
Transparent Opt imist ic Rollback Recovery

David B. Johnson
Willy Zwaenepoel

D e p a r t m e n t of C o m p u t e r S c i e n c e

R ice U n i v e r s i t y

P .O . B o x 1892

H o u s t o n , T e x a s 77251-1892

d b j @ r i c e . e d u , w i l l y @ r i c e . e d u

1 Introduct ion

Optimistic rollback recovery methods can efficiently
and transparently provide fault tolerance for applica-
tions executing in a distributed system. With roll-
back recovery, information saved on stable storage
during failure-free execution allows certain states of
each process to be recovered after a failure. Examples
of such methods include the use of message logging
and checkpointing [12, 8, 3, 15, 14, 9, 13], and the use
of checkpointing alone [11, 4, 2]. Optimistic methods
in general allow unrecoverable states of one process to
be seen by other processes, and optimistically assume
that these states will become recoverable before a fail-
ure occurs. This allows the needed recovery informa-
tion to be saved on stable storage asynchronously, re-
ducing failure-free overhead. However, if after a fail-
ure, these states are not recoverable, processes other
than those that failed may also be required to roll
back in order to restore the system to a consistent
state.

We have developed a theoretical model for reason-
ing about optimistic rollback recovery methods [9, 7],
and have shown that, in any system using optimistic
rollback recovery, there always exists a unique max-
imum recoverable system state. We have also devel-
oped two algorithms for finding this maximum re-
coverable system state. These results can be applied
both to systems in which all execution of processes
between received messages is assumed to be determin-
istic (e.g., message logging and checkpointing meth-
ods), and to systems in which no such assumption is
made (e.g., checkpointing methods). We have com-
pleted a full implementa t ion of optimistic message

This work was supported in part by the National Science
Foundation under Grants CDA-8619893 and CCR-8716914,
and by the Office of Naval Research under Contract
ONR N00014-88-K-0140.

logging and checkpointing on a network on SUN
workstations under the V-System, and performance
measurements from it demonstrate the efficiency of
this method [6]. The overhead on individual commu-
nication operations averaged only 10 percent, and the
total overhead on distributed application programs
ranged from a maximum of under 4 percent to much
less than 1 percent.

This paper briefly describes the current status of
our research. We also discuss some of its limitations
and present a new algorithm that addresses these lim-
itations [10]. This algorithm dynamically supports
both deterministic and nondeterministic processes,
and allows processes to individually switch between
using message logging and checkpointing or using
checkpointing alone.

2 Current Status

Our model concisely captures the dependencies that
exist within the system that result from communica-
tion between processes. The execution of each process
is divided into a sequence of state int.ervals, such that
ill terms of the rest of the model, all individual states
of a process within any single state interval are equiv-
alent from the point of view of all other processes in
the system. The differences between a deterministic
and a nondeterministic process are limited to the re-
spective definitions of process state intervals. Each
state interval of a process is identified by a unique
state interval index. A state interval is called stable
if and only if some state of the process within that
interval can be recreated from information on stable
storage after a failure.

The current dependencies of a process are repre-
sented by a dependency vector, identifying the maxi-
mum index of any state interval of each other process

99

on which this process depends. A system state is
represented by a dependency matrix, composed of
the dependency vector of some state interval of each
process. A system state is recoverable if and only if'
it is consistent and each individual process state in-
terval is stable. The process states that make up a
system state need not all have existed at the same
time. A system state is said to have occurred dur-
ing some execution of the system if all component
process states have each individually occurred. The
system history relation defines a partial order on these
system states, such that one system state precedes
another if and only if it must have occurred first.

With this model, we have proven some impor-
tant properties of any system using rollback recov-
ery. First, the set of system states that have occurred
during any single execution of a system, ordered by
the system history relation, forms a lattice, called the
system history lattice, with the sets of consistent and
recoverable system states as sublattices. During ex-
ecution, there is thus always a unique maximum re-
coverable system state, which never decreases. We
have also proven sufficient conditions for committing
output from the system to the "outside world," and
for removing recovery information from stable storage
when no longer needed.

