. The fifth and final step is
scheduling. This step allocates processing and
communication resources to execute the algorithm.

Our ongoing work addresses additional elements of
the support required for architecture-independent
programming. Metrics that accurately model parallel
processing environments are a central component of this
work and empirical validation of these metrics is one
focus of our ongoing work. Developing grains and
threads that will map onto a fixed number of processors
is another open study topic, as is the application of the
metric to linear nodes with more than 2 children.

In3
t---..--..J ~ , flt....~J

n 2 ~ in4

IJnear

I n d e p e n ~ . o ~ p e n d e n t

n I n 2 n 3 n4

Figure I. Adjacent Independent Clans

Figure 3. Multiple Adjacent Independent Clans

(a) (b)

(c) (d)

Figure 4. Stable Adjacent Decisions

I In .I.ddc Ihct:lsion Rcsolution of Adjacent Decision

i

Figure 5. Resolution of Unstable Adjacencies

34 ACM 30th Annual Southeast Conference

f

<

(.b

°,..~

i~I, I,,, ~l-F~.,~=I:i,, , , , , ,, I,=I, , ,
- • m m • • • • • • | _. | II ! g | ."

m . i ,

' - " I I II I I

• i
,_q

¢.)
r "
¢,.)

Ca')

¢.)
o

>

I " 1 I I I I I I l l l I l I I I I I
. , . • • . • m • i | • ! ~ ! I ii I!

i

0

¢,.)

r.,o

F--,

ACM 30th Ani~ual Southeast Conference

i ¢)

¢)

c ~

"8
r-.

.=_
,-I

m

r .

0

t ~

,.6

LI.

35

Bibliography
1. Allen, F., Burke, E., Chades, M., Cytron, P., and Feranti, R."An

Overview of the PTRAN Analysis System for
Multiprocessing", Proceedings of the 1987 International
Conference on Supercomputing. Athens, Greece, 1987.

2. Allen, R., Baumgartner, D., Kennedy, K., and Porterfield,
A."PTOOL: A Semi-Autumatic Parallel Programming
Assistant," Proceedings of the 1986 International Conference
on Parallel Processing, pp. 721-727.

3. Appelbe, W. F. and Smith, K. "PAT: A Retargetable Parallelizing
Tool for Fortran" Proceedings of the IEEE 1990 Conference on
Software Maintenance. 1990.

4. Baxter, J., and Patel, J., "The LAST Algorithm: A Heuristic-Based
Static Task Allocation Algorithm," Proceedings of the 1089
International Conference on Parallel Processing, pp. 217-222.

5. Berman, F., "Experience with and Automatic Solution to the
Mapping Problem', in The Characteristics of Parallel
Algorithms, edited by Leah H. Jamieson. Dennis B. Gannon"
and Robert J. Doublar, MIT Press. Cambridge, 1987.

6. Bokari, S., "On the Mapping Problem". IEEE Transactions on
Computers, March, 1981.

7. Bomans, L., and Roose, D., Hypercube and Distributed
Computers, Elsevier Science Publishers, New York, 1989.

8. Carroll, J. M., Thomas J. C. and Malhotra, A.. 1980 "Presentation
and Representation in Design Problem-Solving", British
Journal of Psychology, 71 (1980). pp. 143-153.

9. Chang, S., editor, Principles of Visual Programming Systems,
Prentice-Hall, Englewood Cliffs, 1990.

10. Chang, S., Ichikawa, T.. and Ligomenides, P. A., editors. Visual
Languages, Plenum Press, New York, 1986.

I 1. Coffman. E. "Computer and Job-Shop Scheduling theory". New
York: John Wiley and Sons, 1976.

12. Dongarra, J. J. and Sorensen, D. C.,"SCHEDULE: Tools for
Developing and Analyzing Parallel Fortran Programs," in The
Characteristics of Parallel Algorithms, edited by Leah tl.
Jamieson, Dennis B. Gannon, and Robert J. Doublas, MIT
Press, Cambridge, 1987.

