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1 Introduct ion  

Optimistic rollback recovery methods can efficiently 
and transparently provide fault tolerance for applica- 
tions executing in a distributed system. With roll- 
back recovery, information saved on stable storage 
during failure-free execution allows certain states of 
each process to be recovered after a failure. Examples 
of such methods include the use of message logging 
and checkpointing [12, 8, 3, 15, 14, 9, 13], and the use 
of checkpointing alone [11, 4, 2]. Optimistic methods 
in general allow unrecoverable states of one process to 
be seen by other processes, and optimistically assume 
that  these states will become recoverable before a fail- 
ure occurs. This allows the needed recovery informa- 
tion to be saved on stable storage asynchronously, re- 
ducing failure-free overhead. However, if after a fail- 
ure, these states are not recoverable, processes other 
than those that failed may also be required to roll 
back in order to restore the system to a consistent 
state. 

We have developed a theoretical model for reason- 
ing about  optimistic rollback recovery methods [9, 7], 
and have shown that,  in any system using optimistic 
rollback recovery, there always exists a unique max- 
imum recoverable system state. We have also devel- 
oped two algorithms for finding this maximum re- 
coverable system state. These results can be applied 
both to systems in which all execution of processes 
between received messages is assumed to be determin- 
istic (e.g., message logging and checkpointing meth- 
ods), and to systems in which no such assumption is 
made (e.g., checkpointing methods). We have com- 
pleted a full implementa t ion  of optimistic message 
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logging and checkpointing on a network on SUN 
workstations under the V-System, and performance 
measurements from it demonstrate the efficiency of 
this method [6]. The overhead on individual commu- 
nication operations averaged only 10 percent, and the 
total overhead on distributed application programs 
ranged from a maximum of under 4 percent to much 
less than 1 percent. 

This paper briefly describes the current status of 
our research. We also discuss some of its limitations 
and present a new algorithm that  addresses these lim- 
itations [10]. This algorithm dynamically supports 
both deterministic and nondeterministic processes, 
and allows processes to individually switch between 
using message logging and checkpointing or using 
checkpointing alone. 

2 Current Status 

Our model concisely captures the dependencies that 
exist within the system that  result from communica- 
tion between processes. The execution of each process 
is divided into a sequence of state int.ervals, such that 
ill terms of the rest of the model, all individual states 
of a process within any single state interval are equiv- 
alent from the point of view of all other processes in 
the system. The differences between a deterministic 
and a nondeterministic process are limited to the re- 
spective definitions of process state intervals. Each 
state interval of a process is identified by a unique 
state interval index. A state interval is called stable 
if and only if some state of the process within that  
interval can be recreated from information on stable 
storage after a failure. 

The current dependencies of a process are repre- 
sented by a dependency vector, identifying the maxi- 
mum index of any state interval of each other process 
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on which this process depends. A system state is 
represented by a dependency matrix, composed of 
the dependency vector of some state interval of each 
process. A system state is recoverable if and only if' 
it is consistent and each individual process state in- 
terval is stable. The process states that  make up a 
system state need not all have existed at the same 
time. A system state is said to have occurred dur- 
ing some execution of the system if all component 
process states have each individually occurred. The 
system history relation defines a partial order on these 
system states, such that  one system state precedes 
another if and only if it must have occurred first. 

With this model, we have proven some impor- 
tant  properties of any system using rollback recov- 
ery. First, the set of system states that  have occurred 
during any single execution of a system, ordered by 
the system history relation, forms a lattice, called the 
system history lattice, with the sets of consistent and 
recoverable system states as sublattices. During ex- 
ecution, there is thus always a unique maximum re- 
coverable system state, which never decreases. We 
have also proven sufficient conditions for committing 
output  from the system to the "outside world," and 
for removing recovery information from stable storage 
when no longer needed. 