We have developed two algorithms for determin-
ing this maximum recoverable system state, and have
used the model to prove their correctness. The
first algorithm finds the maximum recoverable sys-
tem state "from scratch" each time it is invoked,
whereas the second algorithm is incremental, begin-
ning its search with the previously known maximum
and utilizing information saved from its previous ex-
ecutions to shorten its search. We have completed
an implementation of optimistic message logging and
checkpointing using this first algorithm, running un-
der the V-System [5]. Some of our performance mea-
surements from this implementation, on a network of
SUN-3/60 workstations, can be summarized as fol-
lows:

* The overhead on individual V-System communi-
cation operations averages only 10 percent, rang-
ing from about 18 percent to 2 percent, for dif-
ferent operations.

* During a checkpoint, the execution of the process
is suspended typically for only a few tens of mil-
liseconds, since most data is written to the check-
point before suspending the process. The total
time to complete the checkpoint, though, is dom-
inated by the time required to write the modified
pages of the user address space to the checkpoint,
and is is about 3 seconds per megabyte written.

The to)tat overhead experienced by distributed
a.|)plicatiox~ progran]s is affected most by the
amouid, of communication performed during ex-
ecutio,l. We n,casured the performance of dis-
tributcd progran~s for solving the n-queens prob-
lem, the traveling salesman problem, and Gaus-
s|an elimination with partial pivoting. The to-
tal overhead ranged from a maximum of under
4 percent to nmch less than 1 percent.

The time for recovery is dominated by the cost
of restoring each failed process from its check-
point, averaging about 1.5 seconds per megabyte
of user address space. The running time of the al-
gorithm to determine the maximum recoverable
system state is negligible relative to the time re-
quired to restore the processes from their check-
points and to replay the logged messages to the
recovering processes.

To our knowledge, this is the only existing com-
plete implementation of fault-tolerance using opti-
nfistic message logging and checkpointing.

3 L imi ta t ions

The lack of support for nondeterministic process ex-
ecution is a significant limitation to current methods
using message logging and checkpointing. Nondeter-
ministic execution can arise, for example, through
asynchronous scheduling of multiple threads access-
ing shared memory. To recover the state of a process
using message logging and checkpointing, the se-
quence of messages originally received by the process
after its checkpoint are replayed to it. The process
is assumed to reexecute deterministically based on
these messages, and to reach the same state as it had
after receiving them before the failure. If process ex-
ecution can be nondeterministic, recovery will not be
successful. This limitation does not affect methods
using checkpointing alone, since only process states
recorded in checkpoints are used for recovery.

Another limitation of current message logging and
checkpointing methods, which is shared by methods
using checkpointing alone, is the difficulty of commit-
ting output from the system to the "outside world."
Output must be delayed until the fault-tolerance sup-
port can guarantee that the sending process will never
roll back beyond the state interval from which the
output was sent. Essentially, this requires that all
other state interval's on which this interval either di-
rectly or indirectly depends are recoverable after the
failure. Without coordination between output and
the message logging or checkpointing of individual

100

processes, the delays in committing output may be
substantial. These delays can be reduced by logging
or checkpointing more frequently, but this Call signif-
icantly increase the failure-free overhead of the sys-
tem.

4 F u t u r e D i r e c t i o n s

These observations lead us to a new algorithm called
output-driven optimistic message logging and check-
pointing [10], in which recording the needed recovery
information on stable storage and determining the
current maximum recoverable system state are both
driven by the need to commit output from the system
to the outside world. This algorithm allows all output
to the outside world to be committed quickly after
being sent, while reducing the overhead required to
determine when such output can be committed. The
algorithm further reduces fault-tolerance overhead by
avoiding the logging of messages not needed to allow
pending output to be committed. Each process com-
mits its own state intervals as needed, and requires
the cooperation of the minimum number of other
processes. The algorithm is completely distributed
with no centralized control.

