Check for
Updates

Linda in Adolescence

Robert Bjornson, Nicholas Carriero, David Gelernter and Jerry Leichter

Yale University
Department of Computer Science
New Haven, Connecticut

Introduction

Linda i1s a programming environment for building parallel applications and distributed systems on
multi-computers [Gel85, CGL886]. It supports a high-level view of explicitly parallel programming, and its

goal is to simplify the parallel programming task to the point where it 1s conceptually no harder than
conventional, sequential programming.

Because of 1ts high-level model, and the logically-shared tuple memory through which Linda processes
communicate, implementing the language has long been regarded as a tough proposition -- particularly on
multi-processors and local networks that provide no physically-shared memory among compute nodes.

We recently reported our first solution to the Linda implementation problem [CG85]. We described a
Linda kernel that runs on AT&T Bell Labs’ S/Net, a bus-connected multi-computer with no shared
memory. We described tests that show Linda performing quite efficlently — roughly on a level, in terms
of network delay, with efficlent message-passing kernels for bus-based networks, like the V kernel [CZ85].
Here we report on new work: (1) We have implemented new Linda kernels for the Intel iPSC hypercube
and for a multiprogrammed VAX - the latter Includes a model for Linda implementations on shared-
memory multiprocessors. (2) We have implemented a new C-Linda preprocessor that is designed to speed
the runtime performance of all Linda kernels by analyzing communication patterns at complle time.
These projects are all active and incomplete; our results and experience are preliminary. But substantial
progress has been made In each case.

In the following we briefly describe Linda, and then outline the new projects.

" Linda

Linda centers on an idiosyncratic memory model. Where a conventional memory’s storage unit is the
physical byte (or something comparable), Linda memory’s storage unit is the logical tuple, where a tuple
is just an ordered set of values. Where the elements of a conventional memory are accessed by address,
elements In Linda memory haye no addresses; they are accessed by logical name, where a tuple’s name is
any selection of its values. Where a conventional memory is accessed via two operations, read and write,
a Linda memory is accessed via three — read, add and remove.

It 18 a consequence of the last characteristic that tuples in a Linda memory can't be altered sn sttu: to
be changed, they must be physically removed, updated and then re-inserted. This in turn makes it
possible for many processes to share access to a Linda memory simultaneously: using Linda we can build
distributed data structures that, unlike conventional ones, may be manipulated by many processes in
parallel. Furthermore, as a consequence of the first characteristic — a Linda memory stores tuples, not
bytes — Linda’s shared memory is coarse-grained enough to be supported efficlently without shared-
memory hardware. But Linda is also a good match to shared-memory multl-computers, like the BBN
Butterfly, IBM RP3, Encore Multimax and Sequent Balance machines. Its semantics are a high-level

http://crossmark.crossref.org/dialog/?doi=10.1145%2F503956.503977&domain=pdf&date_stamp=1986-09-08

version of the low-level semantics implicit in such architectures (in the sense that block-structured
languages are high-level versions of stack machines).

Linda's shared memory Is referred to as tuple space or TS. Messages in Linda are never exchanged
between two processes directly; insteac, a process with data to communicate adds it to tuple space, and a
process that needs to recelve data seeks 1It, likewise, in tuple space. There are three operations defined
over TS -~ out(), in() and read(). out(t) causes tuple ¢ to be added to TS; the executing process
continues Immediately. Thus out("foobar", 5) generates tuple ("foobar", b5) and adds it to TS.
in(s) causes some tuple ¢ that matches template 8 to be withdrawn from TS; the values of the actuals in
t are assigned to the formals in s, and the executing process continues. If no matching ¢ is avallable when
in(s) executes, the executing process suspends until one ls, then proceeds as before. If many matching ¢'s
are avallable, one is chosen arbitrarily. Thus 1n("foobar", formal 1) may possibly remove tuple
(*foobar", 5) from TS, assigning 5 to formal parameter 1. Tread(s) is the same as 1n(s), with
actuals assigned to formals as before, except that the matched tuple remains in TS.

