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1 . I n t r o d u c t i o n  

The research of this report gives a method for 
automatic determination and scheduling of parallel 
modules from an existing sequential computation. 

In compiling a sequential program for execution on 
a multiprocessor system, there are four major problems 
to be solved: [26] 

1. Analyzing the data dependences and control 
dependences in the program. 

2. Identifying parallelism in the program. 
3. Partitioning the program into grains of sequential 

tasks. 
4. Scheduling the tasks on processors. 
The work of this paper addresses the last three 

problems. The automatic dependence analysis, the phase 
that detects where parallelism is constrained, has been 
studied extensively, and there exist a number of tools 
(e.g. PAT[3], PTOOL[2], Parafrase[21], Faust[19] and 
PTRAN[1]) that create data flow and control flow graphs 
from sequential code. A directed graph is typically used 
to model the dependence relation. Usually, a node of the 
graph G = (N,E) represents an operation such as a 
statement or block of statements, and an edge (u,v) 
represents the dependence of v on u, forcing the 
execution of u before v. For both data and control 
dependence, the key is to represent only essential 
dependence constraints as edges. This paper assumes 
that a dependence graph exists and discusses a method 
for performing the last three tasks on the dependence 
graph. The technique decomposes the data flow graph 
into grains of the appropriate size for any underlying 
homogeneous multiprocessor architecture, determines 
which grains should be executed in parallel and which 
must be executed sequentially, and schedules those 
grains onto processors. 
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2. The Conflict Between a High Degree of 
Parallelism and Communication Over- 
head 

As higher degrees of parallelism are introduced 
into a computation, the expectation is that the total 
processing time will be decreased. Empirical tests 
have shown that a threshold exists beyond which an 
increase in the number of processors actually increases 
the processing time required. There is some optimal 
amount of work that must be done on a single 
processor for a parallel system to operate most 
efficiently. 

The graph decomposition method explained in 
this paper divides a data flow graph of the computation 
into a hierarchy of potential grains, employs a general 
metric to represent communication and execution 
times, and using the metric, determines the grains that 
will most efficiently execute the computation. The 
grains are then scheduled by first defining threads of 
grains to be executed on the same processor and 
assigning the threads to processors. 

Determining a grain decomposition that will yield 
the fastest possible execution is an NP-hard problem 
for which any tractable solution will yield only 
approximate results. The heuristics of the graph 
decomposition technique considers for grains 
subgraphs called clans. The nodes outside the clan 
view the sources of the clan as a single node and the 
sinks as another single node. Communication can be 
reduced by aggregating all clan nodes into a single 
grain to be executed on one processor where the 
communication to all clan sources is equivalent to 
communication to one graph node and where 
communication from clan sinks is equivalent to a 
multicast from the clan. 

Graph decomposition has several properties that 
make it very useful in the parallelization of a 
computation 
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I. A clan is a collection of computational elements 
with identical need to communicate with other 
clans. This property demonstrates that grouping by 
clans yields a substantial reduction in 
communication overhead. 

2. Clans are classified as linear or independent. The 
linear clans of a data flow graph must execute 
sequentially, while the independent clans may 
execute in parallel. 

3. The clan structure derived from a data flow graph 
is unique, and forms a hierarchy that can be 
regarded as a parse tree of the data flow graph, the 
df-parse. Traversal of the dr-parse tree shows 
different degrees of parallelization that can be 
applied to a particular program. 

4. If a cost metric that models a particular 
architecture is imposed on the df-parse tree, a good 
grain size can be determined for that architecture. 
Once the grains have been determined, a natural 
traversal of the df-parse tree yields an efficient 
scheduling algorithm. 

5. The graph decomposition technique can be applied 
to a variety of systems from those involving very 
high communication costs (for example, 
distributed systems) to tightly coupled 
multiprocessor systems. The cost metric reflects 
both the communication and processing 
characteristics of the target hardware and the 
hierarchy of grains allows a system a choice from 
which to fred the proper balance of aggregation to 
parallelization. 

6. The graph decomposition method is robust in that 
it can be applied to any directed acyclic data flow 
graph. Towsley [30] and Bokhari [6] develop 
scheduling algorithms for trees and series-parallel 
graphs. In addition to our effort, a few partitioning 
and scheduling schemes such as LAST by Baxter 
and Patel[4] and linear clustering by Kim and 
Browne [20] use as a basis a general acyclic data 
flow graph. 

