
!

L i n d a in A d o l e s c e n c e

R o b e r t B j o r n s o n , N i c h o l a s C a x r i e r o , D a v i d G e l e r n t e r a n d J e r r y L e i c h t e r

Yale University
Department o f Computer Science

New Haven, Connecticut

I n t r o d u c t i o n

Linda Is a programming environment for building parallel applications and distributed systems on

multi-computers [Gel85, CGL86]. It supports a high-level view of explicitly parallel programming, and its

goal is to simplify the parallel programming task to the point where it Is conceptually no harder than

conventional, sequential programming.

Because of its high-level model, and the logically-shared tuple memory through which Linda processes

communicate, implementing the language has long been regarded as a tough proposition -- particularly on

multi-processors and local networks that provide no physically-shared memory among compute nodes.

We recently reported our first solution to the Linda implementation problem [CG85]. We described a

Linda kernel that runs on AT~.T Bell Labs' S/Net, a bus-connected multl-computer with no shared

memory. We described tests that show Linda performing quite efficiently -- roughly on a level, in terms

of network delay, with efficient message-passing kernels for bus-based networks, llke the V kernel [CZ85].

Here we report on new work: (I) We have implemented new Linda kernels for the Intel iPSC hypercube

and for a multiprogrammed VAX - the latter includes a model for Linda implementations on shared-

memory multiprocessors. (2) We have implemented a new C-Linda preprocessor that is designed to speed

the runtime performance of all Linda kernels by analyzing communication patterns at compile time.

These projects are all active and incomplete; our results and experience are preliminary. But substantial

progress has been made in each case.

In the fol lowing we br ief ly describe Linda, a nd then out l ine the new projects .

L i n d a

L i n d a centers on an id iosyncra t ic memory model. Where a conven t iona l m e m o r y ' s s torage u n i t is the

physica l by te (or someth ing comparable) , L inda m e m o r y ' s s torage u n i t is the logical tuple , where a tuple

is Just an ordered set of values. Where the e lements of a conven t iona l m e m o r y are accessed by address,
e lements in L i n d a m e m o r y haye no addresses; they are accessed by logical name, where a tup le ' s name is
any select ion of i ts values. Where a conven t iona l memory is accessed v ia two opera t ions , read and write,
a L l n d a m e m o r y is acceded v ia three -- read, add and remove.

I t Is a consequence of the last character is t ic t h a t tuples in a L i nda m e m o r y c a n ' t be a l tered in 8itu: to
be changed, they m u s t be physical ly removed, upda t e d a nd then re- inser ted. Th i s in t u r n makes i t

possible for m a n y processes to share accem to a L i nda m e m o r y s imul t aneous ly : us ing L i n d a we can bui ld

d i s t r i bu t ed d a t a s t ruc tu res t ha t , unl ike conven t iona l ones, m a y be m a n i p u l a t e d by m a n y procemes in

paral le l . F u r t h e r m o r e , as a consequence of the first character is t ic -- a L i nda m e m o r y s t o r e s tuples, no t
bytes -- L i n d a ' s shared m e m o r y is coarse-grained enough to be suppor ted efficiently without shared-

m e m o r y ha rdware . B u t L i n d a Is also a good ma tch to sha red -memory mul t i - compute r s , like the BBN

But te r f ly , IBM RP3 , Encore M u l t i m a x and Sequent Balance m a c h i n e . Its s eman t i c s are a high-level

http://crossmark.crossref.org/dialog/?doi=10.1145%2F503956.503977&domain=pdf&date_stamp=1986-09-08

version of the low-level semantics implicit in such architectures (in the sense that block-structured

languages are hlgh-level versions of stack machines).

Linda's shared memory is referred to as t~ple 8pace or TS. Messages in Linda are never exchanged

between two processes directly; instead., a process with data to communicate adds it to tuple space, and a

process that needs to receive data seeks it, likewise, in tuple space. There are three operations defined

over TS -- ou~0, in() and read(), out(t) causes tuple t to be added to TS; the executing process

continues immediately. Thus out(°'foobar" , 5) generates tuple ("foobar"0 5) and adds it to TS.

in (8) causes some tuple t that matches template 8 to be withdrawn from TS; the values of the actuais in

t are assigned to the formals in s, and the executing process continues. If no matching t is available when

in (8) executes, the executing process suspends until one is, then proceeds as before. If many matching t's

are available, one is chosen arbitrarily. Thus :tn("foobar", formal i) may possibly remove tuple

("foobar"° 5) from TS, assigning 5 to formal parameter i. read,a) is the same as In(s), with

actuals assigned to formals as before, except that the matched tuple remains in TS.

Any tuple element but the first may be a formal rather than a value, and any template element may

be a value rather than a formal. ~¢'hen a template and tuple match, each value in the template is

matched by a formal of the same type, or by an identical value, in the tuple; the same holds wlth respect

to each value in the tuple. This rule resembles a symmetrical version of the select operation in relational

databases .