Any tuple element but the first may be a formal rather than a value, and any template element may
be a value rather than a formal. When a template and tuple match, each value in the template is
matched by a formal of the same type, or by an ildentical value, in the tuple; the same holds with respect

to each value in the tuple. This rule resembles a symmetrical version of the select operation in relational
databases.

We have argued at length that these communication primitives are highly flexible and powerful, and
we have discussed matrix multiplication, LU decomposition and VLSI simulation experiments on the
S/Net that make use of them [Gel85, CG868, CGL88].

The Cube experiment.

The Intel IPSC in the Computer Science Department at Yale consists of 128 Intel-80286-based
processor nodes linked by dedicated Ethernet channels into a binary hypercube. The Cube kernel
experiment has been useful and interesting, but the resulting system is more of an emulation, and a basls
for code to be ported to other hypercube machines (an NCUBE machine will soon be Installed), than an
end In itself. This is so for two reasons. First, the i{PSC lacks communication co-processors or front ends;
each message packet Interrupts each host along its route. We simulate an alternative by assigning half of
the cube’s nodes to act as hosts and the other half to act as dedicated communication processors. (New,
soon-to-be-available hypercubes have real front-ends.) Reason two: the low-level send-message and
receive-message primitives provided by Intel are painfully slow. Our Linda system relles on these
primitives, and so it is painfully slow as well. Replacing the slow underlying primitives by fast ones
should, obviously, make it faster.

Our present Cube kernel nonetheless makes a good basis for future Cube work. The system centers on
a distributed hash table. Executing out(t) or 1n(s) causes tuple ¢ or template 8 to be hashed (currently
on the value of the first element) to some node in the communication network. An arriving tuple is
checked agalnst walting templates; if there i3 a match, the tuple is shipped off to the node where the

template was generated; otherwise it is kept for future use. Arrlving templates are checked against stored
tuples and buffered in case of no match In exactly the same way.

We've experimented with Cube Linda using a simple matrix multiplication program similar to what is
described in [CG86]. Rows of the first multiplicand and columns of the second are stored in tuples; a
group of identical worker processes repeatedly in’s a “next task" tuple, performs the computation
requested, and loops until there are no more tasks. Figure 1 shows results for a banded version that
computes several rows of the product per task: ten workers plus one control process finish approxiately
five times faster than a single node running a sequential C program.

Is it possible to build a Cube Linda as efficlient as S/Net Linda? We stlll can’t say. Porting the Cube
kernel to the lower-overhead NCUBE will give us a better idea of its potential; faster communication will

ultimately come to the Intel machine as well.

The VAX kernel

The VAX implementation assumes a two-level model. At one level, It assumes multiple processors
sharlng a common memory. There is little real difference between this and a uni-processor running
multiple user processes; it just requires more care in getting the synchronization right. Modern operating
systems provide synchronization services, but they are not intended for implementing systems like Linda,
which may require synchronization every couple of hundred instructions. The underlying hardware also
provides synchronization operations; there may be two orders of magnitude faster, but are difficult to
coordinate with the OS-level operations -- when using a shared machine, a hardware spin lock wastes
resources perhaps useful to other processes. We avoid this problem by using hardware locking
mechanisms for the common cases, and having the code fall back to OS mechanisms only when necessary.
For example, access to individual tuples iIs synchronized using hardware mechanisms and spin locks. It is
assumed that no process will hold on to a tuple lock for very long. On the other hand, when tuple space
must undergo wholesale reorganization, an OS-level lock is taken out.