3. Parsing a Dataflow Graph 

The grains derived for parallel computing will be 
subgraphs of the dataflow known as clans. The dataflow 
graph is a directed acyclic graph (DAG) whose edges 
denote the essential dependence of the input 
computation. A set of nodes X from DAG G is a clan iff 
for all x, y in X and all z in G - X, (a) z is an ancestor of 
x iff z is an ancestor of y and Co) z is a descendant of x 
iff z is a descendant of y. Informally we can describe a 

clan as a subset of nodes where any element outside the 
clan has the same ancestral relationship to every node in 
the clan. The importance of a clan as a grain is that all 
sources and all sinks of the clan can be seen as identical 
in their communication with the rest of the graph. 

Clans can be classified as linear, independent, or 
primitive[14]. Linear clans must be executed serially 
whereas independent clans contain subelans (or 
singleton nodes) that may be executed in parallel. 
Primitives do not have such a clear execution order and 
are processed further to be decomposed into linear and 
independent components[25]. Resulting independent 
clans are referred to as pseudo-independent clans. After 
complete decomposition, all clans are labeled as linear, 
independent, or pseudo-independent. 

A parsing algorithm, O(n 3) in complexity and 
reported elsewhere [23], creates a hierarchy of clans in 
a parse tree, which we will refer to as the df-parse (data 
flow parse) tree. Ehrenfeucht and Rosenberg [14,15,16] 
prove that there exists a canonical parse leading to a 
unique parse tree. The labeling of the nodes of the df- 
parse tree as linear, identifies clans that must be 
executed serially and the labeling as independent or 
pseudo-independent identifies those that may be 
executed in parallel. The df-parse tree is bipartite with 
linear clans connected as parents or children to (pseudo- 
) independent clans. For a connected graph, the root of 
the df-parse tree is a linear node. 

4. Cost Metrics and Grain Determination 

Our treatment of the cost calculation is abstract 
to allow the cost function to be tailored to reflect 
differences in the target architecture. Our method 
applies cost metrics in a flexible way. Node and edge 
cost composition functions are evaluated on the parsed 
data flow graph to determine the appropriate grains for 
execution on an architecture whose performance is 
modeled by the metric. 

A cost model for partitioning that allows the 
assignment of a grain to a processor to be independent 
of the processor on which other grains have executed is 
described in [25]. This allows scheduling to select from 
among grains that have their data dependencies 
satisfied, rather than requiting a particular assignment. 
Communication costs are incurred between execution of 
grains. 

To determine which (pseudo-)independent clans 
should be executed in parallel, inspect the parent (linear) 
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node in the df-parse tree and examine the adjacent 
children pairwise. By comparing the cost of aggregation 
with the cost of parallelization, a decision on the method 
of execution can be made. In the case where the 
(pseudo-) independent clans contain 2 nodes, there are 
four possibilities for adjacent children of a linear node 1: 
(i) both the left and fight children can be executed in 
parallel; (ii) the left child can be executed in parallel and 
the fight child aggregated; (iii) the left child can be 
aggregated and the fight child executed in parallel; or 
(iv) both children can be aggregated. In Figure 1 let n i 
give the node cost of node i; e i represents a 
communication cost. Let f, g, and g' be node cost 
combining functions for parallel execution of the child 
nodes, aggregated execution of independent children, 
and linearly aggregated execution (of aggregated 
children), respectively. And let h, h', and h" be edge 
combining functions. Then we can formulate the costs 
of the four cases as shown in Figure 2 where boxes 
represent clans whose nodes are executed concurrently 
and ovals represent aggregation. 

Formula Case 

t-- r l 
f(nl'n2) + h(el'e2'e3'e4) + f(n3'n4) fi~._l 

f(nl,n2) + h'(el,e2,e3,e4) + g(n3,n4) DC,~,~ 

g(nl,n 2) + h"(el,e2,e3,e4) + f(n3,n 4) ( ~  

g'(g(nlda2), f(n3,n4) ) ~ - ~  

Figure 2 

The metric is applied to the df-parse Iree from 
bottom up. The leaves receive their costs from the 
program DAG. Internal node calculations occur at 
linear nodes where the best configuration for adjacent 
pairs of the independent children is determined. Each 
decision corresponds to an edge in the parent (linear) 
clan. Linear clans are not limited to the connection of 
only two sets of independent clans, but can represent the 
sequential dependencies of any number of clans as 
illustrated by Figure 3. In this case, the aggregation 
decisions on pairwise adjacent clans may lead to 
conflicL If adjacent decisions agree on the common 
(middle) clan, the adjacent configurations are referred to 
as stable. They take the forms illustrated in Figure 4. 

