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I n t r o d u c t i o n  

Linda Is a programming environment for building parallel applications and distributed systems on 

multi-computers [Gel85, CGL86]. It supports a high-level view of explicitly parallel programming, and its 

goal is to simplify the parallel programming task to the point where it Is conceptually no harder than 

conventional, sequential programming. 

Because of its high-level model, and the logically-shared tuple memory through which Linda processes 

communicate, implementing the language has long been regarded as a tough proposition -- particularly on 

multi-processors and local networks that provide no physically-shared memory among compute nodes. 

We recently reported our first solution to the Linda implementation problem [CG85]. We described a 

Linda kernel that runs on AT~.T Bell Labs' S/Net, a bus-connected multl-computer with no shared 

memory. We described tests that show Linda performing quite efficiently -- roughly on a level, in terms 

of network delay, with efficient message-passing kernels for bus-based networks, llke the V kernel [CZ85]. 

Here we report on new work: (I) We have implemented new Linda kernels for the Intel iPSC hypercube 

and for a multiprogrammed VAX - the latter includes a model for Linda implementations on shared- 

memory multiprocessors. (2) We have implemented a new C-Linda preprocessor that is designed to speed 

the runtime performance of all Linda kernels by analyzing communication patterns at compile time. 

These projects are all active and incomplete; our results and experience are preliminary. But substantial 

progress has been made in each case. 

In  the  fol lowing we br ief ly  describe Linda,  a nd  then  out l ine  the  new projects .  

L i n d a  

L i n d a  centers  on  an  id iosyncra t ic  memory  model.  Where  a conven t iona l  m e m o r y ' s  s torage u n i t  is the 

physica l  by te  (or someth ing  comparable) ,  L inda  m e m o r y ' s  s torage u n i t  is the logical tuple ,  where a tuple  

is Just  an  ordered set  of values.  Where  the e lements  of a conven t iona l  m e m o r y  are accessed by address, 
e lements  in  L i n d a  m e m o r y  haye no addresses; they are accessed by  logical name, where a tup le ' s  name is 
any  select ion of i ts  values.  Where  a conven t iona l  memory  is accessed v ia  two opera t ions ,  read and  write,  
a L l n d a  m e m o r y  is acceded  v ia  three -- read, add and  remove.  

I t  Is a consequence of the  last  character is t ic  t h a t  tuples  in a L i nda  m e m o r y  c a n ' t  be a l tered in 8itu: to 
be changed,  they m u s t  be physical ly  removed,  upda t e d  a nd  then  re- inser ted.  Th i s  in  t u r n  makes i t  

possible for m a n y  processes to  share  accem to a L i nda  m e m o r y  s imul t aneous ly :  us ing  L i n d a  we can bui ld  

d i s t r i bu t ed  d a t a  s t ruc tu res  t ha t ,  unl ike  conven t iona l  ones, m a y  be m a n i p u l a t e d  by  m a n y  procemes in  

paral le l .  F u r t h e r m o r e ,  as a consequence of the first  character is t ic  -- a L i nda  m e m o r y  s t o r e s  tuples,  no t  
bytes  -- L i n d a ' s  shared  m e m o r y  is coarse-grained enough to  be suppor ted  efficiently without shared- 

m e m o r y  ha rdware .  B u t  L i n d a  Is also a good ma tch  to sha red -memory  mul t i - compute r s ,  like the BBN 

But te r f ly ,  IBM RP3 ,  Encore  M u l t i m a x  and  Sequent  Balance  m a c h i n e .  Its s eman t i c s  are a high-level 
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version of the low-level semantics implicit in such architectures (in the sense that block-structured 

languages are hlgh-level versions of stack machines). 

Linda's shared memory is referred to as t~ple 8pace or TS. Messages in Linda are never exchanged 

between two processes directly; instead., a process with data to communicate adds it to tuple space, and a 

process that needs to receive data seeks it, likewise, in tuple space. There are three operations defined 

over TS -- ou~0, in() and read(), out(t) causes tuple t to be added to TS; the executing process 

continues immediately. Thus out(°'foobar" , 5) generates tuple ("foobar"0 5) and adds it to TS. 

in (8) causes some tuple t that matches template 8 to be withdrawn from TS; the values of the actuais in 

t are assigned to the formals in s, and the executing process continues. If no matching t is available when 

in (8) executes, the executing process suspends until one is, then proceeds as before. If many matching t's 

are available, one is chosen arbitrarily. Thus :tn("foobar", formal i) may possibly remove tuple 

("foobar"° 5) from TS, assigning 5 to formal parameter i. read,a) is the same as In(s), with 

actuals assigned to formals as before, except that the matched tuple remains in TS. 

Any tuple element but the first may be a formal rather than a value, and any template element may 

be a value rather than a formal. ~¢'hen a template and tuple match, each value in the template is 

matched by a formal of the same type, or by an identical value, in the tuple; the same holds wlth respect 

to each value in the tuple. This rule resembles a symmetrical version of the select operation in relational 

databases .  