At the second level, a number of these multi-processors are assumed to be connected by a relatively
slow, somewhat unreliable link, such as an Ethernet. This two level model corresponds to an increasingly
common computing environment: A LAN with workstations and "“compute servers®. The VAX
implementation i8 designed to allow sharing of both the “compute server" and the LAN - and, for that
matter, the “workstations® - with other user processes, running Linda or anything else. The hardest
problem we've had to deal with is the unreliability of Ethernet broadcasts. The original S/Net
implementation used what we label a positive broadcast scheme: The out() operation sends the data in
.the tuple to all nodes. The semantics of Linda, in which an out() completes immediately, make it very
difficult to deal with loss of one of these out() packets. In the VAX implementation, we use a negative
broadcast scheme: The data from out()’s is stored locally, and in()’s (or read () 's) broadcast a request
to all nodes. Since Linda semantics specify that 1n()'s and read()'s walt for a matching tuple, loss of
such a request can be handled by having the kernel, which remains in control until it is able to satisfy the
in() or read(), try agaln later.

Each of the two levels of the implementation s of interest in its own right. The shared memory level
provides a model for implementations on the many shared memory machines that hardware architects

seem to be designing these days. The LAN level will allow us to experiment with the use of Linda for
systems programs, such a mallers.

The new pre-processor.

Linda derives much of its power from the dynamic, flexible character of its tuple-template matching
algorithm. out may build a tuple out of any combination of values and typed formals, and in or read
may select one based on any combination of values and typed formals. Such flexibility Is expensive at
runtime, and we’d like to make the kernel faster without weakening the language.

There are several ways to do so. One possibility is to support tuple-template matching in hardware.
A Linda chip set is now in design (as a collaborative project, mainly involving Venkatesh Krishnaswamy
of our group and Sid Ahuja of Bell Labs). An allied effort involves compile-time analysis. A compiler
that examines all Linda operations in a source program can establish several things that are of use at
runtime. When it can be established that a gliven 1n or read can only be satisfled by tuples contributed
by a given set of outs, we can restrict runtime matching to the eligible tuples only. It ¢an sometimes be
further established that certain fields in a template will always match corresponding flelds in a tuple; at
match-time, we can ignore these flelds altogether.

The current Linda pre-processor works for C-based Linda (i.e., C with Linda primitives added), and is
based on the first pass of the portable C compiler. Analysis works in two stages — first individual
modules are analyzed, then the per-module results are unified and linked — so that changes to one module

LIS)

1

don't require re-compilation of the whole program.

In coming weeks (as of early April) we will integrate the pre-processor and the S/Net kernel, and see
what we get. Note that the pre-processor has a special role to play in conjunction with the Cube kernel:
when we can establish that tuples of a given type are of interest only to one process, we can customize our

hash function in such a way that tuples of that type are hashed directly to the node on which the process
that needs them is loaded.

References.

[CGsb) N. Carriero and D. Gelernter, “The S/Net’s Linda Kernel,* in Proc. ACM. Symp.
Operating System Frinciples, (Dec. 1985) and ACM Trans. Comp. Sys. (May 1986) (to
appear).

[CGLSS8] N. Carriero, D. Gelernter and J. Leichter, "Distributed data structures in Linda,* Proc.
ACM Symp. Principles of Prog. Languages, Jan. 1986,

[CZss) D.R. Cheriton and W, Zwaenepoel, "Distributed process groups in the V kernel," ACM
Trans. Comp. Sys. 3,2(1985):77-107.

[Gel8s) D. Gelernter, “Generative communication in Linda,* ACM Trans. Prog. Lang. Sys.

1(1985):80-112.

CUBE-LINDRA matrix multipliocation —.—“tu;\e vs worKers
matrix transaotlons done 1n bands
horlzontal lines are unlproocessor times

600000 T T T T T T T T T I T T T T T T T T T | T T T
T
500000 |
. —— 200 x 200 7
------------ 150 x 150]
400000 ---- 100 x 100
300000 | |
L

200000 - - - ‘{}Sure— l

100000 |- S _
. — _\.s ________ -:Ei"'_‘-_--._..__.; ________________________
N T haal T U -
5 “Sm—e T £ a
- -D ————————————— _D_ _____________ a
0 1 1 1 1 l | B 1 L I : 1]] I 1 [1 1 I 1 1 1
0 5 10 1S 20

Number of WorKers