The issue of nondeterministic execution is ad-
dressed by allowing individual processes to dynam-
ically switch between using message logging and
checkpointing or using checkpointing alone. We as-
sume that processes can detect when their execution
is nondeterministic, such as through a trap caused
by the memory protection hardware. Processes can
use message logging during deterministic execution,
in order to avoid recording a new checkpoint each
time they or other processes that depend on them
need to commit output to the outside world. During
nondeterministic execution, the process converts to
using checkpointing alone. This feature can also be
used by individual processes to reduce the overhead
of message logging. Processes can decide not to log
received messages during arbitrary periods of their
own execution. This saves the overhead of copying
each received message to a buffer in volatile memory,
and the overhead of later writing this buffer to stable
storage. Processes must tlhen record a new check-
point when they or other processes that depend on
them need to commit output to the outside world.
After each checkpoint, the process may begin logging
messages again if desired.

We contend that there are significant advantages
in allowing each process a dynamic choice between
message logging and checkpointing and checkpointing
alone. In particular, if one or more processes in the

computation are nondeterministic, they would always
use checkpointing, while other processes may choose
to use message logging. Furthermore, if a process
is known to be deterministic most of the time but
occasionally experieuces detectable nondeterministic
events, it may choose to use message logging during
deterministic periods, but turn off message logging
after it has experieuced a nondeterministic event. Af-
ter a subsequent checkpoint, message logging may be
turned on again until another nondeterministic event
occurs. Deterministic processes can choose between
message logging and checkpointing or checkpointing
alone, depending on which they perceive to be the
least expensive at any particular time. If a process
receives a large number of messages during some pe-
riod of time, it may choose to record a new check-
point, eliminating the need for writing these messages
to stable storage. If, on the other hand, a process
receives few messages, but has a large and rapidly
changing address space, it may instead decide to log
these few messages and postpone taking an expen-
sive checkpoint until it becomes necessary to do so
for limiting the recovery time. This algorithm can
be viewed as unifying the spectrum of methods be-
tween checkpointing alone and message logging and
checkpointing.

We are currently implementing output-driven op-
timistic message logging and checkpointing in a
system of diskless SUN workstations running the
V-System [5] on an Ethernet network, using a shared
network file server. Each node in the system runs a
separate recovery server process, which executes the
algorithm to commit process state intervals. The ker-
nel records received messages in a buffer in memory
until they are recorded on stable storage or discarded
by the recovery server. The recovery server also
manages recording checkpoints and restoring them
during recovery. The algorithm allows each process
a great deal of freedom in choosing between using
message logging and checkpointing or using check-
pointing alone. We are working on appropriate poli-
cies to enable each process to effectively make these
choices to reduce its own fault-tolerance overhead.

We are also examining methods for exploiting
limited application-specific knowledge to reduce the
overhead of message logging, while still being trans-
parent to the application. Our current approach to
this is in the environment of a distributed shared
memory system. In such a system, all messages be-
tween processes are generated by the shared memory
system. Fault tolerance could be provided by siml)ly
logging these messages, but we believe it would be far
more efficient to take advantage of the knowledge that
these messages are sent to emulate a specific shared

i01

data structure. In a separate project, we are currently
developing a distributed shared memory system using
a variety of memory coherence mechanisms that are
specific to the particular access pattern of each ob-
ject [1]. As a simple example, if the shared memory
system knows that a particular object is "read-only,"
accesses to it need not be logged. Wu and Fuehs [16]
have recently proposed a pessimistic method for pro-
riding fault tolerance in a distributed shared virtual
memory system, which in general requires processes
to checkpoint on each interaction. We are interested
in pursuing a more optimistic approach that redu,:es
the number of checkpoints required.