The unstable configurations disagree on the 
aggregation of the shared node and must be resolved. 

The heuristic chosen is a local smoothing technique. 
Specifically, the aggregation decision for the shared 
node is redetermined using its context on both sides. 
Unstable pairs are resolved by selecting the best 
aggregation alternative for the combined configuration. 
Examples of unstable decisions and their corresponding 
resolutions are illustrated in Figure 5. The conflict is 
resolved by choosing the alternative with minimum 
cost. 

5. S c h e d u l i n g  

The general scheduling problem is to assign grains 
to processors in such a way as to minimize the parallel 
execution time which includes both processor execution 
time and communication delay. In the context of the 
graph decomposition method, the schedule associates 
grains developed by the partitioning scheme with 
processors utilizing the highest degree of parallelism 
suggested by the partition. Communication delays have 
already been considered in the partitioning scheme, so a 
simple mapping of the df-parse tree nodes onto 
processors is all that is required. 

The df-parse tree of the DAG provides a structure 
from which a schedule can be developed. Efficient, 
optimal scheduling algorithms have been developed for 
algorithms represented by trees [5,6], but the problem of 
scheduling the a-parse tree is different in nature. In the 
previous scheduling algorithms, a tree represents the 
precedence ordering of the tasks represented by the 
nodes. The a-parse tree represents the hierarchy of 
clans found in the graph. In the df-parse tree, only the 
leaves represent the tasks to be scheduled and the 
precedence ordering is the left to fight ordering of the 
subtrees. The tree's linear nodes show the dependency 
order of the data flow graph. For every linear node in the 
a-parse tree, the subtrees formed by each child must be 
executed in left to fight order. The independent nodes 
which have been designated to execute in parallel 
indicate the grains that are to be executed concurrently. 

Prior to scheduling, we assume the graph- 
decomposition technique has been applied and the 
following conditions are met: 

A. The df-parse tree has been calculated and the 
appropriate grains have been defined in a previous grain 
determination phase. 

B. In the df-parse tree, the dependency order of the 
children of linear nodes is preserved: i.e. if I is a left 
sibling of b, then I must be executed before b. 
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C. At each independent (pseudo-independen0 
node, the decision to paraUelize or not has been made 
and parallel grains have been determined. 

D. As many processors are available as needed by 
the algorithm. 

E. The cost of communicating a message between 
one pair of processors is the same as between any other 
pair. 
Assumption D is an area for future work and plans are 
being made to incorporate the number of nodes in the 
physical system with the cost metric. Assumption E is 
quite realistic on many systems. Shared memory sys- 
tems clearly have this property and distributed memory 
systems with hypercube topologies often display this 
characteristic [7]. 

The scheduling is done in two phases. In the lust 
phase a virtual schedule is created where threads are 
formed. A thread is a sequence of graph nodes (or 
equivalently a sequence of df-parse-tree leaf nodes) to 
be executed on a single processor. A start time and 
completion time are associated with each thread. The 
second phase associates processors with threads in a 
greedy, load balancing fashion. 

The grain determination phase classifies tree nodes 
as linear, leaf, aggregated Caseudo-)independent and 
parallel (pseudo-)independent, and the scheduler uses 
the classification to create the threads. The virtual 
scheduling algorithm recursively traverses the df-parse 
tree in pre-order. The parallelization decisions made at 
the linear nodes during the grain determination phase 
show the processor and communication requirements. 
When a decision to parallelize is made, threads are 
created. 

The communication requirements of the linear 
nodes vary with the parallelization/aggregation 
decisions. At each linear node we consider the 
communication requirements of two adjacent children. 
If the left child, L, has been parallelized, but the right, R, 
has not, all processor results computing L must be 
passed to the processor computing R. Similarly if L is 
aggregated, but R is parallefized, L must be broadcast to 
all processors executing R. If both L and R are 
parallelized, all processors executing L must 
communicate results to all processors executing R. 