We have a rgued at l ength t h a t these c o m m u n i c a t i o n pr imi t ives are highly flexible and powerful, and

we have discussed ma t r ix mul t ip l i ca t ion , LU decomposi t ion a nd VLSI s i m u l a t i o n exper iments on the

S / N e t t h a t make use of them [GelS5, CG88, CGL88].

T h e C u b e e x p e r i m e n t .

The In te l iPSC in the C o m p u t e r Science D e p a r t m e n t a t Yale consists of 128 Intel-80288-based

p r o e e ~ o r nodes l inked by dedicated E t h e r n e t channels in to a b i n a r y hypereube . The Cube kernel
exper iment has been useful and in teres t ing , b u t the resu l t ing sys tem is more of an emula t ion , and a basis

for code to be por ted to o ther hypereube machines (an N C U B E machine will soon be Installed), t h a n an

end in itself. Th i s is so for two reasons. F i r s t , the i P S C lacks c o m m u n i c a t i o n co-processors or f ron t ends;

each m e ~ a g e packe t i n t e r r u p t s each host along i ts route. We s imula t e an a l t e rna t i ve by assigning half of

the cinbe's nodes to ac t as hosts and the other half to act as dedicated c o m m u n i c a t i o n proc__~o__rs. (New,

soon- to -be-ava i lab le hypercubes have real f ront-ends .) Reason two: the low-level send-message a n d
receive-message p r imi t ives provided by Intel are pa infu l ly slow. Our L i nda sys tem relies on these
pr imi t ives , and so i t is pa infu l ly slow as well. Replac ing the slow unde r ly ing p r imi t ives by fast ones

should, obvious ly , make it faster.

Ou r p resen t Cube kernel nonetheless makes a good basis for fu tu re Cube work. The sys tem centers on

a d i s t r i bu t ed hash table . Execu t ing o u t (t) or i n (e) causes tup le t or t emp la t e a to be hashed (current ly
on the va lue of the f irst e lement) to some node In the c o m m u n i c a t i o n ne twork . A n a r r iv ing tuple is

checked aga ins t wa i t i ng templa tes ; if there is a match , the tup le is sh ipped off to the node where the

template was generated; otherwise it is kept for future use. Arriving templates are checked against stored

tuples and buffered in case of no match in exactly the same way.

We've experimented with Cube Linda using a simple matrix multiplication program similar to what is

described in [CG85]. Rows of the first multiplicand and column~ of the second are stored in triples; a

group of identical worker processes repeatedly In's a =next task = tuple, performs the computation

requested, and loops until there are no more tasks. Figure I shows results for a banded version that

computes several rows of the product per task: ten workers plus one control process f~n1~h approxiately

five times faster than a single node running a sequential C program.

Is it possible to build a Cube Linda as efficient as S/Net Linda? We still can't say. Porting the Cube

kernel to the lower-overhead NCUBE will give us a better idea of its potential; faster communication will

u l t ima te ly come to the Inte l mach ine as well.

T h e V A X k e r n e l

The V A X i m p l e m e n t a t i o n assumes a two-level model. A t one level, it assumes mul t ip le processors

shar ing a c o m m o n memory . There is l i t t le real difference between this and a uni-processor r u n n i n g
mul t ip le user processes; i t Just requires more care in ge t t ing the synchron iza t ion r ight . Modern opera t ing

sys tems provide synchron iza t ion services, b u t they are no t In tended for imp lemen t ing systems like Linda,

which may require synchron iza t ion every couple of hundred ins t ruc t ions . The unde r ly ing hardware also
provides synchron iza t ion opera t ions ; there may be two orders of m a g n i t u d e faster, b u t are difficult to

coord ina te wi th the OS-level opera t ions -- when using a shared machine , a ha rdware spin lock wastes

resources perhaps useful to o ther processes. We avoid this p rob lem by using ha rdware locking

msch~ntsms for the c o m m o n cases, and hav ing the code fall back to OS mechan i sms only when necessary.

F o r example, access to ind iv idua l tuples is synchronized using ha rdware mechan i sms and spin locks. I t is

a ssumed t h a t no process will hold on to a tuple lock for very long. On the o the r hand , when tuple space

m u s t unde rgo wholesale reorganiza t ion , an OS-level lock is t aken out .

A t the second level, a n u m b e r of these mult i -processors are assumed to be connected by a relat ively

slow, somewha t unre l iab le l ink, such as an E the rne t . This two level model corresponds to an increasingly

c o m m o n c o m p u t i n g e n v i r o n m e n t : A LAN with works ta t ions and "compute servers" . The VAX

i m p l e m e n t a t i o n is designed to allow shar ing of bo th the Mcompute server m and the LAN - and, for t h a t
ma t t e r , the *works ta t ions m - wi th other user processes, r u n n i n g L tnda or a n y t h i n g else. The hardes t

p rob lem we 've had to deal wi th is the unre l iab i l i ty of E t h e r n e t broadcasts . The original S / N e t