R e f e r e n c e s

[1] John K. Bennett, John B. Carter, and Willy
Zwaenepoel. Munin: Distributed shared mem-
ory based on type-specific memory coherence. In
Proceedings of the Second ACM SIGPLAN Sym-
posium on Principles 8J Practice of Parallel Pro-
gramming, pages 168-176. ACM, March 199(I.

[2] Bharat Bhargava and Shy-Renn Lian. Indepen-
dent checkpointing and concurrent rollback for
recovery--An optimistic approach. In Proceed-
ings of the Seventh Symposium on Reliable Dis-
tributed Systems, pages 3-12. IEEE Computer
Society, October 1988.

[3] Anita Borg, Wolfgang Blau, Wolfgang Graetsch,
Ferdinand Herrmann, and Wolfgang Oberle.
Fault tolerance under UNIX. A CM Transactions
on Computer Systems, 7(1):1-24, February 1!)89.

[4] K. Mani Chandy and Leslie Lamport.]Dis-
tributed snapshots: Determining global states
of distributed systems. ACM Transactions on
Computer Systems, 3(1):63-75, February 1985.

[5] David R. Cheriton and Willy Zwaenepoel. 'The
distributed V kernel and its performance for
diskless workstations. In Proceedings of the
Ninth ACM Symposium on Operating Systems
Principles, pages 129-140. ACM, October 1983.

[6] David B. Johnson. Distributed System Fault
Tolerance Using Message Logging and Check-
pointing. PhD thesis, Rice University, Houston,
Texas, December 1989.

[7] David B. Johnson, Peter J. Keleher, and Willy
Zwaenepoel. A simple algorithm for finding
the maximum recoverable system state in op-
timistic rollback recovery methods. Technical
Report Rice COMP TR90-125, Department of
Computer Science, Rice University, Houston,
Texas, July 1990.

[8] David B. Johnson and Willy Zwaenepoel.
Sender-based message logging. In The Sev-
enteenth Annual International Symposium on
Fault-Tolerant Computing: Digest of Papers,
pages 14-19. IEEE Computer Society, June
1987.

[9] David B. Johnson and Willy Zwaenepoel. Re-
covery in distributed systems using optimistic
message logging and checkpointing. In Proceed-
ings of the Seventh Annual ACM Symposium on
Principles of Dislributed Computing, pages 171-
181. ACM, August 1988. To appear in Journal
of Algorithms, September 1990.

[10] David B. Johnson and Willy Zwaenepoel.
Output-driven distributed optimistic message
logging and checkpointing. Technical Report
Rice COMP TR90-118, Department of Com-
puter Science, Rice University, Houston, Texas,
May 1990.

[11] Richard Koo and Sam Toueg. Checkpoint-
ing and rollback-recovery for distributed sys-
tems. IEEE Transactions on Software Engineer-
ing, SE-13(1):23-31, January 1987.

[12] Michael L. Powell and David L. Presotto. Pub-
lishing: A reliable broadcast communication
mechanism. In Proceedings of the Ninth ACM
Symposium on Operating Systems Principles,
pages 100-109. ACM, October 1983.

[13] A. Prasad Sistla and Jennifer L. Welch. Effi-
cient distributed recovery using message logging.
In Proceedings of the Eighth Annual ACM Sym-
posium on Principles of Distributed Computing.
ACM, August 1989.

[14] Robert E. Strom, David F. Bacon, and Shaula A.
Yemini. Volatile logging in n-fault-tolerant dis-
tributed systems. In The Eighteenth Annual In.
ternational Symposium on Fault-Tolerant Com.
puting: Digest of Papers, pages 44-49. IEEE
Computer Society, June 1988.

[15] Robert E. Strom and Shaula Yemini. Optimistic
recovery in distributed systems. ACM Transac-
tions on Computer Systems, 3(3):204-226, Au-
gust 1985.

[16] Kun-Lung Wu and W. Kent F~achs. Recoverable
distributed shared virtual memory. IEEE Trans-
actions on Computers, 39(4):460-469, April
1990.

102