We have developed two algorithms for determin- 
ing this maximum recoverable system state, and have 
used the model to prove their correctness. The 
first algorithm finds the maximum recoverable sys- 
tem state "from scratch" each time it is invoked, 
whereas the second algorithm is incremental, begin- 
ning its search with the previously known maximum 
and utilizing information saved from its previous ex- 
ecutions to shorten its search. We have completed 
an implementation of optimistic message logging and 
checkpointing using this first algorithm, running un- 
der the V-System [5]. Some of our performance mea- 
surements from this implementation, on a network of 
SUN-3/60 workstations, can be summarized as fol- 
lows: 

* The overhead on individual V-System communi- 
cation operations averages only 10 percent, rang- 
ing from about 18 percent to 2 percent, for dif- 
ferent operations. 

* During a checkpoint, the execution of the process 
is suspended typically for only a few tens of mil- 
liseconds, since most data  is written to the check- 
point before suspending the process. The total 
time to complete the checkpoint, though, is dom- 
inated by the time required to write the modified 
pages of the user address space to the checkpoint, 
and is is about 3 seconds per megabyte written. 

The to)tat overhead experienced by distributed 
a.|)plicatiox~ progran]s is affected most by the 
amouid, of communication performed during ex- 
ecutio,l. We n,casured the performance of dis- 
tributcd progran~s for solving the n-queens prob- 
lem, the traveling salesman problem, and Gaus- 
s|an elimination with partial pivoting. The to- 
tal overhead ranged from a maximum of under 
4 percent to nmch less than 1 percent. 

The time for recovery is dominated by the cost 
of restoring each failed process from its check- 
point, averaging about  1.5 seconds per megabyte 
of user address space. The running time of the al- 
gorithm to determine the maximum recoverable 
system state is negligible relative to the time re- 
quired to restore the processes from their check- 
points and to replay the logged messages to the 
recovering processes. 

To our knowledge, this is the only existing com- 
plete implementation of fault-tolerance using opti- 
nfistic message logging and checkpointing. 

3 L imi ta t ions  

The lack of support  for nondeterministic process ex- 
ecution is a significant limitation to current methods 
using message logging and checkpointing. Nondeter- 
ministic execution can arise, for example, through 
asynchronous scheduling of multiple threads access- 
ing shared memory. To recover the state of a process 
using message logging and checkpointing, the se- 
quence of messages originally received by the process 
after its checkpoint are replayed to it. The process 
is assumed to reexecute deterministically based on 
these messages, and to reach the same state as it had 
after receiving them before the failure. If process ex- 
ecution can be nondeterministic, recovery will not be 
successful. This limitation does not affect methods 
using checkpointing alone, since only process states 
recorded in checkpoints are used for recovery. 

Another limitation of current message logging and 
checkpointing methods, which is shared by methods 
using checkpointing alone, is the difficulty of commit- 
ting output  from the system to the "outside world." 
Output  must be delayed until the fault-tolerance sup- 
port can guarantee that  the sending process will never 
roll back beyond the state interval from which the 
output  was sent. Essentially, this requires that  all 
other state interval's on which this interval either di- 
rectly or indirectly depends are recoverable after the 
failure. Without  coordination between output  and 
the message logging or checkpointing of individual 
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processes, the delays in committing output  may be 
substantial. These delays can be reduced by logging 
or checkpointing more frequently, but this Call signif- 
icantly increase the failure-free overhead of the sys- 
tem. 

4 F u t u r e  D i r e c t i o n s  

These observations lead us to a new algorithm called 
output-driven optimistic message logging and check- 
pointing [10], in which recording the needed recovery 
information on stable storage and determining the 
current maximum recoverable system state are both 
driven by the need to commit output  from the system 
to the outside world. This algorithm allows all output  
to the outside world to be committed quickly after 
being sent, while reducing the overhead required to 
determine when such output  can be committed. The 
algorithm further reduces fault-tolerance overhead by 
avoiding the logging of messages not needed to allow 
pending output  to be committed. Each process com- 
mits its own state intervals as needed, and requires 
the cooperation of the minimum number of other 
processes. The algorithm is completely distributed 
with no centralized control. 