13. Dongart~ J. J., Brewer, O., KObl, J. A. and Fineburg, S., "A Tool
to Aid in the Design, Implementation, and Understanding of
Matrix Algorithms for Parallel Processors," Journal of
Parallel and Distributed Computing, 9 (June 1990), pp. 185-
202.

14. Ehrenfeucht, A. and Rozenberg, G., "Theory of 2-Structures, Part
h Clans, Basic Subclasses, and Moq~hisms," Theoretical
Computer Science (1990), pp. 277-303..

15. Ehrenfeucht, A. and Rozenbesg, O., "Pimitivity is Hereditary for
2-Structures", Theoretical Computer Science 0990), pp. 343-
358.

16. Ehrenfeucht, A. and Rozenberg, G., "Theory of 2-Structures, Part
II: Representation Through Labeled Tree Families,"
Theoretical Computer Science (1990), pp. 305-342..

17. Fortes, J. A. B. and Moldovan, D. I., "Parallelism Detection and
Transformation Techniques Useful for VLSI Algorithms",
Journal of Parallel and Distributed Computing, 2 (1985), pp.
277-301.

18. Gibbons, P., "A More Practical PRAM Model", International Computer
Science Institute, Berkeley, CA. Technical Report TR-89-019,1989.

19. Guama, V. A., Gannon, D., Ganr, Y., and Jablonowkgi, D. "FAUST: An
Environment for Programming Parallel Scientific Applications,"
Proceedings of Supercomputing "88.

20. Kim, S., and Browne, S., "A General Approach to Mapping of Parallel
Computations Upon Multiprocesanr Architecture," Proceedings of
the 1988 International Conference on Parallei Processing, pp. !-8.

21. Kuck, D. H., Kuhn, R. H., Leasure, B. R., and Wolfe M. J., "The
Structure of an Advanced Retargetable Vectorizer." In
Supercomputers : Design and Applications Tutorial (Hwnng K., ed.),
IEEE Society Press, Silver Spring, MD, pp. 967-74.

22. Leirson, C., and Maggs, B., "Communication Efficient Parallel Graph
Algorithms", International Conference on Parallel Procesing, 1986,
pp. 861-868.

23. McCreary, C.L., " An Algorithm for Parsing a Graph Grammar",
Proceedings of the Computer Science Conference, 1988.

24. McCreary, C. L. and Gill, D. H., "Automatic Determination Of Grain
Size for Efficient Parallel Processing," Communications of the
ACM (1989), 1073-1078.

25. McCreary, C. L. and Gill, D. H., "Efficient Exploitation of Cencurrency
Using Graph Decomposition," Proceedings of the 1990
International Conference on Parallel Processing.

26. Sarkar, V., Partitioning and Scheduling Parallel Programs for
Multiprocessors, MIT Press, Cambridge, 1989.

27. Stramm, B., and Berman, E, "Communication-Sensitive Heuristics and
Algorithms for Mapping Compilen', Proceedings of ACM/
SIGPLAN PPEALS, 1988, pp.222-232.

28. Stratum, B., and Ben'nan, F., "How Good Is Good?, Department of
Computer Science and Engineering, University of California, San
Diego, Technical Report CS90-169, 1990.

29. Stone, D. C., "Using Cumulative Graphic Trace~ in the Visualization of
Sorting Algorithms", SlGCSEBuiletin, 21:4 (Dec 1989), pp. 37-42.

30. Towsley, D., "Allocating Programs Centaining Branches and Loops
Within a Multiple Processor System," 1EEE Transactions on
Software Engineering, SE-12 (Oct 1986), pp. 1013-1024.

31. Wolfe, M. J., Supercompilers for Supercomputers, MIT Press,
Cambridge, 1989.

32. Zima, H., Supercompilers for Parallel and Vector Computers, ACM
Press, New York, 1990.

33. Zima, H. P., Bast, H. J., and Gerudt, H. M. "SUPERB - A Tool for Semi-
Automatic MIMD/SIMD Parailelization," Parallel Computing, 6
(1988), pp. 1-18.

36 A C M 30th Annual Southeast Conference

