
The Saguaro Distributed Operating System 
and Related Projects 

Gregory R. Andrews 
Richard D. Schlichting 

Department of Computer Science 
University of Arizona 

Tucson, AZ 85721 

July 2.2, 1986 

Our research in distributed systems has concentrated primarily on various aspects of the 
Saguaro distributed operating system. This has included not only design and development of the 
operating system itself, but also investigations into related areas. These related projects have 
included the redesign of the SR distributed programming language, and the development of the 
MLP system for constructing distributed, mixed language program~. These projects are related to 
Saguaro in that SR is the language being used for the implementation of Saguaro, while MLP is 
based on the type system developed for use in Saguaro. Both SR ~ MLP have been 
implemented. Prototypes of the Saguaro file system and user interface have also been 
implemented; implementation of the full Saguaro system is underway on a network of Sun 
workstations. 

To characterize this recent work, titles and abstracts of several representative papers follow. 

The Design of the Saguaro Distributed Operating System 
G.R. Andrews, R.D. Sclflichting, R. Hayes, and T. Purdln 
IEEE Transactions on Software Engineering, December 1986, to appear 

This paper describes the design of the Saguaro operating system for computers connected by a 
local-area network. Systems constructed on such an architecture have the potential advantages of 
concurrency and robustness. In Saguaro, these advantages are made available to the user through 
several mechanisms. One is channe/s, an interprocess communicatica and synchronization 
facility that allows the input and output of different commands to be connected to form general 
gral~rls of communicating processes. Two additional mec..b~ni~rns are provided to support semi- 
tran.~aarem file replication and access: reproduction sets and mett~des. A reproduction set is a 
collection of fries that the system attempts to keep identical on a "best effort" basis. A metaflle 
is a special file that contains symbolic pathnames of other fries; when a metaffle is opened, the 
system selects an available constituent file and opens it instead. The advantages of concurxency 
and robusmess are also w.aliTed at the system level by the use of pools of server processes and 
decentralized allocation protocols. Saguaro also makes extensive use of a type system to describe 
user data such as files and to specify the types of arguments to commands and procedures. This 
enables the system to assist in type checking and leads to a user interface in which command- 
specific templates are available to facilitate command invocation. 

-1- 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F503956.503958&domain=pdf&date_stamp=1986-09-08


Mechanisms to Enhance FOe Availability in Distributed Systems 
R.D. Schlichting, G.R. Andrews, and T. Purdin 
The 16th Inf I Symposium on Fault-Tolerant Computing Systems, Vienna, July 1986, 44-49 

The design of the file system component of the Saguaro distributed operating system is described. 
The goal of this file system is to enhance file availability in a way that is easy to use yet 
inexpensive to implement. The logical file system seen by users forms a single tree and file 
names are location-wansparent. However, any file can be placed at the user's discretion in any of 
the physical file systems. Also, two mechanisms reproduction sets and metafiles---are provided 
to support file replication. Together these mechanisms enable a user to set up collections of 
replicated files and then access them as if they were normal, unreplicated files. Moreover, a file 
open is guaranteed to succeed if at least one of the copies is available. A prototype 
implementation of reproduction sets and metaflles on top of Berkeley Unix has confirmed that 
these mechanisms are also useful in existing systems, and that they are relatively inexpensive to 
implement. 
(The Berkeley Unix implementation is described in a separate paper that has been submitted to 
Software--Practice and Experience.) 

An Overview of the SR Language and Implementation 
G.R. Andrews, R.A. Olsson, M. Coffin, I.J.P. Elshoff, IC N'flsen, and T. Purdin 
Submitted to ACM Transactions on Programming Languages and Systems 

SR is a language for programming distributed systems ranging from operating systems to 
application programs. Based on our experience, the language ha.q evolved considerably during 
the past year. This paper describes the current version of the language and gives an overview of 
its implementation. The main language constmcls are still resources and operations. Resources 
encapsulate processes and variables they share; operations provide the primary mechanism for 
process interaction. One way in which SR has changed is that both resources and processes are 
now created dynamically. Another change is that the mechanis~rnR for operation invocation call 
and send---and operation implementation proc and in have been extended and integrated. 
Consequently, all of local and remote procedure call, rendezvous, asynchronous message passing, 
multicas~ and semaphores are supported. We have found this flexibility to be very useful for 
distributed programming. Moreover, by basing SR on a small number of well-integrated 
concepts, the language is also relatively ~imple and has a reasonably efficient implementation. 

The Evolution of the SR Language 
G.tL Andrews and R.A. Olsson 
Distributed Computing, Vol. 1, No. 3, July 1986 

As a n~ult of our experience, the SR distributed programming language has evolved. One 
change is that resources and processes are now dynamic rather than static. Another change is that 
operations and processes are now integrated in a novel way: all the mechanisms for process 
interaction--remote and local procedure call rendezvous, dynnmlc process creation, and 
asynchronous message passing--are expressed in ~milar ways. This paper explains the rationale 
for these and other changes. We examine the fundamental issues faced by the designers of any 
distributed programming language and consider the ways in which these issues could be 

-2- 

:,7" 7 ° 



addressed. Special attention is given to the design objectives of expressiveness, simplicity, and 
efficiency. 

Facilitating Mixed Language Programming in Distributed Systems 
R. Hayes and R.D. SchLichting 
IEEE Transactions on Software Engineering, to appear 

An approach for facilitating mixed language programming in distributed systems is presented. It 
is based on adding a generic remote procedure call facility to each language, and the use of a type 
system to describe procedural interfaces, as well as data to be transferred between procedures. 
This type scheme also specifies a machine independent repwaentafion for atl data. By defining 
standard mappings for each programming language, the data conversions required for cross- 
language calls may be performed, automatically in most cases, by active agents that provide the 
interface between program components written in different languages. When necessary, explicit 
control of the conversion is possible. A prototype implementation of a system based on this 
approach has been constructed on a collection of machines running Berkeley UNIX. 

-3- 