The issue of nondeterministic execution is ad- 
dressed by allowing individual processes to dynam- 
ically switch between using message logging and 
checkpointing or using checkpointing alone. We as- 
sume that  processes can detect when their execution 
is nondeterministic, such as through a trap caused 
by the memory protection hardware. Processes can 
use message logging during deterministic execution, 
in order to avoid recording a new checkpoint each 
time they or other processes that  depend on them 
need to commit output  to the outside world. During 
nondeterministic execution, the process converts to 
using checkpointing alone. This feature can also be 
used by individual processes to reduce the overhead 
of message logging. Processes can decide not to log 
received messages during arbitrary periods of their 
own execution. This saves the overhead of copying 
each received message to a buffer in volatile memory, 
and the overhead of later writing this buffer to stable 
storage. Processes must tlhen record a new check- 
point when they or other processes that  depend on 
them need to commit output  to the outside world. 
After each checkpoint, the process may begin logging 
messages again if desired. 

We contend that  there are significant advantages 
in allowing each process a dynamic choice between 
message logging and checkpointing and checkpointing 
alone. In particular, if one or more processes in the 

computation are nondeterministic, they would always 
use checkpointing, while other processes may choose 
to use message logging. Furthermore, if a process 
is known to be deterministic most of the time but 
occasionally experieuces detectable nondeterministic 
events, it may choose to use message logging during 
deterministic periods, but turn off message logging 
after it has experieuced a nondeterministic event. Af- 
ter a subsequent checkpoint, message logging may be 
turned on again until another nondeterministic event 
occurs. Deterministic processes can choose between 
message logging and checkpointing or checkpointing 
alone, depending on which they perceive to be the 
least expensive at any particular time. If a process 
receives a large number of messages during some pe- 
riod of time, it may choose to record a new check- 
point, eliminating the need for writing these messages 
to stable storage. If, on the other hand, a process 
receives few messages, but  has a large and rapidly 
changing address space, it may instead decide to log 
these few messages and postpone taking an expen- 
sive checkpoint until it becomes necessary to do so 
for limiting the recovery time. This algorithm can 
be viewed as unifying the spectrum of methods be- 
tween checkpointing alone and message logging and 
checkpointing. 

We are currently implementing output-driven op- 
timistic message logging and checkpointing in a 
system of diskless SUN workstations running the 
V-System [5] on an Ethernet network, using a shared 
network file server. Each node in the system runs a 
separate recovery server process, which executes the 
algorithm to commit process state intervals. The ker- 
nel records received messages in a buffer in memory 
until they are recorded on stable storage or discarded 
by the recovery server. The recovery server also 
manages recording checkpoints and restoring them 
during recovery. The algorithm allows each process 
a great deal of freedom in choosing between using 
message logging and checkpointing or using check- 
pointing alone. We are working on appropriate poli- 
cies to enable each process to effectively make these 
choices to reduce its own fault-tolerance overhead. 

We are also examining methods for exploiting 
limited application-specific knowledge to reduce the 
overhead of message logging, while still being trans- 
parent to the application. Our current approach to 
this is in the environment of a distributed shared 
memory system. In such a system, all messages be- 
tween processes are generated by the shared memory 
system. Fault tolerance could be provided by siml)ly 
logging these messages, but we believe it would be far 
more efficient to take advantage of the knowledge that 
these messages are sent to emulate a specific shared 
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data structure. In a separate project, we are currently 
developing a distributed shared memory system using 
a variety of memory coherence mechanisms that are 
specific to the particular access pattern of each ob- 
ject [1]. As a simple example, if the shared memory 
system knows that a particular object is "read-only," 
accesses to it need not be logged. Wu and Fuehs [16] 
have recently proposed a pessimistic method for pro- 
riding fault tolerance in a distributed shared virtual 
memory system, which in general requires processes 
to checkpoint on each interaction. We are interested 
in pursuing a more optimistic approach that redu,:es 
the number of checkpoints required. 
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