
Transparent Recovery in Distributed Systems
Position Paper

David F Bacon

3 April 1990

1 Introduction

We are investigating transparent optimistic solutions to problems in dis-
t r ibuted systems such as recovery [6], replication [3], parallelization [2], and
concurrent competing alternatives [4]. By a transparent solution to such a
problem we mean that a program is transformed automatically, and that
the behavior of the program is equivalent to a possible behavior of the un-
transformed program; in addition, the programmer and the end-user need
not be aware of the transformation.

Transparent solutions to such problems are relatively straightforward if
synchronization is relied upon, but performance of such methods is generally
poor or the implementat ion is too expensive, and they do not scale. Our ap-
proach is to use optimistic methods in which we guess that synchronization
is unnecessary, and verify this asynchronously while the program continues
execution. We track inter-process dependencies and log non-deterministic
events so that we can roll back a computat ion that depends upon an in-
correct guess. Where virtual memory virtualizes the space of a process, we
virtualize time, "paging in" a previous process state when a "time fault" (or
incorrect guess) occurs.

2 Optimist ic Recovery

Our approach to recovery is based upon optimistic recovery [6] enhanced by
optimizations to reduce the amount of logging [5, 1] and extensions which
incorporate the filesystem and other external components into the recovery
process [7, 8].

http://crossmark.crossref.org/dialog/?doi=10.1145%2F504136.504150&domain=pdf&date_stamp=1990-09-03

In optimistic recovery, we guess that processors do not fail; specifically,
for every non-deterministic event (usually a message), we guess that there
will not be a failure before that message has been asynchronously logged.
Each of these guesses is assigned a number, and each process records the
highest-numbered guess of every other process upon which it depends. In
the event of a failure, the failed process is restarted and then synchronized
with its neighbors by rolling back to a mutually consistent state. Thus
recovery is more expensive than in a conservative mechanism, but failure-
free performance is substantially improved because checkpointing, logging,
and much of commit t ing can be done asynchronously and concurrently with
the normal execution of the program.

3 T r a n s a c t i o n s Ar e Insuff ic ient

It is our position that transparent fault-tolerance is required because transaction-
based systems are insufficient for large distributed applications. There are
two primary reasons for this.

Firstly, transactions only recover data, not process state. This was ac-
ceptable in the centralized computing environment in which transactions
were developed, but in a large distributed system, the s ta te of failed compo-
nents must be restored for there to be true fault-tolerance. For instance, in
a distributed application consisting of a collection of display, compute, and
database servers, if one database node crashes and restarts, it must some-
how re-establish its connections with the other components of the system
and agree on what work has been performed, and only then can the dis-
tr ibute application continue execution. Transactions provide no support for
this problem of reconstructing a consistent state for a distributed applica-
tion. As a result, unless all of this synchronization and agreement has been
programmed explicitly (and correctly), the application will fail even though
the database has not.

Because of this, writing truly fault-tolerant distributed application would
require extensive additional coding for state-recreation and inter-process
synchronization. This code will be complex and less likely to be well tested,
since it is not in the main path of the application and the number of failure
modes will be large. As a result, the code which is supposed to provide fault-
tolerance will be the least reliable component of the entire system. On the
other hand, this code will most often simply be omitted since a very large
proportion of software written simply aborts the entire application when an

unexpected error is encountered.
The second problem with transactions is that even when only data re-

covery is required, the programmer must program for failure explicitly by
(1) ensuring that transactions are sufficiently short, and (2) explicitly han-
dling aborts by informing the user, retrying the transaction, and so on. If
either of these issues are not properly addressed, the application will not be
fault-tolerant.

4 Transparent Solutions and Their Limitations

Optimistic recovery solves these problems. As a result, programs can be
much simpler: there is no need to structure the application as a collection
of transactions, and all of the error recovery to recreate a consistent state
is part of the underlying recovery mechanism. Since the error recovery is
part of the system, it is more likely to be correct. Since the program itself
is smaller, it is more likely to be correct as well. It is our belief that by
support ing this kind of transformation in the underlying system, software
will be made easier to write and less prone to failure.

However, just as there are still a few applications for which it is necessary
to write a custom pager, optimistic recovery will not be able to support all
applications.

Optimistic recovery also does not perform atomic updates over multiple
sites; however, since optimistic recovery is not doing concurrency control,
atomicity is not generally an issue. In addition, optimistic recovery does not
provide for a user-initiated abort, since there are no transactions to abort
in the first place.

We are investigating issues in concurrency control and how the problems
of recovery and concurrency control can be solved independently in such a
manner that either or both could be incorporated as needed [9].

Since all of our work is based on tracking causal dependencies, we can
use a uniform set of commit guards to track various predicates. This al-
lows us to abort computat ions resulting from processor failure, concurrency
control conflicts, or other conditions by simply rolling back to a mutually
consistent system state in which none of our conditions are violated. This
will greatly simplify the problem of incorporating multiple transformations.
We are continuing to study the problems of recovery, concurrency control,
replication, and concurrent competing alternatives to work on a system in
which all of these transformations can be applied together as required by

particular applications.

R e f e r e n c e s

[1] BACON, D. F. How to log all filesystem operations (while only writing
a few to disk). Research Note RC, IBM T.J. Watson Research Center,
1990.

[2] BACON, D. F., AND STROM, R. E. Optimistic parallelization of com-
municating sequential processes. Research Note RC, IBM T.J. Watson
Research Center, 1990.

[3] GOLDBERG, A. P., AND JEFFERSON, D. Transparent process cloning: A
tool for load management of distributed systems. In Proceedings of 1987
International Conference on Parallel Processing (August 1987), pp. 728
- 734.

[4] SMITH, J. M. Concurrent Execution of Mutually Exclusive Alternatives.
PhD thesis, Columbia University, 1989.

[5] STROM, R. E., BACON, D. F., AND YEMINI, S. A. Volatile logging in
n-fault-tolerant distributed systems. In The Eighteenth Annual Interna-
tional Symposium on Fault-Tolerant Computing: Digest of Papers (June
1988), pp. 44-49.

[6] STROM, R. E., AND YEMINI, S. A. Optimistic recovery in distributed
systems. ACM Transactions on Computer Systems 3, 3 (August 1985),
204-226.

[7] STROM, R. E., YEMINI, S. A., AND BACON, D. F. Toward self-
recovering operating systems. In The International Conference on Par-
allel Processing (1987), North-Holland.

[8] STROM, R. E., YEMINI, S. A., AND BACON, D. F. A recoverable object
store. In Hawaii International Conference on System Sciences (1988),
IEEE CS.

[9] YEMINI, S. A., STROM, R. E., AND BACON, D. F. Improving dis-
tributed protocols by decoupling recovery from concurrency control. Re-
search Note RC 13326, IBM T.J. Watson Research Center, 1987.

4