Given adjacent nodes L and R in a linear factor, if 
L is pseudo-independent, each grain of L passes its 
results to a subset of grains of R. In contrast, if L is 
independent, there is a complete connection between L 
and R and each grain of L must pass results to all grains 
of R. In either a parallelized independent or a pseudo- 

independent node, communication delay occurs. Both 
of these cases will be treated as the independent ease. It 
is the easiest case to schedule, the most conservative, 
and may result in no communication cost addition for an 
architecture and language that readily supports 
broadcasting. 

leaves represent the actual computations and are 
the tree nodes that are scheduled for execution on the 
processors. 

6. Scheduling Algorithm 

The virtual scheduling algorithm is implemented by 
the recursive function Schedule which returns the 
updated set of threads. The schedule function is initially 
activated at the root of the dr-parse tree. As each node 
of the dr-parse tree is visited, threads are updated in a 
way dictated by the node labeling decisions made in the 
grain determination phase. 

If the node is a leaf, it is appended to the sequence 
of nodes in the current thread and the thread end time is 
increased to reflect the execution requirements of the 
node. 

If the node is labeled linear, the children from left 
to right are scheduled and threads are updated to reflect 
the communication requirements between two adjacent 
children. In the algorithm, the function 
Append_Broadcast determines the communication 
requirements between a child, CL and its right sibling, 
CR. Results must be sent from each thread in the subtree 
with root CL to each thread in the subtree rooted at CR 
and the end times of the threads must be updated to 
reflect the communication delay. 

If the node is labeled parallel, a "best" node is 
selected for the current thread and new threads are 
created for each other child. The recursion schedules 
each child on its newly created thread. 

If the node is labeled aggregate, its children are 
recursively scheduled on the current thread. Unless 
there is a child of the aggregate that is labeled parallel, 
the current set of threads, CPS, returned by the schedule 
function is not changed and no update of the set of 
threads actually takes place. 

A functional description of the algorithm: 

Simple Data Types: 
Clan 
Tune 
Metric 
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Types: 

Ordered Clan List = Null + (clan X Ordered_Clan_List) 
Thread = Time X Time X Ordered_Clan_List 

Thread_Set -- Null + (Thread X Thread. Set) 

Functions: 

Schedule = Clan XTimeX'IlareadXMetrie -> Time XThread._Set 

Children = Clan -> Ordered Clan List 

Append_Node = clanXThreadXTimeXMetric-> TimeX'rhread 

Insea._Communication_Delay = Thread_Set X Thread_Set X 
Time X Metric -> T h r e a d  Set × Time 

Create_Thread = Time X Time X Ordered Clan List -> Thread 

Threads = Clan X Thread_Set -> Thread Set 
Choose = Clan_Set X Thread -> Clan)< 

Next = Ordered_Clan List -> Clan 
First = Ordered_clan List -> Clan 

Variables: 

N : Clan 

"IS : Time staa time 

TE : Time end time 

TC : Time; current time 

P : Thread current thread 

PS : ThreadSet  subtree thread set 

Ch : Ordered_Clan_List children in dr-parse tree 

CB, CL, CR, C : Clan (best, left, right, arbitrary) child 

NP : Thread new process thread 

CPS, LCPS, RCPS : ThreadSet  thread sets from subtrees 
M : Metric 

Schedule (N, "IS, P) = { 
TE := 'IS; 

P S : = { I ;  
Ch := Children(N); 

if Leaf(N) then 

(TE, P) := Append_Node (N, P, TE, M); 

elsif Linear(N) then 

CR := First(Ch); 
repeat 

(TE,RCPS) := Schedule (CR, TE, P, M); 
(RCPS, TC) := 

-- broadcast from LCPS is inserted at the head of 

each thread of RCPS -- (side effect) 

-- Maximum end time is returned 
Inset.  Conamunication_Delay (Threads (CL, LCPS), 

Threads (CR, RCPS), 

M); 
WE := max (TE, TC); 

CL :=CR; 

LCPS := RCPS; 

CR := Next(Ch); 
until End Of_List(Ch); 