We  have a rgued  at  l ength  t h a t  these c o m m u n i c a t i o n  pr imi t ives  are highly  flexible and  powerful,  and  

we have discussed ma t r ix  mul t ip l i ca t ion ,  LU decomposi t ion  a nd  VLSI s i m u l a t i o n  exper iments  on the 

S / N e t  t h a t  make  use of them [GelS5, CG88,  CGL88]. 

T h e  C u b e  e x p e r i m e n t .  

The  In te l  iPSC in  the C o m p u t e r  Science D e p a r t m e n t  a t  Yale  consists  of 128 Intel-80288-based 

p r o e e ~ o r  nodes  l inked by dedicated  E t h e r n e t  channels  in to  a b i n a r y  hypereube .  The  Cube  kernel  
exper iment  has been useful  and  in teres t ing ,  b u t  the resu l t ing  sys tem is more  of an  emula t ion ,  and  a basis 

for code to be por ted  to o ther  hypereube  machines  (an  N C U B E  machine  will  soon be Installed),  t h a n  an 

end in  itself. Th i s  is so for two reasons.  F i r s t ,  the i P S C  lacks c o m m u n i c a t i o n  co-processors or f ron t  ends; 

each m e ~ a g e  packe t  i n t e r r u p t s  each host  along i ts  route.  We  s imula t e  an  a l t e rna t i ve  by  assigning half  of 

the cinbe's nodes  to ac t  as hosts and  the other  half  to act  as dedicated c o m m u n i c a t i o n  proc__~o__rs. (New, 

soon- to -be-ava i lab le  hypercubes  have real f ront-ends . )  Reason  two: the  low-level send-message a n d  
receive-message p r imi t ives  provided by Intel  are pa infu l ly  slow. Our  L i nda  sys tem relies on these 
pr imi t ives ,  and  so i t  is pa infu l ly  slow as well. Replac ing  the slow unde r ly ing  p r imi t ives  by  fast  ones 

should,  obvious ly ,  make  it  faster.  

Ou r  p resen t  Cube  kernel  nonetheless  makes a good basis for fu tu re  Cube  work.  The  sys tem centers on 

a d i s t r i bu t ed  hash  table .  Execu t ing  o u t ( t )  or i n ( e )  causes tup le  t or t emp la t e  a to  be hashed (current ly  
on  the  va lue  of the  f irst  e lement)  to some node In the  c o m m u n i c a t i o n  ne twork .  A n  a r r iv ing  tuple  is 

checked aga ins t  wa i t i ng  templa tes ;  if there  is a match ,  the tup le  is sh ipped off to  the  node where the 

template was generated; otherwise it is kept for future use. Arriving templates are checked against stored 

tuples and buffered in case of no match in exactly the same way. 

We've experimented with Cube Linda using a simple matrix multiplication program similar to what is 

described in [CG85]. Rows of the first multiplicand and column~ of the second are stored in triples; a 

group of identical worker processes repeatedly In's a =next task = tuple, performs the computation 

requested, and loops until there are no more tasks. Figure I shows results for a banded version that 

computes several rows of the product per task: ten workers plus one control process f~n1~h approxiately 

five times faster than a single node running a sequential C program. 

Is it possible to build a Cube Linda as efficient as S/Net Linda? We still can't say. Porting the Cube 

kernel to the lower-overhead NCUBE will give us a better idea of its potential; faster communication will 



u l t ima te ly  come to the Inte l  mach ine  as well. 

T h e  V A X  k e r n e l  

The  V A X  i m p l e m e n t a t i o n  assumes a two-level model.  A t  one level, it  assumes mul t ip le  processors 

shar ing  a c o m m o n  memory .  There  is l i t t le  real difference between this  and  a uni-processor  r u n n i n g  
mul t ip le  user processes; i t  Just  requires more care in ge t t ing  the synchron iza t ion  r ight .  Modern  opera t ing  

sys tems provide  synchron iza t ion  services, b u t  they are no t  In tended for imp lemen t ing  systems like Linda,  

which may  require synchron iza t ion  every couple of hundred  ins t ruc t ions .  The  unde r ly ing  hardware  also 
provides  synchron iza t ion  opera t ions ;  there may be two orders of m a g n i t u d e  faster, b u t  are difficult  to 

coord ina te  wi th  the OS-level opera t ions  -- when using a shared machine ,  a ha rdware  spin lock wastes 

resources perhaps  useful  to  o ther  processes. We avoid this  p rob lem by using ha rdware  locking 

msch~ntsms  for the  c o m m o n  cases, and  hav ing  the code fall back to OS mechan i sms  only  when  necessary. 

F o r  example,  access to  ind iv idua l  tuples  is synchronized using ha rdware  mechan i sms  and  spin locks. I t  is 

a ssumed  t h a t  no  process will  hold on to a tuple  lock for very long. On the o the r  hand ,  when  tuple  space 

m u s t  unde rgo  wholesale reorganiza t ion ,  an  OS-level lock is t aken  out .  

