
THE BARREL CONCEPT: A STUDY IN LANGUAGE SYSTEM DEVELOPMENT

Cindy Eades
GTS Computer Systems Inc.

Birmingham, Alabama
University of Alabama in Birmingham

Kevin D. Reilly
University of Alabama in Birmingham

John H. Barrett
University of Alabama in Birmingham

Charles Minderhout
U.S. Steel, Fairfield Works

University of Alabama in Birmingham

We describe a variation in theme on ~cro & function calls
abstract machine implementation through l& host instructions
general purpose macro processing. Using
data flow diagrams we show how the central
focus of concern can be shifted from the
output focus of conventional macro process-
ing to an user-oriented focus, on a system
developed upon an optimized and extended
version of the Stage2 processor of W.
Waite and co-workers, code be dies

:~ons, e.g., Iccde for a
templates & I language
code bodies l processor

e,g.

The approach has potential theoretical
interest in its: being a modern expression
of widely accepted older ideas and imple-
mentations, applications which incorporate
synergisms in language concepts (string
and list processing, tables), possible
opening to logic programming.

Data flow descriptions are used to il-
lustrate top-level and selected lower level
computation activities, e.g., combination
evaluation. Usage of the array of capa-
bilities presented by Barrel are outlined:
portability, prototyping in a multiple-
machine context, "permanent" (compiled)
codes for network operations.

I . Intro4uction

Abstract machines can be implemented
in a variety of ways (Brown, 1974). Among
them are techniques based on (general pur-
pose) macro processing. Figure i provides
a standard view of such an implementation,
using data flow diagrams (Gane and Sarson,
1979).

Permlaa ion to copy w i t h o u t f e e I~1 or p a r t o f
th~a m a t e r i a l I s g r a n t e d p r o v i d e d t h a t th e
c o p i e s are not made or d i s t r i b u t e d f o r d i r e c t
o o m e r c l a l a d v a n t a g e , the ACN c o p y r i g h t not ice
and the t i t l e o f the p u b l i c a t i o n and i t s d a t e
appear , and n o t i c e i s g~van t h a t c o p y i n g i s by
p e r m i s s i o n o f the A s s o c ~ a t i o n f o r Computing
N a c h t n e r y . To copy o t h a z ~ i s e , or t o r e p u b l i s h ,
r e q u i r e s a f e e a n d / o r s p e c i f i c p e r m i s s i o n .

1982 aCM 0 - 8 9 7 9 1 - 0 7 1 - 0 / 8 2 / 0 ~ 0 0 - 0 1 6 8 $ 0 0 . 7 5

Figure i: Data flow diagram for the top-level
description of conventional macro pro-
cessing (Scratch file(s) not included).

II. Top-Level Dataflow for Barrel

In some cases the processor can pro-
vide comprehensive facilities of its own,
this being so more often for general pur-
pose macro processors than for those
limited or restricted to a particular host
language. In such cases it is often pos-
sible to adapt (and extend) the processor
so that it has the additional power need-
ed, e.g., to serve as a facility for
prototyping and development studies.

Such a prospect lies at the heart of
the Barrel concept: the Stage2 general
purpose macro processor (Waite, 1973) has
been adapted and extended to forge a flex-
ible tool for studies in a variety of
areas: string and list processing, table-
based processing methods, systems for s~p-
port of analysis and design, and possibly
logic programming.

The conceptual basis for this process-
ing approach is of interest in its own
right, and is displayed in Figure 2 (a
figure which resembles Figure I in many
respects, but which contains some changes
in orientation and philosophy).

168

http://crossmark.crossref.org/dialog/?doi=10.1145%2F503896.503926&domain=pdf&date_stamp=1982-04-01

:ro & function calls
& host instructions

processor
(Stage2 revised)

1

input/output
file # 1

Jinput/output
"~ile # I0

F
cro definitions

templates
code bodies .

Figure 2: Data flow diagram for the top-level
(simplified) description of the modi-
fied approach in which the augmented
facilities of the macro processor
(Stage2) are used interactively to
forge a ccmputing system for prototyp-
ing and development studies.

Figure 2 has been kept at a simple
level to dramatize the change of focus
that has occurred in our adaptation. What
is only scarcely hinted in the figure is
the prodigious effort of one of the
authors to optimize the processor.