PS := PS + RCPS; 

elsif Pandld(N) then 

CB := Choose (Ch, P, Metric); -- select best continuation 

-- for current thread; 

(TE,CPS) := Schedule (C, "rE, P); 

PS := PS + CPS; 

forall C in Ch - { CB } loop 

NP := Create_Thread CI'S, TS, [l); 
PS := PS + {NP}; 

(TC,CPS) := Schedule (C, "IS, NP); 

TE := max (TC, TE); 
PS := PS + CPS; 

end loop; 

elsif Aggregated(N) then 

forall C in Ch loop 

(TE,CPS) := Schedule (C, TE, P); 
PS := PS + CPS; 

end loop; 

end if; 

I. 
Attention must be paid to threads from parallel 

nodes with aggregated ancestors. Determining the 
communication requirements of the parallel node with 
other nodes in the aggregate requires additional 
accounting. The communication information needs to 
be propagated upward for potential connection. One 
implementation approach would be to provide functions 
which distinguish, after any call to Schedule, which 
threads of the set returned still have unresolved input or 
output, and which were resolved by internal 
communication at a lower level of the hierarchy. 

The call to Sequence from a linear node causes 
threads from the adjacent siblings, L and R, to be 
combined where that is advantageous. If both are 
singleton sets, the threads are always concatenated, and 
the cost of the resulting thread is the sum of the costs of 
the individual threads. The cost metric can be exploited 
to permit additional concatenations of communicating 
threads (providing suspend and resume are permitted in 
the computational model for the target architecture). 

For example, total elapsed time can be reduced if 
time to execute the longest thread is reduced. A strategy 
(similar to the critical path heuristic) would be to 
examine the longest threads, 1 and r, in each of two 
adjacent thread set s L, and R and combine them into a 
single thread. 

Aggregation occurs at an independent clan. The call 
to Aggregate means that the set of unresolved 
independent threads from the independent descendant 
clans will be executed sequentially. If there are threads 
from clans lower in the hierarchy that have been 
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determined to execute in parallel, their internal 
sequential communications are already resolved (as 
described above). Remaining are threads that receive 
input data from the common parents and provide their 
output data to the common children of the current 
independent clan. A single thread is constructed by 
receiving the input values (once), concatenating the set 
of independent threads, and combining and 
broadcasting the resulting output values. 

7. Summary 

The goal of the work presented in this paper is to 
automate the structuring of parallel computations to the 
extent possible. The described techniques can be 
applied to the problem of automatically determin'lng the 
parallel grain size and thread structure of an algorithm. 
The graph decomposition method uses the techniques in 
a parallel programming scenario in which an algorithm 
is developed by following the sequence of steps 
illustrated in Figure 6. The algorithm is coded, then 
transformed in step 1 into a graph that captures data and 
essential control dependencies. In step 2, the 
hierarchical structure in this graph is discovered by 
parsing the graph using the clan parsing algorithm. The 
graph construction and parsing steps are static and 
independent of a target architecture. In step 3 the 
algorithm is partitioned by identifying which potentially 
parallel regions of the computation should be executed 
in parallel and which should be aggregated (i.e., 
executed serially). The metric which models the target 
architecture is instrumental in determining the size of 
the grains defined by this partition. In step 4, the task or 
thread structure of the graph is extracted by a process 
called virtual scheduling. The fifth and final step is 
scheduling. This step allocates processing and 
communication resources to execute the algorithm. 

Our ongoing work addresses additional elements of 
the support required for architecture-independent 
programming. Metrics that accurately model parallel 
processing environments are a central component of this 
work and empirical validation of these metrics is one 
focus of our ongoing work. Developing grains and 
threads that will map onto a fixed number of processors 
is another open study topic, as is the application of the 
metric to linear nodes with more than 2 children. 

In3 
t---..--..J ~ ,  flt....~J 

n 2 ~  in4 

IJnear 

I n d e p e n ~ . o ~ p e n d e n t  

n I n 2 n 3 n4 

Figure I. Adjacent Independent Clans 

Figure 3. Multiple Adjacent Independent Clans 

(a) (b) 

(c) (d) 

Figure 4. Stable Adjacent Decisions 

I In .I.ddc Ihct:lsion Rcsolution of Adjacent Decision 

i 

Figure 5. Resolution of Unstable Adjacencies 
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