A t  the  second level, a n u m b e r  of these mult i -processors  are assumed to be connected by a relat ively 

slow, somewha t  unre l iab le  l ink,  such as an  E the rne t .  This  two level model corresponds to  an  increasingly 

c o m m o n  c o m p u t i n g  e n v i r o n m e n t :  A LAN with  works ta t ions  and  "compute  servers" .  The  VAX 

i m p l e m e n t a t i o n  is designed to allow shar ing  of bo th  the Mcompute server m and  the LAN - and,  for t h a t  
ma t t e r ,  the  *works ta t ions  m - wi th  other  user processes, r u n n i n g  L tnda  or a n y t h i n g  else. The  hardes t  

p rob lem we 've  had  to deal wi th  is the unre l iab i l i ty  of E t h e r n e t  broadcasts .  The  original  S / N e t  

i m p l e m e n t a t i o n  used w h a t  we label  a posit ive broadcas t  scheme: The  o u t  ()  opera t ion  sends the da t a  In 

t h e  tup le  to  all nodes. The  semant ics  of Linda,  in which an o u t , ( )  completes  immedia te ly ,  make  i t  very 

diff icul t  to deal wi th  loss of one of these o u t ( )  packets.  In the VAX i mp l e me n t a t i on ,  we use a negat ive  

b roadcas t  scheme: The  d a t a  f rom o u t 0 ' s  is stored locally, and  ± n ( ) ' s  (or r e a d ( ) ' s )  b roadcas t  a request  

to all nodes. Since L inda  semant ics  specify t h a t  :Ln( ) ' s  and  r e a d ( ) ' s  wa l t  for a m a t c h i n g  tuple,  loss of 

such a request  can be hand led  by hav ing  the kernel ,  which remains  in control  un t i l  i t  is able to satisfy the 

i n ( )  or  r e a d ( ) ,  t ry  again  later .  

Each  of the two levels of the i m p l e m e n t a t i o n  is of in teres t  in its own right .  The  shared memory  level 

provides  a model  for i m p l e m e n t a t i o n s  on the m a n y  shared m e m o r y  machines  t h a t  ha rdware  architects  

seem to  be des igning these days. The  LAN level will allow us to exper iment  wi th  the use of L lnda  for 

sys tems  programs ,  such a mailers .  

T h e  n e w  p r e - p r o c e s s o r .  

L i n d a  derives much  of its power from the dynamic ,  flexible character  of its t up l e - t empla t e  ma tch ing  

a lgor i thm,  ou t ,  m a y  bui ld  a tup le  ou t  of any  c o m b i n a t i o n  of values  and  typed  formals ,  and  i n  or r e a d  
may  select one based on any  combina t i on  of values  and  typed formals.  Such f lexibi l i ty is expensive at  
r u n t l m e ,  and  we 'd  like to make  the kernel  faster w i t hou t  weaken ing  the language.  

The re  are several  ways  to do so.  One  possibi l i ty  is to suppor t  t up l e - t empla t e  ma tch ing  in  hardware .  

A L i n d a  chip set  is now in  design (as a col labora t ive  project ,  m a i n l y  invo lv ing  Venka te sh  K r i s h n a s w a m y  

of our  group  a n d  Sid AhuJa  of Bell Labs).  A n  allied effort  involves  compi le - t ime analysis .  A compiler  
t h a t  examines  all L i n d a  opera t ions  in  a source p rog ram can establish several  th ings  t h a t  are of use a t  

r u n t i m e .  W h e n  i t  can be es tabl ished t h a t  a given I n  or r e a d  can only  be satisfied by  tuples  con t r ibu ted  

by  a g iven set  of  out,s ,  v~e can res t r ic t  r u n t l m e  m a t c h i n g  to the eligible tuples  only.  I t  can somet imes  be 

fu r the r  es tabl ished t h a t  cer ta in  fields in  a t empla t e  will alway8 ma t c h  cor responding  fields in  a tuple;  a t  

ma t ch - t ime ,  we can  ignore these fields al together .  

The  cu r r en t  L i n d a  pre-processor works  for C-based L i nda  (i.e., C wi th  L i n d a  p r imi t ives  added),  and  is 

based on  the  f i rs t  pass of the por tab le  C compiler.  Analys i s  works  in  two stages -- first  ind iv idua l  

modules  are analyzed,  then  the  per -module  resul ts  are unif ied  and  l inked -- so t h a t  changes to  one module  
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d o n ' t  require  re -compi la t ion  of the whole program.  

In coming  weeks (as of early Apri l )  we will In tegra te  the pre-processor and  the S / N e t  kernel,  and  see 

w h a t  we get. Note  t h a t  the pre-proeessor has a special role to p lay  in con junc t ion  wi th  the Cube kernel:  

when we can establ ish t h a t  tuples  of a given type are of Interest  only to one process, we can customize our  

hash func t i on  In such a way t h a t  tuples of t ha t  type  are hashed direct ly to the node on which the process 
t h a t  needs t hem Is loaded. 
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