Special attention should be called to
the extended file processing capabilities.
These lie at the heart of interpretation
and toward compilation. These are also
necessary for table-processing applica-
tions. Other potentials also exist for
them.

Changes in other parts of the system
are under investigation particularly with
respect to portions of the memory scheme
to conform to certain theoretical models
of memory organization and to make more
efficient various kinds of computation.
Hitherto, we have tried to avoid premature
changes until a number of feasibility
questions have been answered.

III. Categories of Use

In passing we mention that the system
is being used for studies in four cate-
gories. First and minimally, the system
can be used in straight-forward (perhaps
student-exercise level) computations in-
volving the interactive and batch facili-
ties presented in a definitional file en-
titled BMAC. At this level the system
resembles Basic, in the style of inter-
acting with the system, but differs from
Basic in having only structured programm-
ing control statements which are modeled
after Pascal and Ada.

At a second level, the system provides
string processing facilities modeled after
those of the new programming language,
Icon, a product resembling Snobol, but
with a different set of primitive construc-
tions and a new approach to pattern match-
ing. The definitional files for this type
of work are entitled BICON (for Barrel
Icon), and presume the use of BMAC in most
cases. They are, however, independent of
the other definitional files to be des-
cribed next. BICON is presently still in
the early state of development.

BLISP is the third component, and, as
already mentioned, can run independent or
in conjunction with BICON. BLISP is an
evolving subset of LISP, e.g., it does not
have a "go" (within "PROG") though the con-
trol structures of BMAC could be used to
implement structured iteration.

The fourth and final part of the defi-
nitional structures is BTPS constructions
for table-processing. By April 1982 BTPS
should allow some variety of table input,
e.g., decision table, condition policy
maps and action policy maps (Montalbano,
1974). BTPS, as well as each of the four
areas of computation, is described in some-
what more detail in the companion paper.

IV. Combination Evaluation as an Example
Development.

In this section we outline some of the
considerations involved in development of
an important facet of the BLISP part of
the system: evaluation of combinations.
As with every (significant) modification
and/or extension of the system, we use a
design and documentation approach in which
we view the changes as a "scientific ex-
periment". We assume a four-phase opera-
tion of : Purpose(l), Methods(2), Re-
sults(3) and Discussion(4). The next com-
ments illustrate an abbreviated example
of this approach.

PURPOSE:

This is "another" in the series of ex-
tensions to Barrel, specifically within
BLISP. We seek, as usual, an adequate
test of our new constructions. Our
specific goal is to be able to process
examples like: (cons (cons (cons y y) y)
y), (car (cdr (crd x))) or (caddr x),
(cons (car x) (cdr x)) and (cons (car
(cdr x)) (car (cdr y))). These examples
are chosen because they have characteris-
tics which respectively are "heavy in the
car (front-end), "heavy" in the cdr (back-
end) and balanced between £he car and the
cdr.

Note that we are not trying to handle
DEFINE in this study.

Our solution should be such that both in-
terpretation and compilations are facili-

169

rated. We quote from Burge (1975):

For combinations, the compiler is
no more efficient than the inter-
preter; the same steps are merely
carried out in a different order.
The compiler version has been in-
troduced to prepare the way for a
more efficient method of evalua-
ting expressions that contain lambda
expressions. In this case, the
body of a lambda expression may
have to be evaluated more than
once during the evaluation of an
expression containing At; whereas
it need only be compiled once.

METHODS:

Our approach (similar to that of Burge)
can be overviewed in two steps as illus-
trated An Figure 3.

Register

Decode *car
Operator L

& ;%
Operands *cdr

L Stack

Phase II: ~"usua
interpreting stack

data
Interprete/ i
Execute usi~
Stack

Figure 3: Dataflow description of the two-phase
calculation for evaluation of the ccm-
bination (cons (car L) ((:dr L))

We paraphrase part of Burge's text to
illustrate Phase I's decode ("compile")
action on the User's input, resulting in
the establishment of a control register
and Phase II's interpreting/executing of
the Control Register using a stack:

Phase I: Compiling

(p (m (p a b) c) (f a c))

(f x y) = x 2 + y2

3,1, f ,A,A, 3,2,1 ,p,A,A,m,A,A,p,A,A

original
combination

formula for the
function f

Control
Register

Phase II: Interpreting/Executing

Entries are taken from the Control
Register and given to the Stack (S) un-
til an A (or in our solutionA) ks en-
countered. A check is made to see if
another A (^) is encountered to dis-
tinguish binary (2 are found) or unary
(only 1 is found) operation. The Stack
(S) is now evaluated after which the

process begins again.