i m p l e m e n t a t i o n used w h a t we label a posit ive broadcas t scheme: The o u t () opera t ion sends the da t a In

t h e tup le to all nodes. The semant ics of Linda, in which an o u t , () completes immedia te ly , make i t very

diff icul t to deal wi th loss of one of these o u t () packets. In the VAX i mp l e me n t a t i on , we use a negat ive

b roadcas t scheme: The d a t a f rom o u t 0 ' s is stored locally, and ± n () ' s (or r e a d () ' s) b roadcas t a request

to all nodes. Since L inda semant ics specify t h a t :Ln() ' s and r e a d () ' s wa l t for a m a t c h i n g tuple, loss of

such a request can be hand led by hav ing the kernel , which remains in control un t i l i t is able to satisfy the

i n () or r e a d () , t ry again later .

Each of the two levels of the i m p l e m e n t a t i o n is of in teres t in its own right . The shared memory level

provides a model for i m p l e m e n t a t i o n s on the m a n y shared m e m o r y machines t h a t ha rdware architects

seem to be des igning these days. The LAN level will allow us to exper iment wi th the use of L lnda for

sys tems programs , such a mailers .

T h e n e w p r e - p r o c e s s o r .

L i n d a derives much of its power from the dynamic , flexible character of its t up l e - t empla t e ma tch ing

a lgor i thm, ou t , m a y bui ld a tup le ou t of any c o m b i n a t i o n of values and typed formals , and i n or r e a d
may select one based on any combina t i on of values and typed formals. Such f lexibi l i ty is expensive at
r u n t l m e , and we 'd like to make the kernel faster w i t hou t weaken ing the language.

The re are several ways to do so. One possibi l i ty is to suppor t t up l e - t empla t e ma tch ing in hardware .

A L i n d a chip set is now in design (as a col labora t ive project , m a i n l y invo lv ing Venka te sh K r i s h n a s w a m y

of our group a n d Sid AhuJa of Bell Labs). A n allied effort involves compi le - t ime analysis . A compiler
t h a t examines all L i n d a opera t ions in a source p rog ram can establish several th ings t h a t are of use a t

r u n t i m e . W h e n i t can be es tabl ished t h a t a given I n or r e a d can only be satisfied by tuples con t r ibu ted

by a g iven set of out,s , v~e can res t r ic t r u n t l m e m a t c h i n g to the eligible tuples only. I t can somet imes be

fu r the r es tabl ished t h a t cer ta in fields in a t empla t e will alway8 ma t c h cor responding fields in a tuple; a t

ma t ch - t ime , we can ignore these fields al together .

The cu r r en t L i n d a pre-processor works for C-based L i nda (i.e., C wi th L i n d a p r imi t ives added), and is

based on the f i rs t pass of the por tab le C compiler. Analys i s works in two stages -- first ind iv idua l

modules are analyzed, then the per -module resul ts are unif ied and l inked -- so t h a t changes to one module

- '4

d o n ' t require re -compi la t ion of the whole program.

In coming weeks (as of early Apri l) we will In tegra te the pre-processor and the S / N e t kernel, and see

w h a t we get. Note t h a t the pre-proeessor has a special role to p lay in con junc t ion wi th the Cube kernel:

when we can establ ish t h a t tuples of a given type are of Interest only to one process, we can customize our

hash func t i on In such a way t h a t tuples of t ha t type are hashed direct ly to the node on which the process
t h a t needs t hem Is loaded.

R e f e r e n c e s .

600000

500000

400000

300000

200000

100000

[CGSS]

[CGLS0]

[czss]

[G e l 8 5]

0

N. Car r le ro and D. Gelernter , "The S / N e t ' s L lnda Kernel , = in Proc. AUM. Syrup.
Operating Syetem Pt'inciplea, (Dee. lg85) and ACM Trans. Comp. Sya. (May 1986) (to
a p p e a r) .

N. Carr lero , D. Gelern te r and J. Lelchter, "Dis t r ibu ted da t a s t ruc tures in Llnda ," Proc.
AOM Syrnp. Principles of Pt'og. Languages, Jan. 1086.

D.R. Cher l ton and W. Zwaenepoel, "Dis t r ibu ted process groups in the V kernel ," ACM
Trans. Cornp. ~ys. 3,2(1985):77-107.

D. Gelern ter , =Genera t ive c o m m u n i c a t i o n In Llnda ," ACM Trans. Frog.
1 (1 0 8 5) : 8 ~ 1 1 2 .

CUBE-LI.NDR mo~r1× m u l £ 1 p l l o o t l o n - - Lime vs worKers
m a t r i x ~ r a n s a o ~ l o n s dono In bands

h o r i z o n t a l l l n o s a r o u n l p r o o e s s o r ~ l m o s

Lang. Sya.

0

' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' '

200 × 200

150 × 150

100 x 100

r

\
h

%
%.

, , , , I , I , , I

5 10

- 0

.. 13 . 0

t , , , I , , , , I , I ,

1 5 2 0

Number o~ WorKers