The next section (Results) illustrates
our rendition of our scheme within our
Stage2 context.

RESULTS:

An attempt is now made to discuss the
two phases in detail through a simple ex-
ample.

Phase I: Decod ing ("compiling")
The combination, e.g., (cons (cdr x)
y), is first evaluated, which creates
the Control Register (C): * denotes an
internal fun~):

~cons
A
*cdr
x

(c)

Phase II: Executing
The Control Register (C) is evaluated
(bottom up) and places the result in
a Stack (S). The Stack (S) evolves
as follows: (val denotes the va/ue of):

"cdr val(*odr x) *cons val(*cons (cdr x) y)
val x val y val(*cdr x) (returns value
val y val y to the USER next)

(s) (s) (s) (s)

The Stage2 code for these manipula-
tions is compact (see Figure 4 for Phase I
code for a slightly simplified case.)

The code has been analyzed according
to its two phases. We are satisfied with
Phase I. Phase II, however, runs somewhat
slower than we would like (see Discussion
for our future plans).

(# #) :
"(#i0 #20)$
EVAL*$ GOOD POINT FOR EXAMINING CTRL REG.
$
• (# #) :
IF '#I0 ~ 'CAR SKIP 45
IF '#I0 ~ 'CDR SKIP 35
IF '#I0 HQ 'A.gX]M S~IP 25
IF '#i0 ~ ~ULL SKIP I$
(INSOHI '^)$
(I N S ~ I '^)$
(INSQHI '*#I0)$

(#20#97 $
(SS"ID %SPU '#90)$
%SPUI :-- SDCT(%SPU,I,I)$
IF %SPUI EQ I/~AR SKIP 25 RECURSE ?
(INS~II %SPU)$

SKIP I$
*#905
#F85
$

Figure 4: Illustration of what it might be

170

like to (recursively) code the
piler phase in a case simplified
to the basic LISP operations. The
pattern base of the method, the
use of INSQHI are among features of
note.

DISCUSSION

The (relatively) successful results of
this "experiment" are very important for
future work on the BLISP component of Bar-
rel, specifically as we progress to an
evaluation facility comparable to that de-
manded by current (typical) functional
programming.

The speed of evaluation, as remarked
above, is only partially satisfactory.
Fortunately, more than one possible cause
can be hypothesized, and solutions to a
couple of these are under consideration.
A first hypothesis is that we have failed
to exploit the basic pattern matching
strength of Stage2. The remedy in this
case is not trivial, but it is not diffi-
cult either. The second hypothesis is
that "special" mechanisms may be needed to
facilitate these schemes. The remedy in
this case would be less painless, and
should (and would) not be undertaken with-
out its being needed for other reasons as
well. We expect, however, to be probing
our underlying code somewhat more in
future work than we have in the past.

4. MONTALBANO, M., Decision Tables. Chi-
cago: SRA, 1974.

5. BURGE, W., Recursive Programmin @ Tech-

~ . Reading, Mass.: Addison-
, 1975.

V. Concluding Remarks.

We have tried in this paper to illus-
trate the conceptual basis of the Barrel
system and its categories of use, and to
provide a (single) concrete example of a
reasonably formalized development ap-
proach to achieve a discrete component of
the software, i.e., combination evalua-
tion. Future possibilities include con-
tinuation and extension of this approach
to complement work in areas such as logic
programming, pattern-directed, and table-
driven processing, potentially in the net-
work context.

REFERENCES

1. BROWN, P.J., Macro Processors and Tech-
niques for Portable Software. N.Y.:
Wiley-lnterscience, 1974.

2. G~E, C. and T. Sarson, Structured Sys-
tems Analysis: Tools and Techniques.
Englewood Cliffs, N.J.: Prentice-
Hall, 1979~

3. WAITE, W.M., Implementin 9 Software for
Non-Numerical Applications. Engle-
wood Cliffs, N.J.: Prentice-Hall,
1973.

171

